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Abstract

The activation of nuclear factor-kappaB (NFκB), a proinflammatory transcription factor, is a 

commonly observed phenomenon in breast cancer. It facilitates the development of a hormone-

independent, invasive, high-grade, and late-stage tumor phenotype. Moreover, the commonly used 

cancer chemotherapy and radiotherapy approaches activate NFκB, leading to the development of 

invasive breast cancers that show resistance to chemotherapy, radiotherapy, and endocrine therapy. 

Inhibition of NFκB results in an increase in the sensitivity of cancer cells to the apoptotic effects 

of chemotherapeutic agents and radiation and restoring hormone sensitivity, which is correlated 

with increased disease-free survival in patients with breast cancer. In this review article, we focus 

on the role of the NFκB signaling pathways in the development and progression of breast cancer 

and the validity of NFκB as a potential target for breast cancer prevention and therapy. We also 

discuss the recent findings that NFκB may have tumor suppressing activity in certain cancer types. 

Finally, this review also covers the state-of-the-art development of NFκB inhibitors for cancer 

therapy and prevention, the challenges in targeting validation, and pharmacology and toxicology 

evaluations of these agents from the bench to the bedside.
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1. INTRODUCTION

Inflammation is intimately associated with cancer, and chronic inflammation increases the 

risk for several cancer types [1–3]. It has been long recognized that a strong correlation 

exists between the presence of inflammation and the occurrence of pre-malignant lesions at 

various sites [4]. For example, recent cellular and epidemiological evidences indicate that 
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there is a higher risk of colorectal cancer due to Crohn’s disease and ulcerative colitis [5–8], 

while gastric Helicobacter pylori infection is the leading cause of gastric cancers [9–11]. The 

presence of inflammation, even in the absence of infection, may also contribute to 

carcinogenesis [1–3, 12–14], as seen in esophageal cancer [15], pancreatic cancer [16] and 

prostate cancer [17], because the development of these cancers is enhanced by inflammatory 

conditions, such as esophagitis, chronic pancreatitis, and chronic prostatitis, respectively.

Chronic inflammation is characterized by the generation of reactive oxygen and nitrogen 

species, the infiltration of inflammatory cells such as leukocytes, lymphocytes, and 

macrophages, tissue destruction, fibrosis, and enhanced vasculogenesis. The high levels of 

reactive oxygen species (ROS)/reactive nitrogen species (RNS) cause mutagenic insults, 

initiating tumorigenesis, and leading to cellular hyper-proliferation, the inhibition of 

apoptosis, and the promotion of angiogenesis and cell invasion [4,18–20]. Thus, the 

development of cancer in association with inflammation is essentially a process driven by 

inflammatory cells and pro-inflammatory mediators, which together establish a 

microenvironment conducive to carcinogenesis. This process is associated with the 

activation of multiple signaling pathways, including the nuclear factor-κB (NFκB) 

pathways, which have functions in both the inflammatory responses and cancer development 

[21–29].

NFκB is a transcription factor that was discovered in 1986 as a nuclear factor binding to the 

enhancer element of the immunoglobulin kappa light-chain of activated B cells (thus, the 

abbreviation NFκB) [30, 31]. The NFκB family of transcription factors includes five 

members: RelA (p65), c-Rel, RelB, NFκB1 (p50) and NFκB2 (p52), which are expressed in 

nearly all cell types and regulate genes with different functions [32]. The N-termini of these 

transcription factors contain a Rel homology domain (RHD) responsible for sequence-

specific DNA binding and translocation, while the C-termini contain domains responsible 

for either transcriptional activation (RelA, c-Rel and RelB) or inhibition (p105 and p100) 

[32, 33]. Proteolytic cleavages of the p105 and p100 proteins into p50 and p52, respectively, 

occur at C-terminal to the glycine-rich regions (GRRs) present in the N-terminal region of 

both p105 and p100 [34]. The Rel family members form different hetero/homodimeric 

combinations, with the most common being the NFκB complex made up of a p65/p50 

heterodimer [32]. In most cell types, NFκB is present in an inactive form, where it is 

complexed with the inhibitory κB protein (IκB) in the cytoplasm [35].

Although it is essential for innate and humoral immunity, the activation of NFκB in organs 

other than the immune system can lead to various disorders. This is because NFκB regulates 

more than 500 genes involved in inflammation, cellular transformation, survival, 

proliferation, angiogenesis, invasion, and metastasis [36, 37]. Constitutive activation of 

NFκB has been observed in breast cancer [30, 38–42] and several other cancer types, and is 

associated with oncogenesis, cell survival, proliferation, angiogenesis, metastasis, and 

chemo- and radio-resistance [43–64]. The existence of crosstalk between NFκB and various 

other transcription factors and regulatory molecules is well established, with most tumor 

cells being highly “addicted” to the activated form of NFκB [26].
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Although NFκB is required for normal mammary gland morphogenesis [63, 64], abnormal 

constitutive expression of NFκB subunits (such as c-Rel, p65, and p50) has been widely 

reported in breast cancers [65–67]. NFκB activation has been demonstrated to drive breast 

cancer development and progression [39, 68, 69], and its activation is specifically associated 

with a particularly aggressive estrogen receptor (ER)-negative and human epidermal growth 

factor receptor 2 (HER2)-positive breast cancer subtype known as inflammatory breast 

cancer (IBC) [70, 71]. The upregulation of NFκB signaling alone and/or in conjunction with 

other signaling pathways, promotes angiogenic neovascularization, the epithelial-

mesenchymal transition (EMT), increases cancer cell “stemness”, and leads to 

chemoresistance, radioresistance, and endocrine resistance. All of these are associated with 

invasive phenotypes that lead to early relapse, advanced forms of the disease, and reduced 

overall survival [72–76]. How NFκB affects all of these processes and whether it may 

represent a valid target for breast cancer therapy form the crux of this review.

2. THE BIOLOGY AND REGULATION OF THE NFκB SIGNALING 

PATHWAYS

2.1. The Canonical Pathway

In normal cells, NFκB is cytoplasmically sequestered in a latent, inactive form that is bound 

to the inhibitor of κB (IκB) proteins, which include IκBα, IκBβ, IκBε and IκBζ [40]. 

Cellular stimulation by tumor necrosis factor alpha (TNFα) or its activation by various 

inducers, such as cytokines, mitogens, growth factors, bacterial and viral genes, ultraviolet 

radiation, etc., leads to the activation of the inhibitory κB kinases (IκKs). These activated 

kinases then phosphorylate the IκBs, targeting them for proteasomal degradation [77]. This 

releases the sequestered NFκB dimers, which then translocate into the nucleus and bind to 

specific DNA sequences in the promoter or enhancer regions of target genes to transactivate 

them, including those encoding IκB and the A20 protein [78, 79]. The newly synthesized 

IκB translocates to the nucleus, attaches to the NFκB dimers and eliminates them from the 

nucleus, while A20 protein stays in the cytoplasm and suppresses the activity of TNFα 
receptors. Thus, the NFκB system consists of at least two negative feedback loops: one is 

involved in IκB-mediated cytoplasmic localization and another is associated with A20 

protein [78, 79].

2.2. The Non-Canonical Pathway

A parallel non-canonical pathway exists for the activation of specific Rel proteins in 

response to various stimuli, such as viruses, cellular stress, growth factors, 

lipopolysaccharides (LPS), etc. In contrast to the canonical pathway, in this case, the RelB/

NFκB2 dimer is formed via the inducible proteolytic processing of the NFκB2 gene 

product. The TNF-receptor superfamily members, such as CD40 and B-cell activating factor, 

selectively activate NFκB-inducing kinase (NIK) and IκB kinase 1 (IKK1), leading to the 

phosphorylation and ubiquitination of p100, resulting in its partial proteolytic processing to 

yield p52 [80, 81]. Both the canonical and non-canonical pathways contribute to cancer 

development and progression [53, 82]. Fig. (1) summarizes the different NFκB pathways.

Wang et al. Page 3

Curr Med Chem. Author manuscript; available in PMC 2019 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.3. Regulation of the NFκB Signaling

Besides the canonical and non-canonical pathways, additional atypical pathways of NFκB 

activation exist. For example, subsequent to genotoxic stress, the IKK complex can be 

activated via the ataxia-telangiectasia mutated (ATM) kinase, leading to the ubiquitination of 

NEMO (IKK-γ) [83]. Other pathways that can activate NFκB include the epidermal growth 

factor receptor (EGFR)-mediated NFκB-dependent transcription [58]; the ultraviolet (UV) 

radiation-mediated IKK-independent NFκB activation pathway that occurs via casein kinase 

2 (CK2) phosphorylation [84]; and hydrogen peroxide-mediated NFκB activation through 

the induction of IκB phosphorylation at Tyr42 by c-Src [85]. The common feature of all of 

these pathways is the liberation of various NFκB dimers following the activation of IKKs, 

their nuclear translocation, and the subsequent binding of the RHD to cognate DNA 

sequences in the enhancer elements of NFκB target genes, followed by their activation [86]. 

This activation is further controlled by interactions with other co-activators, co-repressors, 

and transcription factors, in addition to crosstalk with other signaling pathways [24]. Various 

post-translational modifications (specifically phosphorylation and acetylation), especially of 

the RelA subunit, control the transcriptional activity of NFκB and add multiple layers of 

complexity to NFκB signaling [87]. Both the phosphorylation and acetylation of RelA 

(especially phosphorylation on the S276 or S536 residues) contributes to the inflammatory 

response and tumorigenesis [88–90]. Table 1 presents a list of representative proteins that 

physically interact with NFκB family members and augment or attenuate their activity. Fig. 

(2) shows the physiological and pathological stimuli and kinases involved in NFκB 

activation, and the downstream targets of NFκB.

3. THE NFκB SIGNALING PATHWAYS IN BREAST CANCER 

DEVELOPMENT AND PROGRESSION

Breast cancer is one of the major causes of cancer-related death in women worldwide [130]. 

The steroidal sex hormone estrogen is crucial for the initiation and progression of breast 

cancer. The majority of breast cancers express the estrogen receptor, which mediates the 

actions of estrogen, and is required for estrogen-dependent tumor growth [131–133]. 

However, in many cases, breast cancer eventually progresses from a hormone-dependent, 

localized, estrogen-sensitive phenotype, to a highly invasive, hormone-independent and 

chemoresistant phenotype [132,134–135]. This progression occurs concomitantly with 

altered ER function or the development of ER-negative cancer cells [132,133–136]. As 

aforementioned, the IBC phenotype typically exhibits high constitutive NFκB activity. IBCs 

are at an advanced stage at the time of diagnosis, and are mostly ER-negative and HER2-

positive [70,71, 137]. Another breast cancer subtype with high levels of constitutively active 

NFκB signaling is triple negative breast cancer (TNBC), so termed because of the lack of 

the ER, progesterone receptor (PR), and HER2 receptor. TNBC cells are characterized by 

the basal cell type, and often possess p53 mutations, indicating possible crosstalk between 

p53 and NFκB [138]. In clinical studies, the constitutive activation of NFκB in breast 

cancers has been found to be associated with larger breast tumor size, increased metastases 

to pulmonary and brain sites, and overexpression of the HER2 oncoprotein [139].
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3.1. NFκB Activation in Breast Cancer: Role of IKKε

A recent study of different breast cancer cell lines indicated that the aggressive basal 

subtypes, which lack the ER, typically exhibit high constitutive NFκB activity [140]. Human 

breast cancers display nuclear accumulation of the classic form (p50/p65), as well as p52 

and B-cell lymphoma 3 (Bcl-3), along with c-Rel [141]. These activated NFκB dimers 

enhance cellular proliferation and cause decreased apoptosis, but what triggers the activation 

of NFκB in breast cancer is still unknown. Unlike lymphoid malignancies where oncogenic 

mutations in RelA, c-Rel, or other NFκB proteins have been identified [42], the activation of 

NFκB in solid tumors, such as breast cancer, is not generally accompanied by any loss-of-

function IκB mutations or gain-of-function IKK mutations [39]. In fact, Karin et al. 
suggested that the NFκB activation in solid tumors may be either caused by the 

inflammatory tumor microenvironment or activation of mutated upstream components in the 

IKK–NFκB signaling pathways [39]. In 2007, Boehm et al. revealed that IKKε was 

amplified in least one-third of breast cancers. Using complementary genomic approaches, 

they demonstrated the amplification and overexpression of IKKε in both breast cancer cell 

lines and tumors derived from patients [41]. Further, their study showed that IKKε increased 

the transcriptional activity of NFκB and upregulated downstream targets, such as matrix 

metallopeptidase 9 (MMP9) and Bcl-2. The suppression of IKKε expression in these breast 

cancer cell lines induced cell death. IKKε was also found to promote malignant 

transformation via Akt (also known as protein kinase B or PKB), thus implicating the NFκB 

pathway as a downstream mediator of phosphatidylinositol-3 kinase (PI3K) signaling [41]. 

In another study, TNFα and IL-1β stimulation induced K63-linked polyubiquitination of 

IKKε at lysines 30 and 401 via an IAP1/cIAP2/TRAF2 E3 ligase complex. This 

modification is essential for IKKε-mediated NFκB activation and toll-like receptor (TLR) 

signaling. Disruption of this polyubiquitination impairs the recruitment of canonical NFκB 

proteins and prevents cellular transformation [142–144].

3.2. NFκB Activation in Breast Cancer: Role of Inflammation

The origins of several human cancers can be traced to a chronic inflammatory process [1]. 

Inflammation, especially chronic inflammation, produces numerous changes in the cellular 

environment: changes in metabolism, the generation of inflammatory byproducts, the 

production of reactive oxygen and nitrogen species, DNA damage, etc. [19]. The 

inflammatory response involves the release of cytokines and activation of the canonical 

NFκB signaling pathway. However, the role of NFκB in promoting the malignant 

transformation of a cell can be complex. While activation of NFκB, as part of the immune 

surveillance against tumors, can lead to the destruction of transformed cells [145–147], 

constitutive activation of NFκB in different cancer types also exerts a variety of oncogenic 

functions [145–147]. This is probably due to the fact that the physiological immune defense 

against cancer cells is insufficient to eliminate all abnormal cells, resulting in a subset of 

cells that “escapes” the surveillance and outperforms the immune system. This phenomenon 

is often seen under chronic inflammatory conditions accompanied only by moderately 

elevated NFκB activity [147]. In breast cancer, accumulating evidence suggests that tumor-

infiltrating leukocytes in the tumor stroma may promote cancer progression and/or increase 

the metastatic capability of malignant breast epithelial cells [148]. The significance of the 

inflammatory leukocytes and the immune system in oncogenesis can also be gauged by the 
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increased cancer incidence and rate of metastasis in immunocompromised subjects 

[149,150]. Immunohistochemical studies indicated that breast carcinogenesis and metastatic 

progression are accompanied by the infiltration of lymphocytes into neoplastic tissue, 

increased immunoglobulin-mediated release of vascular endothelial growth factor (VEGF) 

into the tumor interstitium, and the release of cytokines that promote a Th2 polarized 

immune response. The mutual activation of NFκB and the cytokines makes NFκB an 

important player in the inflammation-associated development of cancer [148]. Of note, 

prolonged exposure to estrogen increases the risk of breast cancer via the generation of 

copious amounts of ROS, which facilitate continued NFκB activity, typically through IKK 

[151].

3.3. NFκB Activation in Breast Cancer: Tumorigenesis, Cell Cycle Regulation, and 
Apoptosis

Studies using breast cancer cell lines, animal models, and patient specimens have identified 

that: a) RelA/p65 [66] and c-Rel [39], as well as b) NFκB transcriptional activity are 

enhanced prior to malignant transformation in the breast [123]. As discussed previously in 

Section 3.1, this malignant transformation is mediated by IKKε via the activation of NFκB. 

The involvement of NFκB in tumorigenesis has been further validated in different transgenic 

murine models where a genetic deletion of IKK β significantly reduced tumor growth. 

Further, growth factors such as interleukin-6 (IL-6) are also dramatically decreased when 

NFκB signaling is disrupted [149]. NFκB activation in cancer leads to the upregulation of 

antiapoptotic and cell proliferation-associated genes, kicking in a survival mechanism that 

helps the cell to withstand the physiological stress triggering the inflammatory response. The 

activation of NFκB in breast cancer has been reported to upregulate the expression of Cyclin 

D1, Cyclin-dependent kinase 2 (CDK2), and c-Myc [152–154], which drive cell cycle 

progression and cause uncontrolled cell proliferation. NFκB also regulates the expression 

and the function of growth stimulating cytokines, such as IL-1β and TNFα [78], while 

growth factors such as the EGFR and HER2, which promote solid tumor growth, activate 

NFκB [155]. Dysregulation of NFκB activity alters the expression of cell death-regulating 

genes, leading to the upregulation of antiapoptotic and pro-survival genes, such as members 

of the Bcl-2 family [155], IAP proteins (XIAP, cIAP-1/2) [156], and TNF receptor-

associated factor (TRAF)1/2 [157], and inhibiting the apoptotic response to 

chemotherapeutic agents.

3.4. NFκB Activation in Breast Cancer: EMT, Invasion, and Metastasis

Apart from initiating tumorigenesis in the mammary gland, NFκB also plays a role in the 

progression of malignancy and the acquisition of aggressive behavior. Cellular migration and 

invasion, which are essential for tumor progression, are regulated by NFκB-dependent 

genes, including matrix metalloproteinases (MMPs), annexin 1, the urokinase type of 

plasminogen activator (uPA), IL-8, VCAM-1 (an adhesion molecule), and chemokine 

receptors such as chemokine receptor type 4 (CXCR4) [158–163]. The redox protein, 

thioredoxin (Trx-1), has been reported to promote invasion in the MDA-MB-231 cell line by 

augmenting MMP-9 transcription by activating NFκB, thus showing the intimate association 

between the oxidative state and NFκB [164].
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Overexpression of the p65 subunit in the immortalized, but non-malignant, MCF-10A cell 

line facilitates the EMT, causing a decrease in the expression of epithelial markers such as 

E-cadherin and desmoplakin, accompanied by a concomitant increase in mesenchymal 

markers, such as vimentin [165]. This process is postulated to occur via the NFκB-

dependent expression of zinc finger E-box-binding homeobox 1 (ZEB-1/ZFHX1A) and 

ZEB-2/ZFHX1B/Smad-interacting protein (SIP1), two transcriptional regulators that 

downregulate E-cadherin expression and promote the EMT [165]. NFκB has also been 

reported to induce and stabilize the expression of EMT markers such as Snail and twist-

related protein 1 (Twist1), respectively. NFκB induces COP9 signalosome 2 (CSN2), which, 

in turn, blocks the ubiquitination and degradation of Snail [166–168]. On the other hand, 

chronic treatment of cells with TNF-α rapidly induces Twist1 mRNA and protein expression 

in normal breast epithelial cells and breast cancer cells [168]. NFκB also promotes 

angiogenic neovascularization following radiation treatment [74], while inhibition of NFκB 

activation attenuates the VEGF and fibroblast growth factor 2 (FGF-2) levels [169]. 

Inhibiting the DNA-binding activity of NFκB leads to a decrease in the expression of VEGF, 

IL-8 and MMP-9, thus indicating that NFκB exerts transcriptional control on these factors 

[170].

In a metastasis model of breast cancer using rat sarcoma (Ras)-transformed mammary 

epithelial cells, NFκB has been shown to cause the induction and maintenance of the EMT 

via transforming growth factor beta (TGFβ) [42]. Moreover, in a recent study of patients 

with infiltrating ductal carcinoma, NFκB was seen to play a role in the initiation and 

development of the disease, while VEGF-C appeared to promote lymph node metastasis 

[171]. A recent report indicated a hitherto undescribed non-canonical crosstalk mechanism 

in the highly tumorigenic MDA-MB-231 xenograft model involving Jagged, Notch, Akt and 

IKKα [172,173]. MDA-MB-231 cells, which are basal-like, exhibited an NFκB-dependent 

induction of jagged 1 (Jag1) and a Notch-dependent increase in the cancer stem cell 

population [172]. Further evidence of the involvement of NFκB is provided by the fact that 

noscapine, an alkaloid compound, synergistically increased the anticancer activity of 

doxorubicin in basal-like breast cancer cells via the inactivation of the NFκB and angiogenic 

pathways and the stimulation of apoptosis [174].

In TNBC cells, an NFκB signaling cascade involving the histone methyltransferase enhancer 

of zeste homologue 2 (EZH2) was required for the expression of IL-6, IL-8 and Chemokine 

(C-X-C motif) ligand 1 (CXCL1). These cytokines promote colony formation and cell 

survival in vitro, and tumor engraftment and growth in vivo [175]. In fact, a Cox 

multivariable analysis of patient specimens revealed that the expression levels of IL-6 and 

IL-8 predict the length of patient survival, indicating that NFκB is an important prognostic 

indicator in breast cancer [175].

The induction of the urokinase-type plasminogen activator (uPA) by PI3K-activated NFκB 

promoted the metastasis of breast cancer cells; and this invasive behavior could be curtailed 

by pretreatment with PI3K inhibitors, such as wortmannin and LY294002. This indicates 

that the NFκB activation in breast cancer occurs downstream of PI3K. Additionally, uPA can 

serve as a major biomarker of breast cancer metastasis in the clinical setting [176,177].
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3.5. NFκB Activation in Breast Cancer: Stem Cells

As they undergo the EMT, cancer cells gain stem cell properties that facilitate their survival 

in response to the cytotoxic chemotherapeutic drugs. Several studies have demonstrated how 

NFκB integrates proinflammatory signals from the tumor microenvironment to regulate 

these properties [26–28]. Inflammatory breast cancer, a particularly aggressive form of 

breast cancer with increased invasive and metastatic potential, is an example of this process 

[70, 71]. NFκB is hyperactive in IBC, and IBC tumor cells exhibit more stem cell 

characteristics compared to tumor cells from non-IBC subsets [178].

HER2, a membrane-bound receptor tyrosine kinase, is overexpressed in one-third of all 

breast cancers, and is a key modulator of the cancer stem cell population [54,178]. As HER2 

activates NFκB through the canonical pathway [179,180], it is reasonable to expect that the 

NFκB family may be involved in the growth and expansion of breast cancer stem cells [40]. 

In fact, in a mouse model of HER2 breast tumorigenesis with selective suppression of NFκB 

in the mammary gland, it was demonstrated that NFκB controlled tumor initiation, cell 

proliferation, colony formation, inflammation, recruitment of tumor-associated macrophages 

(TAMs), angiogenesis, and invasion [40]. Interestingly, NFκB suppression drastically 

reduced the proportion of CD44-positive cells in HER2-dependent tumors, indicating that 

NFκB is responsible for the maintenance and expansion of the progenitor cell population 

[40]. Studies also indicated that IKKα led to the self-renewal of tumor-initiating cells in a 

HER2 breast cancer model via the receptor activator of NFκB ligand (RANKL)/RANK 

pathway, with cell proliferation occurring through the Cyclin D1 gene [181,182]. NFκB 

activation is also seen during the differentiation of the mammary colony-forming cells 

derived from luminal progenitor cells, but not in the cells that were located basally [183].

3.6. NFκB Activation in Breast Cancer: DNA Repair

NFκB activation regulates the DNA repair process protecting cells from apoptosis following 

DNA damage. The DNA damage generated by cytotoxic agents, such as camptothecin, 

activates ATM kinase and NFκB essential modifier (NEMO), leading to the induction of the 

NFκB p50/p65 heterodimer [184]. ROS can also be generated in a parallel signaling 

pathway in sufficient quantities to activate the NFκB pathway. Physical genotoxic agents, 

such as UV or hydrogen peroxide, lead to extensive cytoplasmic oxidative damage that 

activates the NFκB pathway in the absence of DNA damage [84, 85]. Among the various 

types of DNA damage, repairing double strand breaks can be particularly challenging to 

cells, contributing to the genomic instability associated with most cancers [185–187]. NFκB 

is involved in double strand removal and repair via a stimulatory action on homologous 

repair, involving the targets ATM and the tumor suppressor gene, breast cancer susceptibility 

gene 2 (BRCA2) [188]. The activation of NFκB by ATM results in an antiapoptotic signal in 

the cells. NFκB utilizes multiple mechanisms to enhance homologous recombination, 

including stimulation of the activity of CtIP–BRCA1 complexes to trigger DNA end-

processing, and the upregulation of ATM and BRCA2 for strand transfer [188].
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3.7. Crosstalks between NFκB and Other Signaling Pathways

There is a large array of interactions between the NFκB signaling cascade and other 

transcription factors/signaling pathways that modulate the transcriptional activity of NFκB 

[189].

3.7.1. STAT3 (Signal Transducer and Activator of Transcription 3)—NFκB and 

STAT3 regulate a number of genes involved in cell cycle progression and survival pathways, 

in addition to regulating a collective set of genes encoding cytokines and chemokines 

[24,190–192]. In breast cancer stem cells, STAT3 is shown to physically associate with 

CD44 and NFκB and activates the catalytic subunit of telomerase (hTERT) [129]. The 

hTERT expression levels are closely correlated with clinical aggressiveness and poor 

prognosis of breast cancer [193, 194]. Recently, Yu et al suggest that the non-canonical 

NFκB pathway regulates the STAT3-dependent upregulation of the intracellular enzyme, 

indoleamine 2, 3-dioxygenase (IDO), in breast cancer–derived myeloid-derived suppressor 

cells (MDSCs) [195]. MDSCs are a hetrogenous cell population in which IDO mediates T-

cell immunotolerance and immunosuppression, thus promoting lymph node metastasis in 

patients with breast cancer. Additionally, selective and specific blocking of the non-

canonical NFκB pathway in breast cancer MDSCs can improve the clinical efficiency of 

immunotherapy [195].

3.7.2. GSK3-β (Glycogen Synthase Kinase 3 Beta)—GSK3-β is a serine/threonine 

kinase that regulates the NFκB complex post-transcriptionally through histone methylation. 

While GSK-3β has no effect on the nuclear accumulation of NFκB, it modulates the 

transcriptional activity of the NFκB complex by preventing its binding to certain target 

promoters [196–199]. It has recently been reported that stabilization of β-catenin by 

treatment with lithium chloride, a well-known GSK-3β inhibitor, leads to the 

downregulation of uPA, uPAR and plasminogen activator inhibitor 1 (PAI-1) mRNA 

expression in the highly metastatic MDA-MB-231 cells, inhibiting their invasive capacity 

[200].

3.7.3. Tumor Suppressor p53—In contrast to the positive feedback between NFκB 

and STAT3, a mutual inhibition has been reported for NFκB and the tumor suppressor p53, 

with both of the transcription factors mutually inhibiting each other’s capacity to 

transactivate gene expression [201]. Interestingly, the initial reports of the relationship 

between the proteins indicated otherwise [202], and reactivation of p53 was actually seen to 

activate NFκB via the MEK1 and Ribosomal S6 kinase (RSK) serine/threonine kinase 

pathways [202]. In fact, the loss of p53 led to resistance against p53-activated death signals. 

Mutations in TP53 (encoding p53) cause the protein to lose its ability to regulate NFκB-

mediated transcription, abrogating its proapoptotic properties. Interestingly, p53 deficiency 

and presence of nuclear NFκB/p65 correlate with decreased disease free-survival in patients 

with breast cancer [203]. Mutant p53 also augments TNFα-induced NFκB activity, 

preventing cells from TNFα-induced apoptosis; and mutant p53/NFκB cross signaling 

drives cell cycle progression via the MAPK pathways and is associated with EMT and 

metastasis [204]. Data from gain- and loss-of-function studies indicate that antiapoptotic 
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NFκB p65 activity is constitutively induced by a p53 hot-spot mutation that is frequently 

observed in breast cancer [205].

3.7.4. MDM2 (Mouse Double Minute 2 Homolog)—The MDM2 oncoprotein (a 

negative regulator of p53) is known to act as a co-factor for NFκB binding to its target gene 

promoter binding sites, while the upstream signaling following NFκB activation is 

independent of MDM2 [206–208]. In addition to the above interactions between NFκB and 

p53, NFκB also suppresses p53 signaling by inducing MDM2 through the transcriptional 

activation of sp1 sites [206], while p53 negatively regulates both NFκB signaling and 

MDM2 expression [207, 208]. Considering that MDM2 is known to be amplified in breast 

cancer and contributes to a poor prognosis, it will be interesting to elucidate how these two 

contribute to each other’s pro-cancer effects.

3.7.5. EGFR—Breast cancer often exhibits overexpression of the EGFR family members 

(HER1 and HER2/neu), along with concomitant NFκB activation [209]. Studies have shown 

that NFκB activation in breast cancer occurs downstream of EGFR (erbB1/HER1) signaling, 

particularly in the ER-negative subtype [193]. Overexpression of HER-2/neu leads to 

constitutive activation of PI3K/Akt and induction of NFκB (p50/p65). Stimulation of such 

EGFR-expressing cell lines with EGF promptly activates NFκB signaling, which can be 

blocked by IKK inhibitors, or the by inhibition of PI3K signaling by LY294 [209]. Inhibiting 

the activation of NFκB prevents breast tumor growth in mice, while IKK inhibition prevents 

tumorigenesis. It is interesting to note that p53 mutations in breast cancer cell lines 

contribute to EGFR/Akt activation and increase the levels of TGFβ and platelet-derived 

growth factor A (PDGF-a); all of which can facilitate the EMT and angiogenesis [210].

3.8. Crosstalks Between NFκB and miRNAs

MicroRNAs (miRNAs) are small (~22 nucleotide), non-coding, single stranded RNAs that 

bind to the 3′UTR of protein-coding mRNAs and cause mRNA cleavage or translational 

repression of their corresponding targets [211]. A single miRNA may have multiple target 

genes, while sometimes, the miRNAs are themselves transcriptional targets. Several 

miRNAs are known to be transcriptional targets of NFκB, including miR-143, miR-146, 

miR-224, miR-9, and miR-21 [212,213]. These miRNAs target either upstream signaling 

molecules or members of the NFκB family. For example, both miR-146a and miR-146b 

(miR-146a/b) negatively regulate NFκB activity in the highly metastatic human breast 

cancer cell line, MDA-MB-231 [214]. Following the exogenous expression of miR-146a/b, 

the expression levels of positive regulators of NFκB activity, such as IL-1 receptor-

associated kinase (IRAK) and TNF receptor-associated factor 6 (TRAF6), are 

downregulated. Further, miR-146a/b-expression significantly impairs the invasion and 

migration capacity of the MDA-MB-231 cells [214]. Moreover, NFκB can induce the 

synthesis of proteins that regulate miRNAs. It is shown that miR-155 is upregulated in breast 

cancer, and is an NFκB transactivational target, which participates in a negative feedback 

loop through the downregulation of IKKs and other genes [215]. Another oncogenic 

microRNA, miR-21, is transactivated by genotoxic NFκB/STAT3 activation, and facilitates 

cellular evasion of DNA damage-induced apoptosis and increases the metastatic potential of 

breast cancer cells via the downregulation of phosphatase and tensin homolog (PTEN) and 
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programmed cell death protein 4 (PDCD4) [216]. Conversely, miR-200c, which suppresses 

the EMT, is lost in invasive triple negative breast cancers. Neurotrophin 3 (NTF3), a ligand 

of the TrkB receptor tyrosine kinase, is a direct target of miR-200c, and NTF3 mediates 

anoikis resistance in TNBC cell lines via NFκB [217]. In fact, the inhibition of NFκB 

activity represses the cellular resistance to anoikis. On the other hand, miR-520/373 exerts a 

metastasis-suppressive role by strongly downregulating TGFβ signaling in breast cancer 

cells. There is an inverse correlation between the expression of miR-520c and transforming 

growth factor, beta receptor II (TGFBR2) in ER-negative breast cancer patients, revealing 

that the miR-520/373 family suppresses cellular invasion in ER-negative breast cancer by 

acting as a link between the NFκB and TGFβ pathways [218].

3.9. NFβB Activation in Breast Cancer: Interaction with ER

Gene expression profiling has indicated that breast cancer is a heterogeneous disease 

comprising at least five subtypes, categorized by the presence/absence of hormone receptors 

and growth receptors such as the ER and PR, and HER2, respectively [219–223]. ER-

positive breast cancers originate in the luminal cell layer of the mammary tissue and are 

further subdivided into luminal A and luminal B tumors, based on differences in their gene 

expression [219]. Luminal B tumors have overexpression of genes leading to proliferation, 

and exhibit resistance to tamoxifen [224]. Although the luminal A-type breast tumors 

proliferate more slowly than luminal B tumors, a significant fraction (up to 30%) of these 

tumors exhibit high recurrence rates. These findings of aggressive and resistant ER-positive 

breast cancers, suggests that other factors contribute to the decreased response of these cells 

to hormone therapy [225,226]. NFκB is known to be intimately linked to ER signaling in 

breast cancer cells, although the exact nature of the interaction remains unclear. The ER and 

NFκB are known to mutually mitigate each other’s activities, and thus, ER inhibition by 

anti-estrogens might actually drive NFκB-mediated tumor progression by uncoupling NFκB 

from the ER’s inhibitory control [227]. Increased DNA-binding activity of NFκB coupled 

with expression of downstream targets, such as IL-6, causes a shift from estrogen 

dependence to estrogen independence in breast cancer [228]. Thus, treatment with estrogen 

restores the sensitivity of these malignant cells to apoptosis and reduces the invasive 

characteristics of breast tumors that are resistant to anti-estrogen treatment, which is 

accompanied by a reduction in NFκB activity [229]. This suggests that the proapoptotic 

effects of estrogen in these tumors maybe mediated, at least partly, through the inhibition of 

NFκB [229].

One possible mechanism underlying the activation of NFκB in breast cancer is the loss of 

ER expression and over-expression of HER2, which occur via the EGFR, Mitogen-activated 

protein kinase (MAPK) and IKKα pathways [71,179]. A loss of ER function is correlated 

with constitutive NFκB activity and hyperactive MAPK, leading to hormone-insensitive and 

advanced forms of breast cancer [71,227]. NFκB can also attenuate ER expression and/or 

activity, leading to ER-negative cell populations, which are naturally resistant to endocrine 

therapy [71,155,227]. It has also been demonstrated that the c-Rel mediated upregulation of 

forkhead box O3 (FOXO3A) leads to decreased synthesis of the ER [230]. The Rel B NFκB 

subunit can repress ER expression via the zinc finger protein, B lymphocyte induced 

maturation protein 1 (BLIMP1), which inhibits ER transcription [231]. On the other hand, 
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the EZH2 histone methyl transferase (activated by TNFα in an NFκB-dependent manner) 

interacts with p65/ RELB and regulates the NFκB-dependent gene expression in breast 

cancer (Fig. 3a) [232].

Of note, the estrogen receptor can prevent NFκB from binding to DNA in human breast 

cancer cells via its interaction with the Rel homology domain of NFκB [233]. In addition, 

the main ER-activating ligand, 17β-estradiol, has been shown to inhibit NFκB activation by 

blocking the nuclear translocation of NFκB’s p105 subunit in the MCF-7 breast cancer cell 

line [233]. This inhibitory action of ER is limited to NFκB family members possessing a 

transactivation domain (RelA, RelB and c-Rel) and is cell-type dependent [233–235]. 

Another mechanism via which the ER modulates NFκB activation is through its interaction 

with transcriptional activators or repressors [227]. In MCF-7 cells, the ER either competes 

with NFκB for binding to transcriptional co-activators such as cAMP-response element-

binding protein (CREBP), or recruits co-repressors, such as glucocorticoid receptor 

interacting protein 1 (GRIP1) to NFκB complexes [236,237]. The ER also has been found to 

control NFκB at the transcriptional level by inhibiting the de novo synthesis of RelB in the 

MCF-7 cell line, preventing the epithelial to mesenchymal transition and the development of 

an invasive cancer type (Fig. 3b) [229].

Contrarily, evidence also suggests that there is synergy between the activity of the ER and 

NFκB, leading to increased transcription of pro-survival and pro-invasion genes 

[71,155,227,229]. A gene expression profiling study reported by Frasor et al. on the ER-

positive MCF-7 cell line indicated that the level of crosstalk between NFκB and ER is more 

prominent than their mutual transrepression [238]. This positive crosstalk is restricted to 

only certain ER and NFκB target genes, suggesting that there is a dependency on 

supplementary regulatory mechanisms. It is believed that both transcription factors stabilize 

each other’s interactions with their respective response elements, and enhance the activity of 

downstream targets. The synergistic stimulation of both the NFκB and ER pathways also 

affects NFκB dimerization and selectively enhances the formation of transcriptionally active 

dimers, such as RelA/NFκB 1 [238]. Finally, the interaction between the ER and NFκB is 

also facilitated by the IKK family, which is known to modulate the expression of several ER 

responsive genes via direct physical interactions and/or post-translational modifications, 

such as phosphorylation [87]. In the clinical setting, the activation of NFκB correlates with 

ER-positive primary breast cancers that relapse early despite adjuvant therapy with 

tamoxifen [75,239].

4. INVESTIGATIONS OF THE ROLES OF NFκB IN BREAST CANCER 

USING IN VIVO ANIMAL MODELS

A range of murine genetic models (transgenic/knockout) have been developed to elucidate 

the biological roles of the core components of the NFκB signaling cascade. The most 

common strategies have included: a) transgenic expression of dominant-negative or 

constitutively active forms of IKK and IκB proteins (tissue-specific or ubiquitous); b) 

systemic knockout of single or multiple components, focusing on IκB and IKK proteins; c) 

conditional knockout animals generated via Cre/loxP recombination; d) gene knock-ins to 
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examine specific aspects of NFκB pathway function and e) κB-site reporter mice to study 

NFκB’s transcriptional activity [240, 241]. The biggest challenge faced is the embryonic 

lethality that results from a lack of IKKβ or RelA (p65) function. This issue has been 

resolved to some extent by the use of conditional knockout models [240, 241]. In addition, 

due to the extensive protein interactions and crosstalk between NFκB, IKKs, etc., disruption 

of other signaling pathways resulting from the loss of NFκB activity can complicate the 

interpretation of data obtained from these models. In the following paragraph, we give a 

brief overview of some models that explain the role of NFκB in cancers, specifically breast 

cancer. A discussion on the various NFκB transgenic models is outside the scope of the 

present report, but interested readers are directed to a comprehensive review by Gerondakis 

et al [241].

The loss of p52/p100 (the major dimer partner of RelB) is not lethal, but leads to several 

immune defects, including impaired B-lymphocyte maturation, disruption of the splenic 

architecture, aberrant T-cell function and a failure to develop normal secondary lymphoid 

structures [242]. On the other hand, targeted deletion of the p100 C-terminal ankyrin repeats 

(containing the transrepressor domain) leads to several hyperproliferative defects, such as 

gastric hyperplasia, cardiac and splenic hyperkeratosis [242]. These findings underscore the 

importance of tight control of the nuclear p52 dimer levels to maintain normal cellular 

proliferation. The c-Rel subunit has been implicated as an oncogene, and promotes the 

development of several cancer types [243]. A c-Rel transgenic mouse has been developed, in 

which the hormone-responsive mouse mammary tumor virus (MMTV) promoter 

transcriptionally controls c-Rel expression [39]. These mice develop breast tumors, 

exhibiting increased expression of several NFκB target genes, including Cyclin D1, c-Myc 

and B-cell lymphoma-extra large (Bcl-xL). These findings are consistent with the effects of 

c-Rel overexpression in human breast cancers.

Germline NFκB (p65) deletion results in embryonic lethality [244]. In an interesting study, 

Liu et al. developed a model in which they selectively inactivated p65 in breast tissue by 

modulating the inflammatory environment therein. The model demonstrates that the 

canonical NFκB pathway drives breast cancer development, with the initial “insult” 

provided by the ERBB2 (encoding HER2) oncogene. This activates NFκB, which then 

stimulates pro-inflammatory, pro-survival, and pro-growth pathways via tumor-associated 

macrophages (TAM). Inactivation of this inflammatory NFκB pathway in the breast 

epithelium inhibits the initiation and progression of breast cancer in murine models, thus 

demonstrating that NFκB inhibition may have clinical implications in the treatment and 

management of breast cancer [54]. On the other hand, an IKKα knock-in murine model 

(with mutant IKKα containing alanines instead of serines in the activation loop) do not 

present any issues with viability; instead, the female mice exhibit impaired proliferation of 

mammary epithelial cells, leading to a severe lactation defects. Thus, the IKKα and the Rel-

B/p52 complex both contribute to mammary gland development, indicating the specific roles 

of different NFκB subunits in mammary gland organogenesis and oncogenesis [245].

Wang et al. Page 13

Curr Med Chem. Author manuscript; available in PMC 2019 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. NFκB ACTIVATION AND THE RESISTANCE TO BREAST CANCER 

THERAPY

NFκB activation in breast cancer cells leads to increased transcription of pro-proliferation 

and pro-survival factors, such as Cyclin D1, Inhibitors of apoptosis (IAPs) and Bcl-xL [139–

141]. This augmented antiapoptotic signaling in the malignant breast cells contributes to 

endocrine, chemotherapeutic and radiation resistance [246].

As described earlier, NFκB activation also plays an important role in ER-positive endocrine-

resistant breast cancer and the acquisition of anti-estrogen (specifically tamoxifen) 

resistance, which correlates with earlier relapse, metastasis and a reduced overall survival 

[230]. Indeed, in IBC patients exhibiting an ER-positive phenotype, almost complete 

resistance to endocrine therapy is observed [227]. The fact that ER transrepresses NFκB 

may explain the mechanisms underlying the resistance to aromatase inhibitors, selective 

estrogen receptor downregulators (SERDs), and estrogen withdrawal in these tumors [247]. 

Decreased ER activation resulting from estrogen withdrawal or aromatase inhibition releases 

NFκB from the ER-mediated inhibition, leading to NFκB-driven tumor progression. 

Endocrine resistance in tumor cells leads to an aggressive phenotype, characterized by the 

expression of genes associated with the EMT and stemness [227]. Endocrine resistance, in 

conjunction with NFκB activation, leads to an additive effect on the expression of several 

pro-survival genes (i.e. genes encoding the IAPs and Bcl-xL) and multidrug transporter 

proteins, such as breast cancer resistance protein (BCRP, also known as ABCG2). The 

presence of a polymorphism in the ABCG2 gene is a prognostic factor for breast cancer 

patients treated with tamoxifen [248]. Apart from the ER, NFκB also activates the 

expression of resistance-mediating proteins such as BRCP and clusterin [249–251]. The 

NFκB p50 subunit causes BRCP activation at the transcriptional level, although wild-type 

p53 antagonizes this effect. Similarly, the anti-apoptotic protein S-clusterin, which confers 

resistance to TNFα-mediated apoptosis, is induced by NFκB [250].

NFκB activation by chemotherapeutic agents is associated with chemoresistance. Cytotoxic 

agents, such as doxorubicin, are shown to activate the IKK complex, leading to NFκB 

nuclear translocation and subsequent activation of downstream targets [85]. However, an 

IKK-independent PI3K-dependent pathway that causes late activation of NFκB by 

doxorubicin is reported [246]. Lopez et al. demonstrate that doxorubicin therapy causes 

atypical NFκB activation through c-Abl kinase activity in breast cancer cells, mediating 

resistance [252]. On the other hand, Ho et al., show that NFκB induced by doxorubicin is 

deficient in RelA phosphorylation and acetylation; and actually suppresses NFκB mediated 

downstream gene expression in breast cancer cells [253]. A recent study identifies another 

mechanism of drug resistance, wherein trastuzumab resistance in PTEN knockdown breast 

cancer cells is mediated by activation of an NFκB -IL-6 inflammatory feedback loop with 

expansion of cancer stem cell (CSC) population [254]. Lapatinib, an HER2 inhibitor, 

upregulates NFκB transcriptional activity by increasing the calcium-dependent 

phosphorylation of p65/RelA at Ser529 [255]. IKKα then phosphorylates the ER and 

promotes the expression of its responsive genes, thus promoting the proliferation of breast 

cancer cells [256]. In a model of in situ breast cancer, Akt-driven lesions that survived 
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radiation treatment are seen to acquire an invasive phenotype mediated by Beta1-integrin via 
an NFκB-dependent signaling pathway [257].

Similarly, microtubule disrupting agents, such as paclitaxel, vinca alkaloids, and platinum 

compounds, also activate NFκB [253]. Paclitaxel down-regulates IκBα, promoting the 

nuclear translocation of NFκB [242]. On the other hand, cisplatin activates NFκB by 

activating the mitogen-activated protein kinase kinase (MEK)/extracellular-signal-regulated 

kinase (ERK) signaling cascade [246]. NFκB activation also plays an important role in the 

resistance to 5-Fluorouracil (FU) and gemcitabine [246].

Ionizing radiation (IR) has also been shown to activate NFκB in both in vitro and in vivo 
models [258–263]. IR facilitates the DNA binding of NFκB, thus increasing its mRNA 

levels [226]. Radiation therefore leads to NFκB activation resulting from the degradation of 

IκBα via post-translational modifications, such as phosphorylation or nitration, which allow 

for degradation of the IκBα-NFκB complex [260,261]. IR also leads to transactivation of 

pro-invasion genes such as β1-integrin by NFκB. Since β1-integrin itself is known to 

activate NFκB, this may indicate a novel forward feedback pathway for cancer progression 

and resistance in breast cancer [259]. Thus, in addition to the basal level of NFκB activation 

in breast cancers, HER2 activity and radiation treatment can also induce NFκB activity [262, 

263].

6. TARGETING NFκB IN BREAST CANCER PREVENTION AND THERAPY

6.1. Prevention

Although a steady decrease in breast cancer mortality has been observed over the past two 

decades, it is estimated that approximately 40,000 women will die of breast cancer this year 

in the U.S. [130]. Preventing breast cancer prior to its development remains the most 

effective way to reduce mortality resulting from this disease. Increasing evidence 

demonstrating the key role(s) of NFκB in breast cancer development suggests that NFκB 

may represent a target for breast cancer chemoprevention [38–42]. Interestingly, several 

agents with breast cancer preventive potential, including dietary compounds, possess NFκB 

inhibitory activity [264]. Curcumin, one of the most extensively studied chemopreventive 

phytochemicals, blocks angiogenesis via inhibition of the NFκB downstream target, 

cyclooxygenase-2 (COX-2). Preclinical studies show that curcumin blocks NFκB activation 

by inhibiting the upstream activator complex consisting of NFκB-inducing kinase and the 

IκBα kinase enzymes in breast cancer cells [265]. Since COX-2-derived prostaglandins also 

stimulate aromatase activity in an organ-specific manner (generating estradiol), curcumin 

supplementation, along with traditional anti-estrogen therapies, may lead to a better 

therapeutic response. A synthetic COX-2 inhibitor, celecoxib, is the focus of several studies 

investigating its effectiveness for the prevention of ER-negative breast cancer. Celecoxib 

significantly delays the onset of tumor formation in MMTV-erbB2 transgenic mice, which 

develop primarily ER-negative tumors [266]. This observation is particularly relevant for the 

prevention of both ER-negative and TNBCs.

Ginseng, a staple of traditional Chinese medicine, has been reported to have excellent 

chemopreventive and chemotherapeutic effects. The active principles of the ginseng plant 
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are considered to be the steroidal saponin glycosides known as ginsenosides, and more than 

40 ginsenosides have been characterized so far [267]. One of the major biological activities 

of the ginseng saponins is their inhibition of inflammation. In a recent study, Li and 

colleagues demonstrate that the ginsenoside Rg1 inhibits Phorbol myristate acetate (PMA) 

induced invasion and migration. They further show that this invasive process is regulated in 

breast cancer cells through the NFκB-mediated transcriptional control of MMP-9 expression 

[268]. The ginsenoside Rg3, one of the main chemical constituents of heat-processed 

ginseng, is shown to exert its anti-proliferative and pro-apoptotic effects in breast cancer 

cells by transcriptional inactivation of NFκB along with destabilization of the oncogenic 

mutant p53 and inactivation of upstream molecules such as ERK and Akt [269]. Similarly, 

American ginseng is shown to inhibit the activation of COX-2 and NFκB in the MDA-

MB-231 and MCF-7 cell lines [270]. However, clinical studies on the utility of ginseng have 

yielded confounding results. One case-control study finds no significant association between 

breast cancer risk and ginseng [271]. Another large cohort study (Shanghai Breast Cancer 

Study) conclusively proves that use of ginseng can improve both overall and disease-free 

survival and enhance the quality of life of breast cancer pateints [272]. Rationally developed 

combination treatments involving natural products, along with conventional 

chemotherapeutic agents, may be a better choice for breast cancer chemoprevention [265]. 

This strategy may improve the efficacy of cancer prevention while eliminating possible side 

effects. The key question that remains unanswered is whether NFκB inhibition can decrease 

the human breast cancer incidence and reduce the tumor burden.

6.2. Therapy

All of the information described above suggests that the inhibition of NFκB activity in 

advanced and resistant forms of breast cancer is associated with decreased proliferation, 

increased apoptosis, and (re)sensitization following radiation and chemotherapeutic 

treatment. These observations indicate that NFκB is a valuable pharmacological target for 

breast cancer therapy. Different points in the NFκB pathway have been targeted to inhibit or 

regulate NFκB activation in breast cancer. In the past few years, much effort has been 

devoted to the development and characterization of NFκB blocking agents, including 

natural, as well as synthetic compounds. The key events targeted in the NFκB signaling 

pathway include: IKK activation, IκB degradation and NFκB nuclear translocation/DNA 

binding (Table 2). A significant amount of progress has been made in the preclinical and 

clinical studies, and some anticancer compounds with NFκB-inhibiting properties, such as 

bortezomib, are already being used clinically. The main strategies presently used to target 

the NFκB signaling pathways are described in Table 2. In the following section, we discuss 

in further detail some of the most promising approaches.

6.2.1 Direct Targeting of NFκB Subunits—Direct inhibition of NFκB-DNA binding 

is theoretically a good approach to inhibit the activity of NFκB, as it would prevent the 

transactivation of the pro-survival and antiapoptotic downstream targets, and also be highly 

selective. Certain natural products, such as sesquiterpene lactones and quinomycin 

derivatives, and synthetic compounds such as PBS-1086, target the reactive cysteine residues 

such as Cys38 in the RHD of RelA directly inhibit the NFκB subunit DNA binding [279–
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284]. Recently, sesquiterpene lactone dimers from the Inula species are found to be active in 

breast cancer and other cancers [316, 317].

6.2.2 Regulating the Oxidative State—ROS and RNS, which are both generated and 

destroyed by NFκB target genes, also activate NFκB through multiple mechanisms. 

Aberrant activation of ROS-associated transcription factors, such as hypoxia-inducible factor 

1 (HIF-1), contributes to oncogenesis by driving cell growth, cell survival and angiogenesis 

[318]. The generation of intermediate levels of ROS induces NFκB activity, and the 

activated NFκB regulates ROS and RNS-generating enzymes, such as COX-2 and iNOS, as 

well as antioxidant enzymes, like MnSOD, in a way that supports continued NFκB activity, 

preventing apoptosis [319]. Several chemotherapeutic and radiotherapeutic modalities 

depend upon ROS generation to induce cell death, and therefore, NFκB-mediated regulation 

of oxidative stress may contribute to chemo/radioresistance. Prolonged ROS formation 

during chronic inflammation in untransformed cells may also contribute to genetic mutations 

leading to tumorigenesis [320].

Antioxidant compounds inhibit NFκB signaling via ROS scavenging or prevention [25], or 

by stimulating antioxidant enzymes. On the other hand, certain compounds, such as 

theaflavins (present in black tea), impede the migration of cancer cells by increasing the 

formation of p53-dependent reactive oxygen species that induce p53-phosphorylation and 

inhibit NFκB nuclear translocation. These anti-migratory effects of theaflavins are abrogated 

by p53 knockdown, ROS inhibitors and NFκB overexpression [321].

6.2.3 Proteasome Inhibition—The main step in NFκB activation involves the 

phosphorylation, ubiquitination, and degradation of IκBα by the 26S proteasome, which is 

followed by the nuclear import of the NFκB subunit [39]. Thus, proteasome inhibitors are 

attractive therapeutic agents for the inhibition of NFκB activation. The 26S proteasome is a 

multiunit, adenosine triphosphate (ATP)-dependent complex with multiple catalytic sites, 

including caspase-like (B1), trypsin-like (B2), and chymotrypsin-like (B5) proteases that 

form the main sites of attack for proteasomal inhibitors [322,323]. Based on their chemical 

structure, ability to form a covalent or non-covalent bond with the active site(s), synthetic or 

natural origin, etc. the proteasome inhibitors are classified into various categories [324].

Proteasome inhibitors show minimal effects on normal cells, while the prototype compound 

of this class, bortezomib (PS-341), is shown to possess impressive cytotoxicity against a 

range of human cancer cell lines, including breast cancer cells [290,291,325], and to 

synergistically enhance the effects of trastuzumab via inhibition of NFκB activation and the 

nuclear accumulation of the cell cycle inhibitory molecule, p27 [326]. A clinical trial in 

advanced breast cancer patients is performed in an attempt to replicate these findings [], 

however, recent evidence suggests that the anticancer effects of bortezomib and other 

proteasome inhibitors are highly complex, and these compounds have many NFκB-

independent effects. Nevertheless, proteasome inhibitors appear to show great promise as 

part of multidrug therapy, with several agents currently being evaluated in clinical trials.

6.2.4 Anti-Inflammatory Compounds (Steroidal and Nonsteroidal)—
Nonsteroidal Anti-inflammatory Drugs (NSAIDS) such as aspirin, ibuprofen, naproxen, 

Wang et al. Page 17

Curr Med Chem. Author manuscript; available in PMC 2019 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



indomethacin and sulindac prevent tumor formation and development partly via their 

inhibition of COX-2, and as a result of decreased inflammatory signaling and decreased 

NFκB activity [307–309]. NFκB and COX-2 activate each other in a feedforward fashion, 

with NFκB regulating the COX-2 promoter [25]. COX-2 is frequently overexpressed in 

primary breast cancer, and contributes to tumorigenesis in transgenic models [327]. A recent 

phase II randomized clinical trial demonstrates that short-term COX-2 inhibition by 

celecoxib led to anti-tumor changes in gene expression in breast carcinoma tissue [327]. In 

the MDA-MB-231 triple negative breast cancer cell line, celecoxib increases cytoxicity to 

doxorubicin and promoted apoptosis by downregulating the NFκB pathway [328, 329]. On 

the other hand, salicylates and aspirin directly compete with ATP for IKKβ, inhibiting IKKβ 
function and preventing NFκB activation [330].

Glucocorticoids (GCs) exert their anti-inflammatory effects by downregulating 

inflammatory cytokines, and by directly inhibiting the NFκB pathway [331,332]. 

Dexamethasone (DEX) activates the endogenous glucocorticoid receptor, inhibiting NFκB’s 

DNA binding and transactivation. It is shown that the zinc-finger component of the activated 

glucocorticoid receptor (GR) is capable of directly binding to and inhibiting p65 in the 

nucleus. DEX pretreatment in a murine breast cancer model leads to significantly enhanced 

cytotoxicity following Adriamycin treatment [310]. This finding is associated with 

decreased IL-1β and VEGF expression, the cytoplasmic accumulation of Adriamycin, and 

NFκB inhibition. DEX pretreatment also sensitizes breast cancer xenograft tumors to 

carboplatin and gemcitabine [310].

6.2.5. Inhibition of IKKs—Considering that IKKα and IKKβ are key modulators of 

non-canonical and canonical NFκB signaling, respectively, several IKK inhibitors have been 

developed. Most of them are specific for of IKKβ, although some also have a degree of 

affinity for IKKα. These compounds either compete for the ATP-binding region, because 

ATP is required for IKKβ activation, or allosterically decrease the IKK activity [333]. 

Several synthetic inhibitors are shown to be effective in human breast cancer cell lines, 

including IMD0354, PS-1145, and MLN120B [297–301]. However, these agents have 

multiple off-target effects, possibly due to their binding to ATP, and therefore, these 

compounds need to be carefully evaluated before this class can advance to the clinic.

7. DISCUSSION AND FUTURE DIRECTIONS

Since its discovery almost 30 years ago, NFκB has been revealed to be a key regulator of 

various inflammatory and carcinogenic pathways. The NFκB pathways drive tumor 

development, progression, and chemo- and radio-resistance in diverse cancer types, 

especially hormone-independent forms of breast cancer [155,334]. In addition, NFκB 

regulates multiple physiological functions, including neurological development, immune 

responses, and cell cycle control [335]. In breast cancer, NFκB is a key mediator of the 

resistance to endocrine therapy. Thus, from a theoretical perspective, inhibition of NFκB 

presents a viable therapeutic strategy for breast cancer. Indeed, inhibition of NFκB by both 

pharmacological and molecular techniques has already been established by proof-of-concept 

studies in several cellular and animal models [273–315].
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However, it is necessary to exercise caution when considering NFκB inhibition as a broad 

therapeutic strategy in breast cancer. Although the NFκB signaling cascade is inherently 

oncogenic, several lines of evidence in various cancer types indicate that NFκB may act as a 

tumor suppressor in cooperation with different signaling molecules such as p53 and JNK 

and that inhibition of NFκB can lead to spontaneous tumor formation and increase 

angiogenic potential of the tumors [336–341]. Recent studies indicate that NFκB sensitizes 

tumor cells to apoptosis and senescence [202, 341–345]. The canonical NFκB pathway is 

shown to be a Fas (Fas cell surface death receptor) transcription activator and the inhibition 

of NFκB can suppress Fas-mediated apoptosis, impairing the host immune cell-mediated 

tumor suppression [341]. Similarly, Ryan et al. demonstrate that the p65 subunit is required 

for p53-dependent apoptosis [202]. In another study, the tumor suppressor ADP-ribosylation 

factor (ARF) is seen to facilitate the interaction of p65 with Histone deacetylase 1 (HDAC1), 

thereby turning it into a corepressor. NFκB is not proapoptotic under these circumstances; 

rather it acts as a facilitator of apoptosis by repressing the expression of antiapoptotic genes 

[340, 341]. Recently, Chien et al. demonstrate that the p65 subunit of NFκB is particularly 

enriched in senescent chromatin and that the cytotoxic therapy is unable to induce a 

senescence response in p65-deficient murine lymphomas [343], while a related study shows 

that NFκB target genes, especially those encoding secreted cytokines, are upregulated 

during senescence, in cmyc overexpressing murine lymphoma cells [344]. These studies 

provide compelling evidence that functional NFκB signaling may be necessary for inducing 

cytotoxic drug-mediated senescence and/or toxicity in certain tumor types, suggesting that 

inhibition of NFκB signaling may actually decrease chemosensitivity, instead of promoting 

cell death [341,343,344]. In addition, this observation may provide a rationale strategy for 

cancer therapy. For example, Chen et al. suggest that lapatinib co-treatment with bortezomib 

in breast cancer increases the addiction of these cancer cells to NFκB, potentiating the effect 

of the NFκB inhibitors such as bortezomib [345]. Therefore, further in-depth research is 

needed to identify the precise mechanisms of NFκB in onco-genesis. Finally, these findings 

implicate a more complex role of NFκB in oncogenesis, suggesting that NFκB as a tumor 

suppressor has significant clinical ramifications and the use of NFκB inhibitors requires 

extensive assessment in the clinic. In breast cancer, though NF-κB has been definitively 

shown to increase chemo- and radio-resistance, it is still important to determine and 

understand the specific role of NFκB in various cellular contexts when NFκB inhibitors are 

used.

Moreover, recent research has yielded new insights into NFκB signaling pathways that 

reveal the complexity and difficulty of effectively targeting this pathway. NFκB, being a 

master regulator of different cellular processes, regulates, and is regulated by various other 

signaling pathways. Apart from the canonical/non-canonical pathways of NFκB activation, 

constitutive NFκB activation in cancer cells can result from crosstalk with oncogenic 

pathways, such as those involving the EGFR, RAS, and PI3K/Akt [346, 347]. Its 

transcriptional activity can be modulated by post-translational modifications of NFκB, 

variable dimerization of the NFκB subunits, the expression of transcriptional coactivators/

corepressors, chromatin remodeling, and other epigenetic factors also regulate [25,87]. Thus, 

NFκB gene expression may induce different phenotypes, depending upon the selective 

expression of target genes.
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More than five hundred NFκB inhibitors are known, and the number is growing rapidly [25]. 

Most of these inhibitors work primarily by preventing the ubiquitination and proteasomal 

degradation of the IκB proteins, confining NFκB to the cytoplasm. However, the complexity 

of the NFκB signaling pathway, the absence of appropriate bio-markers, poor drug 

specificity, and inadequate drug delivery complicate the targeting of NFκB. The 

mechanism(s) underlying the NFκB inhibition by most drugs is poorly understood, and 

multiple mechanisms involving the IκBα phosphorylation status, NFκB nuclear 

translocation, and NFκB DNA binding are often proposed. Efforts must be made to develop 

NFκB inhibitors which are specific for (or at least are able to modulate) one or more of the 

various pathway components, including upstream activators, IKK, IκB, NFκB subunits, 

oncogenic mutations linked to NFκB activation, novel NFκB signaling intermediates (e.g. 

HSP90 (Heat shock protein 90)), transcriptional co-activators, etc. Since ubiquitination and 

proteasomal degradation play an important role in NFκB signaling, targeting E3 ligases 

and/or deubiquitinating enzymes may also contribute to NFκB inhibition. However, it 

should be kept in mind that ubiquitin-regulating enzymes participate in diverse cellular 

functions, and the implications of their inhibition may be far-reaching, with unexpected 

effects and potentially detrimental adverse effects.

As suggested above, different targets for NFκB inhibition must be considered. For example, 

the currently used IKK inhibitors selectively target the β isoform, and only a few IKKα-

specific inhibitors have been developed. The IKKβ-mediated activation of RelA/p65 was 

initially thought to be the main driver of oncogenic phenotypes, but IKKα-mediated activity 

has now also been implicated in some cancers, notably in HER2-driven mammary 

tumorigenesis [245]. Thus, targeting IKKα may be helpful, especially for breast cancer 

treatment. In addition, as mentioned previously, the simultaneous targeting of parallel 

oncogenic pathways that activate NFκB, such as those involving the EGFR, Ras, and PI3K/

Akt, may be of additional use, and several of these oncogenes already have multiple 

clinically used inhibitors.

Biochemical assays to detect increased expression or activity of the signaling components 

influencing NFκB activity should be developed. Most NFκB inhibitors have demonstrated 

limited chemotherapeutic efficacy in vivo, and work best as chemosensitizers for other 

cytotoxic agents. This is probably due to the multiple concomitant mechanisms contributing 

to the constitutive activation of NFκB, which renders a single targeted therapy ineffective. A 

multimodal approach to NFκB inhibition based on targeting specific pathways that most 

strongly contribute to the NFκB activation in a given tumor type would be beneficial. For 

example, in breast cancer cells, Akt activity is known to correlate with I B phosphorylation, 

NFκB-DNA binding and tamoxifen resistance in vivo [239]. The pharmacological and 

molecular inhibition of NFκB restores estrogen sensitivity in cells expressing high levels of 

Akt [239]. Thus, in breast cancer, concomitant administration of a proteasome inhibitor, an 

anti-inflammatory agent, and an Akt inhibitor may effectively prevent NFκB induction. This 

approach should maximize the NFκB inhibition, particularly after stimulation by 

chemotherapy and radiotherapy, as well as minimizing the inflammatory tumor 

microenvironment, and may improve the chemosensitivity by limiting the contribution of 

NFκB to tumor development and progression.
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Finally, although NFκB is a crucial player in cancer development and there exists a solid 

rationale for development of anticancer therapy that suppresses NFκB signaling, several key 

challenges still exist before a successful transition for the myriad NFκB inhibitors to the 

clinic. Due to the ubiquituousness of the NFkB signaling cascade, it is not surprising that 

NFκB inhibitors affect other cellular processes, resulting in adverse effects. A solution in 

this regard would be to develop NFκB inhibitors for local application rather than systemic 

administration. In addition, several important factors such as the lack of adequate drug 

delivery and the low bioavailability limit the clinical utility of several NFκB inhibitors. In 

this context, the results of the recent phase I clinical trial for a nanoparticulate curcumin 

formulation are encouraging, as it has demonstrated increased water solubility and increased 

serum drug levels, with minimal host toxicity [348, 349]. Several structural analogues of 

curcumin and other natural NFκB inhibitors are under development, which may possess 

better pharmacokinetic and drug-like properties, improving their clinical utility as anticancer 

agents. Therefore, addressing pharmacological, pharmaceutical, and toxicological issues is 

critical in the development of effective NFκB inhibitors as anticancer agents.
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Fig. (1). The main pathways of NFκB activation.
On the left is the TNFα-dependent canonical signaling pathway. The binding of TNFα to 

the TNF receptor, TNFR1, triggers the sequential recruitment of the adaptors, TRADD 

(TNFR1-associated death domain protein), RIP (Receptor-interacting protein) and TRAF2 

(TNF receptor-associated factor 2), to the membrane. Then, TRAF2 mediates the 

recruitment of the IκB kinase (IKK) complex, composed of IKKα, IKKβ and NEMO (NF-

kappa-B essential modulator), to the TNFR1 signaling complex, which causes IKKβ 
activation. The activation of IKKβ leads to IκBα phosphorylation on specific residues, 

which induces polyubiquitination through the binding of ubiquitin proteins, finally leading 

to its degradation through the proteasome pathway. The p50-p65 heterodimer then binds to 

specific κB sites and activates a variety of NFκB target genes coding for pro-inflammatory 

cytokines (such as IL-6) and chemokines. On the right is the alternative, non-canonical, 

pathway of NFκB activation. This pathway relies on the recruitment of the TRAF2-TRAF3 

heterodimer to the CD40 receptor. TRAF3 links the E3 ligases c-IAP1/2 (cellular inhibitor 

of apoptosis 1/2) to the kinase, NIK (NFκB-inducing kinase). NIK is activated by 

phosphorylation, and is also subjected to a c-IAP1/2-dependent degradative 

polyubiquitination. IKKα homodimers are activated by NIK and phosphorylate the 

inhibitory molecule, p100, the partial processing (via proteasomal degradation) of which 

generates the NFκB protein, p52. p52 moves into the nucleus as a heterodimer with RelB to 

regulate the expression of genes involved in lymphoid organogenesis or coding for 

chemokines.
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Fig. (2). The components, functions, and regulation of NFκB.
This schematic diagram shows the upstream physiological and pathological stimuli and 

kinases involved in NFκB activation in the cytoplasm, and representative transcriptional 

activities in the nucleus.
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Fig. (3). The interaction between ER and NFκB in breast cancer.
(a) Mutual transrepression of the ER and NFκB in mammary epithelial tissue. NFκB can 

inhibit the estrogen receptor (ER) in different ways. The activation of Akt inhibits the 

activity of FOXO3A, which plays an important role in the synthesis of the ER. 

Consequently, blocking FOXO3A activity leads to a reduction in the transcription of the ER. 

Another mechanism by which NFκB can inhibit the ER is by stimulating the activity of the 

enhancer of zeste homolog 2 (EZH2), which then inhibits the ER. Finally, NFκB (RelB) can 

also inhibit ER transcription by upregulating Blimp1. (b) The ER represses NFκB by 

blocking its nuclear translocation by increasing the transcription of the cytoplasmic NFκB 

subunit. ER signaling can activate the PI3K signaling pathway, leading to cytoplasmic 

accumulation of NFκB while inhibiting its nuclear translocation. Another mechanism by 

which the ER inhibits NFκB activity is by preventing it from binding to DNA.
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