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Abstract

Purpose: An ever-growing number of predictive models used to inform clinical decision making 

have included quantitative, computer-extracted imaging biomarkers, or “radiomic features.” 

Broadly generalizable validity of radiomics-assisted models may be impeded by concerns about 

reproducibility. We offer a qualitative synthesis of 41 studies that specifically investigated the 

repeatability and reproducibility of radiomic features, derived from a systematic review of 

published peer-reviewed literature.

Methods and Materials: The PubMed electronic database was searched using combinations of 

the broad Haynes and Ingui filters along with a set of text words specific to cancer, radiomics 

(including texture analyses), reproducibility, and repeatability. This review has been reported in 

compliance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

guidelines. From each full-text article, information was extracted regarding cancer type, class of 

radiomic feature examined, reporting quality of key processing steps, and statistical metric used to 

segregate stable features.

Results: Among 624 unique records, 41 full-text articles were subjected to review. The studies 

primarily addressed non-small cell lung cancer and oropharyngeal cancer. Only 7 studies 

addressed in detail every methodologic aspect related to image acquisition, preprocessing, and 

feature extraction. The repeatability and reproducibility of radiomic features are sensitive at 

various degrees to processing details such as image acquisition settings, image reconstruction 

algorithm, digital image preprocessing, and software used to extract radiomic features. First-order 

features were overall more reproducible than shape metrics and textural features. Entropy was 

consistently reported as one of the most stable first-order features. There was no emergent 

consensus regarding either shape metrics or textural features; however, coarseness and contrast 

appeared among the least reproducible.
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Conclusions: Investigations of feature repeatability and reproducibility are currently limited to a 

small number of cancer types. Reporting quality could be improved regarding details of feature 

extraction software, digital image manipulation (preprocessing), and the cutoff value used to 

distinguish stable features.

Summary

We offer a qualitative synthesis of 41 studies that specifically investigated the repeatability and 

reproducibility of radiomic features. The repeatability and reproducibility of radiomic features are 

sensitive at various degrees to image quality and to software used to extract radiomic features. 

Investigations of feature repeatability and reproducibility are currently limited to a small number 

of cancer types. No consensus was found regarding the most repeatable and reproducible features 

with respect to different settings.

Introduction

Medical imaging is widespread, and its value is firmly established in routine oncologic 

practice. Image-based biomarkers are used during screening, staging, stratifying, and 

intervention planning (surgery and radiation therapy) (1–3) and for predicting treatment 

outcomes (4). In current practice, a radiologist semantically annotates only a small number 

of radiologic features as having some clinical significance during manual assessment of the 

images (ie, with the unaided human eye). These few features may include Response 

Evaluation Criteria in Solid Tumors (5) and World Health Organization criteria (6) for 

treatment response; a change in the mean apparent diffusion coefficient (7); morphologic 

descriptors (eg, spiculation) (8); or the number of voxels exceeding a threshold for selective 

uptake of a radioactive tracer (9).

Tumor phenotypes, as they are manifest in medical images, may contain more information 

than can be readily processed by the unaided human eye. Recent studies have suggested that 

complex shape metrics and the nonuniform appearance of the tumor mass in images (ie, 

texture) also provide information about the likely outcome of the disease (3, 10–12).

Radiomics is the computerized extraction of quantitative features from medical images, 

beyond the level of detail accessible to an unaided human eye, with the intent to 

automatically label clinically significant tumor phenotypes (13). Radiomics entails large-

scale batch processing (14) via high-throughput computational “pipelines” that integrate 

some or all of the following steps: image pre-processing, tumor segmentation, feature 

extraction, feature selection, machine learning—based predictive modeling, and model 

validation (15).

A systematic review of false discovery rates in textural analysis of medical images (16) 

clearly showed that optimal cutoff selection for tuning machine-learning predictive models 

(17) in combination with a large number of candidate image features (approximately 100) 

leads to an increased risk of type I error. Furthermore, related sets of image-derived features 

tend to be strongly correlated with each other, and this increases the risk of falsely 

significant associations. There are strong interclass correlations for features derived from 
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similar matrix operations (18), and there may be correlations to the absolute tumor volume 

(19).

There are ways to reduce the risk of a false-positive association. First, only features with 

high repeatability and high reproducibility should be used for training the predictive models. 

“Repeatability” refers to features that remain the same when imaged multiple times in the 

same subject, be that a human person or a suitable phantom (14, 20). “Reproducibility” 

refers to features that remain the same when imaged using different equipment, different 

software, different image acquisition settings, or different operators (eg, other clinics), be 

that in the same subject or in different subjects (14, 20). Second, estimates of predictive 

performance in single-institution cohorts should include multiple-folded repeated cross 

validation to minimize the risk of overfitting (21). Last, assessment of predictive models 

based on radiomic features should be based on independent external validation in multi-

institutional settings (22).

The purpose of this systematic review was to determine which broadly generic type of 

radiomic features has been shown to be repeatable and/or reproducible in peer-reviewed 

studies and, if applicable, what degree of repeatability and reproducibility might be 

achievable. It was out of the scope of the reviewers performing this study to provide any 

subjective evaluation concerning the goodness of a study. For example, when evaluating the 

quality of reporting of a study, we only retrieved objective information from the article, 

without assigning a score aiming at judging the overall quality of the article.

Methods and Materials

Eligibility criteria

We conducted this systematic review during March and April 2017. Reporting of this review 

complies with the PRISMA-P Preferred Reporting Items for Systematic Reviews and Meta-

Analyses statement (23). The included articles met all of the eligibility criteria given in the 

subsequent paragraphs.

Report design—We included only peer-reviewed full-text reports published in journals 

that presented full results of repeatability and/or reproducibility tests on radiomic features. 

With full results, we intend all the articles that matching the inclusion criteria defined in 

material and methods, presented a statistical analysis of radiomics reproducibility and 

repeatability. Only articles that included (in their titles or abstracts) at least 1 of the search 

words specified in the search string were identified.

Population—With regard to the population reported in the study, we included either (1) 

studies of human persons diagnosed with 1 (or more) known and clearly stated primary solid 

tumor where medical imaging in the form of computed tomography (CT), positron emission 

tomography (PET), and/or magnetic resonance imaging (MRI) was used or (2) studies 

consisting of radiologic phantoms where medical imaging in the form of CT, PET, and/or 

MRI was used. We excluded studies consisting of animal subjects, studies using biological 

samples taken from the human body, nonclinical imaging studies, or studies in which the 

type of primary tumor was not objectively known.
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Outcomes—The primary criterion for inclusion was an assessment of the repeatability 

and/or reproducibility of any number of radiomic features with respect to any equipment-, 

scan-, subject-, or observer-related cause. Included studies also had to report at least 1 of the 

following quantitative outcomes of interest: variability of radiomic features with respect to 

image acquisition parameters, imaging modalities examined, or effect of preprocessing steps 

applied to the images from which features were extracted.

Language—Only full-text reports in the English language were included in this review.

Information sources

The Cochrane Database of Systematic Reviews was screened for any previous systematic 

reviews addressing repeatability and/or reproducibility of radiomic features. An electronic 

search was conducted in PubMed (MEDLINE citations had been previously merged into the 

PubMed repository). For all articles for which the full text was obtained for data extraction, 

the bibliographic references within them were also screened for potentially eligible studies. 

No search was made in gray-literature sources for unpublished material or conference 

proceedings.

Search strategy

A search of PubMed citations was performed using the broad Haynes (24) and Ingui (25) 

filters in combination with the modifications proposed by Geersing et al (26) (each 

combined using “OR”). For the final database search, additional criteria of “cancer” 

(Medical Subject Headings major topic) and text terms that were each related to 

reproducibility, repeatability (fundamental to include test-retest studies), variability, and 

radiomics (including textural analyses) were also included. All PubMed search results were 

admitted up to and including the second week of April 2017.

Study records

Data management—Electronic full-text articles were downloaded using university library 

subscriptions. A review-specific SharePoint (Microsoft Corporation, USA) page was set up 

to handle document collection, data extraction forms, and dissemination of reviewer 

findings.

Selection process—Two reviewers worked independently throughout all phases of the 

study selection process (abstract screening, eligibility, and inclusion for full-text evaluation). 

They compared the titles and abstracts against the inclusion criteria. Each reported whether 

an abstract was eligible for evaluation in full. Disagreements were resolved by consensus. 

All of the articles deemed eligible were successfully downloaded.

Two reviewers independently evaluated whether the full-text reports were suitable for 

inclusion and synthesis. Dis-agreements were again resolved by consensus. A third reviewer 

was available if disagreements could not be resolved, but this option was not exercised. 

Reasons for excluding a specific full-text article were documented.
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Data extraction: data items

We extracted information about the population used in the studies, including the sample size 

and type of primary tumor for human studies and the phantom details for phantom studies. 

The inclusion of metastatic, secondary, or synchronous tumors was noted, as was any case in 

which the nonprimary tumor was used in the derivation of radiomic features. The study 

design and image modality used were noted, including any image acquisition parameters 

explicitly stated in the text. We noted the total number of radiomic features tested and 

grouped these features according to (1) shape features (defining the 2-dimensional or 3-

dimensional [3D] properties of the tumor, eg, volume or surface area); (2) first-order 

statistics (derived from statistical moments of the image intensity histogram); and (3) higher-

order textural features (describing spatial patterns of voxel intensities) (27).

In addition, we noted the names and versions of the software used to quantitatively extract 

radiomic features, including whether any particular preprocessing steps were applied to the 

images before feature extraction. Finally, we noted the statistical methods used as a metric of 

repeatability and/or reproducibility of the studied features.

Outcomes and prioritizations

Primary outcome—The primary outcome of interest in this review synthesis was the 

degree of repeatability or reproducibility of radiomic features, along with any independent 

validation used to test repeatability and reproducibility at an external institution.

Secondary outcomes—The secondary outcomes were the impact of image acquisition 

settings on the reproducibly of features and the effect of preprocessing imaging filters 

applied before feature extraction.

Additional outcomes—Additional outcomes were the statistics and metrics used for 

reporting robustness and reliability and the investigation of the impact of different 

segmentation methods used to define the regions of interest (ROIs).

Risk of bias in individual studies—To assess the risk of bias in each study, 2 reviewers 

independently extracted detailed information from the reports in the following specific 

domains:

1. Characteristics of the cohort used to perform the study in the case of human 

studies or characteristics of the phantom used to perform the study in the case of 

phantom studies

2. Description of the software used to compute the features

3. Image acquisition parameters reported in the study

4. Filtering and/or image preprocessing operation(s) performed on the original scan 

before the radiomic features underwent computation

5. Segmentation method(s) used to derive an ROI

6. Use of either cross validation or independent validation to show that features are 

repeatable and/or reproducible after folding or in separate data sets
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7. Threshold (cutoff) values used in repeatability and/or reproducibility metric(s) to 

segregate features

Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or 

Diagnosis classifications were not applicable here because tests of repeatability and 

reproducibility of radiomic features do not strictly link to diagnostic verification or 

predictive performance. The impact of undocumented (or inadequately reported) steps on the 

potential repeatability or reproducibility of features was noted. Discrepancies in data 

extraction between the 2 reviewers were resolved by consensus after discussion. A third 

reviewer was available to resolve a deadlock, but this option was not needed.

Data synthesis—The included studies were not uniform by way of reported metrics, and 

we could not attempt a quantitative meta-analysis of pooled metrics. A systematic qualitative 

synthesis is given in this publication, with details presented in text and tables to summarize 

our findings about the included studies.

Subgroup analyses—The summary findings on repeatability and reproducibility of 

features were grouped by the following: disease type (lung cancer, head and neck cancer, 

and other anatomic sites) or phantom study and type of imaging modality (CT, PET, and 

MRI).

Results

Literature search results

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram is 

shown in Fig. 1. The PubMed search yielded 624 abstracts for screening against our 

selection criteria, reduced to 623 after elimination of duplicates. The full text was retrieved 

for 52 abstracts deemed suitable for in-depth evaluation, including 5 that were located in the 

references of retrieved studies and 2 previously known studies. After full-text evaluation, 11 

studies were excluded because they did not meet the aforementioned eligibility criteria. A 

qualitative synthesis was derived from 41 studies, of which 35 were performed in human 

subjects and 6 were exclusively performed on radiologic phantoms. A detailed checklist is 

provided in Appendix E1 (available online at https://doi.org/10.1016/j.ijrobp.2018.05.053).

Human study characteristics

Table 1 summarizes the general characteristics of the human studies. The vast majority of 

studies addressed lung cancer (25 of 35 studies), of which 21 specifically addressed non-

small cell lung cancer (NSCLC). There were 3 studies each on head and neck cancer, 

esophageal cancer, and rectal cancer. There was only 1 study each on breast cancer and 

cervical cancer. In 2 studies, multiple cancer types were combined, but details within the 

subgroups of cancer types were not specified (59, 60). Two studies combined features from 

multiple specified cancers (19, 57).

The number of patients reported in the retrieved studies ranged from 10 (33) to 555 (54), and 

only 1 study was prospective (56). Few studies (7 of 41) specifically referred to a publicly 

available image set.
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The imaging modalities mentioned in the human lung studies were PET (17 of 35), CT (17 

of 35), MRI (1 of 35), and cone beam CT (CBCT) (2 of 35). Two studies used multiple 

imaging modalities. Six studies exclusively investigated feature repeatability; all others 

examined either reproducibility alone or both reproducibility and repeatability.

The number of investigated radiomic features in the studies ranged from 4 (45) to 830 (38). 

The latter was a multi-institutional study, so it was unclear whether the number included 

repeated instances of some of the features. All the studies included textural analysis; the 

majority (28 of 35) also evaluated first-order features, but less than half (15 of 35) evaluated 

shape metrics. Fourteen studies investigated all categories of features.

Phantom study characteristics

Table 2 shows the main characteristics of 6 studies exclusively concerning radiologic 

phantoms. Among these, CT was the most common image modality (5 of 6), and PET was 

investigated in only 1 study. We did not locate any phantom study of repeatable and/or 

reproducible features from MRI. All of these studies investigated feature reproducibility, and 

only 1 phantom study was prospective (65).

The number of investigated radiomic features in the phantom studies ranged from 5 (63) to 

213 (65). All studies included textural analysis, 3 evaluated first-order features, and 2 

evaluated shape metrics. Only 1 study investigated all categories of features (65).

Quality of reporting in included studies

Human studies—Table 3 gives a summary of methodology and reporting quality for 

human studies. In general, methodologic aspects were adequately documented. However, 

only 7 of 35 studies reported detailed information in every one of the aforementioned quality 

domains (28, 33, 42, 51–53, 56). In 3 quality aspects, the overall standard of reporting was 

lower: (1) providing details of the software implementation to extract radiomic features, (2) 

providing details pertaining to image preprocessing before extracting radiomic features, and 

(3) stating the cutoff value for discriminating a subset of repeatable and/or reproducible 

features.

One study did not provide detailed information about the disease groups used in the analysis, 

apart from stating that different types of solid cancers were included (59). The practice of 

pooling heterogeneous tumors is questionable because there is no a priori reason to assume 

that any arbitrary feature that may be stable in one disease site will also prove to be stable in 

others.

Software details (application framework used for analysis, programming language, and 

version) were not reported in detail in 16 studies. Standards for radiomic features have not 

yet been universally adopted; therefore, software should be described because differences 

due to feature extraction are likely to influence the apparent stability of features.

All but 2 studies (31, 32) provided detailed tables describing image acquisition settings 

including information about scanners (manufacturer, model, reconstruction package, and 

software version) and scan protocols. Eight studies lacked detailed descriptions regarding 
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preprocessing steps (if any) applied to the original images (4, 29, 37–39, 41, 46). Digital 

image manipulations (eg, voxel size resampling, de-noising, and sharpening) are known to 

drastically alter the extracted values, and this is likely to hamper reproducibility across data 

sets.

Six studies did not provide sufficient information regarding the segmentation procedures to 

define an ROI (32, 35, 37, 40, 45, 57). Differences in segmentation methods are likely to 

bias the stability of shape metrics and perhaps textural and first-order features.

Fifteen studies did not document the cutoff value used in their statistical metrics to 

discriminate between reproducible and irreproducible features. One of these selected only 

the top-ranking feature from each of 4 feature groups (first order, shape metric, texture, and 

wavelet filtered) (4). The subset of stable radiomic features selected in a given study 

obviously depends on arbitrary threshold values of the repeatability or reproducibility 

metric; therefore, the cutoff criterion should be clearly stated.

Two studies validated feature stability in texture phantoms combined with publicly available 

clinical images (33, 40). One study assessed feature reproducibility across 7 institutions 

(38).

Seven studies made their primary data set of clinical images publicly available to other 

researchers (4, 28, 30, 32, 37, 38, 42), and some of these studies used the same publicly 

available data set.

Phantom studies—Table 4 provides an overview of methodologic aspects and reporting 

quality for the phantom studies. All studies reported information about the phantom used in 

the analysis. All provided detailed tables describing image acquisition settings, including 

information about scanners (manufacturer, model, reconstruction package, and software 

version) and scan protocols. However, no studies reported detailed information in every one 

of the aforementioned quality domains. In 2 quality aspects, the overall standard of reporting 

was lower: (1) providing details of the software implementation to extract radiomic features 

and (2) stating the cutoff value for discriminating within a subset of reproducible features.

Four studies made use of commercially available phantoms originally designed for scanner 

calibration or image quality checks, whereas 2 studies used an in-house texture phantom (61, 

65). Software details (application framework used for analysis, programming language, and 

version) were not reported in the majority of studies. Five studies described their in-house 

software as based on MATLAB (The MathWorks) (61, 62, 64–66), and Kim et al (63) 

developed a plug-in for the open-source software ImageJ (National Institutes of Health), but 

none of these studies made their code accessible.

Only Forgacs et al (62) lacked a detailed description regarding preprocessing steps (if any) 

that were applied to the original images. One study did not provide sufficient information 

regarding the segmentation procedures to define an ROI (62). Three studies relied on manual 

segmentations (61, 63, 65), and the remainder used semi-automated segmentations while 

also specifying the algorithms used.
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Five studies did not document the cutoff values used in their statistical metrics to 

discriminate between reproducible and irreproducible features (61, 63, 64, 65, 66). The 

statistical analysis was unclear in the text in the study by Kim et al (63).

Radiomic features according to cancer diagnosis

Lung cancers—The imaging modalities among lung cancer studies were CT (14 studies), 

PET (11 studies), and CBCT (1 study). Desseroit et al (31) investigated PET and CT at the 

same time. All of the studies investigating PET acquired these images using a combined 

PET-CT scanner. Twenty-one studies used NSCLC data sets, and 4 studies used a 

combination of different lung cancers (47–49, 57).

Three studies evaluated the reproducibility of radiomic features with respect to multiple 

manual segmentations in the same patient (interobserver sensitivity) by use of PET (4, 39, 

43). Each showed that interobserver differences in delineations affected feature 

reproducibility to some degree. Interobserver differences were amplified in textural features. 

Leijenaar et al (39) found that features with high test-retest repeatability were also less 

affected by interobserver differences. Parmar et al (42) studied interobserver variability with 

respect to manual versus semiautomated segmentation (3D Slicer) and concluded that 

semiautomated methods improved feature reproducibility in PET. Orlhac et al (19) studied 

textural feature reproducibility with respect to 2 different semiautomated segmentation 

algorithms: an adaptive method (67) and a more conventional thresholding method based on 

40% of the maximum standardized uptake value. Homogeneity, contrast, dissimilarity, and 

coarseness were found to be the most reproducible features.

The only multicenter CT study found that among shape metrics, 3 variants—local shape 

descriptors, global shape descriptors, and textural features—had the highest variation with 

respect to segmentations, whereas size measures had the least variation resulting from 

segmentation (38). First-order features were highly reproducible across participating centers, 

and there were strong internal correlations within each class of features.

Four studies examined the impact of different PET image reconstruction algorithms or 

image processing filters (19, 43, 44, 49). Grid size had a larger impact on feature 

reproducibility than did simple Gaussian filters applied inside the image reconstruction 

algorithms; the latter affected reproducibility in only shape and textural features. Gray-level 

resampling sensitively affects textural feature reproducibility, whereas first-order features 

are less affected. Differences in reconstruction algorithms strongly affect feature 

reproducibility, with the exception of first-order entropy. Entropy was reproducible for both 

image preprocessing and several reconstruction algorithms.

Three studies compared features using free-breathing PET versus respiratory-gated PET to 

evaluate the impact of motion on reproducibility but showed conflicting results. In the study 

by Oliver et al (41), spatial blurring effects due to respiratory motion and intrinsic noise 

during acquisition were major factors leading to irreproducibility. Similar results were seen 

when textural features on 3D versus 4-dimensional (4D) PET were compared (45). The latter 

study concluded that 4D imaging reduced motion artifacts, producing less blurred images 

and potentially more reproducible textural features. However, in the study by Grootjans et al 
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(47), the differences between features derived from 3D and 4D imaging were not statistically 

significant.

Zhao et al (46) evaluated the combined effect of 3 different CT slice thicknesses and 2 

different CT reconstruction algorithms. Many features that had been repeatable under test-

retest conditions became irreproducible with respect to altered slice thickness and image 

reconstruction settings, with first-order features and shape metrics being less sensitive than 

textural features.

Fave et al (35) tested the effect of different image preprocessing filters, such as bit-depth 

resampling and smoothing filters, on CT radiomic features. Correlation to tumor volume and 

use of preprocessing filters increased the chance of features being significant on univariate 

analysis against outcome, but whether these retain their predictive value in an independent 

validation set remains unclear.

Three studies focused exclusively on repeatability using the same test-retest images (31, 37, 

57). They consistently found shape metrics and first-order features to be highly repeatable, 

but there was no consensus on repeatable textural features.

Two studies investigated feature reproducibility across different scanning equipment using a 

specially constructed texture phantom: Fave et al (33) using CBCT and Mackin et al (40) 

using CT. Both investigations went on to validate their phantom results using clinical 

images. Feature reproducibility using CBCT was adversely affected by motion and scattered 

radiation, whereas interscanner CT differences were found to be of the same magnitude as 

interpatient feature differences.

Head and neck cancers—Three studies were concerned with head and neck cancers; all 

primary tumors were located in the oropharynx. Modalities investigated were CT (51), CT 

and CBCT (50), and PET (52). Each of these investigated some aspect of image resampling 

filters or other preprocessing regarding feature reproducibility.

Bagher-Ebadian et al (50) applied different smoothing, sharpening, and noise filters to 

CBCT and CT images and found that feature reproducibility in both modalities was most 

strongly affected by high-pass filters and logarithmic filters. Smoothing filters and Gaussian 

noise kernels had a similar but smaller impact on reproducibility. The authors found no 

major differences in reproducibility between CT and CBCT.

The effect of gray-level discretization was discussed in 2 studies: those by Bogowicz et al 

(51) using CT and Lu et al (52) using PET. The first found that bin size strongly affected 

reproducibility on perfusion CT, but the second found a qualitatively similar though less 

severe impact on reproducibility in PET.

Lu et al (52) also compared different PET segmentation methods (manual, semiautomated, 

and fully automated) and found that more than half of the radiomic features were 

reproducible. In addition, the sensitivity of features due to segmentation differences was less 

than that due to voxel dimension resampling.
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Esophageal cancers—Three studies were concerned with esophageal cancer. All 3 

investigated PET modalities. Tixier et al (55) investigated the effect of different PET 

reconstruction algorithms in esophageal cancer. The most reproducible tumor heterogeneity 

markers were entropy, homogeneity, and dissimilarity (for local characterization) and 

variability in the size and intensity of homogeneous tumor regions (for regional 

characterization). The other 2 studies investigated how different thresholding-based 

semiautomated segmentation algorithms affect feature reproducibility. The impact was less 

marked with first-order features than with textural features. Entropy was the most 

reproducible first-order feature, and homogeneity was the most reproducible textural feature. 

Segmentation affected reproducibility more than either smoothing or filtering.

Rectal cancers—Three studies were concerned with rectal cancers. Modalities 

investigated included CT (2 studies) and PET (1 study). Orlhac et al (19) studied textural 

feature reproducibility using PET with respect to different segmentation algorithms and 

gray-level resampling. Only a few features (homogeneity, contrast, dissimilarity, and 

coarseness) were found to be highly reproducible with respect to segmentation and 

resampling. Two studies investigated feature repeatability using CT (56, 57). Shape features 

were again found to be the most repeatable, and higher-order textural features were the least 

reproducible. Normalizing the extracted values by ROI volume generally improved the 

overall repeatability of features.

Other cancers—Studies were limited for other cancers. Guan et al (58) investigated 

feature reproducibility in the apparent diffusion coefficient from MRI of cervical cancer with 

respect to interobserver and intraobserver variability. All entropy measures were highly 

reproducible independent of observer effects. Orlhac et al (19) investigated textural feature 

reproducibility using PET in breast cancer. Only a few features (contrast, coarseness, and 

high gray-level run emphasis) were reproducible with respect to the number of gray levels 

used for resampling.

Radiomic features according to imaging modality

Positron emission tomography—PET was the second most common imaging modality 

overall and the most common in lung cancer. First-order statistics derived from a standard 

uptake value (SUV) histogram, such as mean SUV and maximum SUV, were consistently 

among the most repeatable and reproducible. Interclass correlation coefficients of these 

features were consistently higher than 0.95. First-order PET features were generally robust 

with respect to segmentation, but textural features consistently showed greater sensitivity to 

segmentation differences (4, 19, 39, 42, 43, 53). The choice of image reconstruction 

algorithm had a greater effect on reproducibility of shape metrics and textural features 

relative to first-order features (43, 44, 49).

Computed tomography—Studies using CT were most common in head and neck cancer 

(2 studies) (50, 51), and CT was the second most common modality in lung cancer (14 

studies). First-order and shape CT features were generally more repeatable than textural 

features (32, 56, 57). Slice thickness resampling and different reconstruction algorithms 
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strongly degraded feature reproducibility (35, 46, 50, 51). The magnitude of degradation was 

greater for textural features than for first-order features.

Cone beam CT—CBCT was used in 1 NSCLC study (33) and 1 oropharyngeal cancer 

study (50). Radiomic feature reproducibility on CBCT appeared to be adversely affected by 

scattered X rays and specifics of the imaging device. Low-amplitude noise and smoothing 

did not appear to affect the correlation of CBCT features to planning CT.

Radiomic features according to phantom studies

All the studies that investigated reproducibility on CT agreed that voxel size resampling 

strongly affected feature reproducibility. Zhao et al (66) demonstrated substantial differences 

in reproducibility when comparing 1.25- and 5-mm slices. Volume, homogeneity, and energy 

(gray-level co-occurrence matrix) were more reproducible for the finer slice thickness. This 

study recommended using images with a slice thickness between 1 and 2.5 mm for radiomic 

analysis. Studies confirmed that other CT acquisition parameters, such as tube voltage or 

tube current, had no influence on feature reproducibility (61, 62).

Predictive or prognostic power of reproducible or repeatable features

Of the 35 articles investigating feature reproducibility and repeatability in human studies, 

only 11 also addressed the prognostic or predictive value of computed features (Table E1, 

available online at https://doi.org/10.1016/jAjrobp.2018.05.053). Ten studies used NSCLC 

data sets, and only 1 study was based on esophageal cancers. Five studies investigated 

clinical outcome and patients’ overall survival, 2 investigated the role of features in 

stratifying patients according to poor or good prognosis (based on mean overall survival), 3 

investigated the pathologic response to treatment, and 1 investigated tumor recurrence. All 

studies agreed that models including quantitative imaging features have better performance 

than models including only clinical features. The majority of the studies found textural 

analysis features to be predictive or prognostic. Unfortunately, there is no consensus on most 

predictive textural analysis features. In addition, some studies found some first-order 

features to be predictive, but unfortunately, it was not possible to find a consensus. We 

suggest that authors clearly document the procedure adopted for feature selection for their 

models, possibly by making use of workflow figures.

Methodologic issues identified in review

Accessibility of software for feature extraction and of image collections—The 

included studies used a wide range of software to process images and extract features. 

Fourteen studies specifically identified MATLAB as the framework for their feature 

extraction algorithms (4, 28, 29, 36, 37, 39, 42, 45, 50, 52, 53, 56, 59, 61). Software in the 

studies by Bogowicz et al (51) and Kim et al (63) were based on in-house code written for 

Python and ImageJ, respectively. Twenty studies did not report any details about the 

software used. Only 1 of the aforementioned studies has made its source code available in a 

GitHub repository (52).

Among MATLAB users, only Aerts et al (4) and Balagurunathan et al (28) have made their 

image sets publicly accessible online. Kalpathy-Cramer et al (38) and Oliver et al (41) also 
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used in-house created software, but neither provided additional details or made the software 

publicly accessible. Kalpathy-Cramer et al (38) provided open access to images and 

structure sets (for 40 patients and 1 phantom) via The Cancer Imaging Archive (TCIA). Four 

studies used the IBEX open-source radiomics package (68), developed by MD Anderson 

Cancer Center, but their image collections are not publicly accessible online (33, 34, 35, 40).

Among phantom studies, only 2 reported the software used to extract radiomic features. 

Buch et al (61) used MATLAB as the framework application for their feature extraction 

algorithms, and Kim et al (63) developed a dedicated plug-in for ImageJ. However, none of 

the phantom studies had publicly released their image sets.

It would be difficult to compare, for consistency and standardization, the radiomic features 

extracted by different software implementations if values for a canonical set of features were 

not openly accessible. Furthermore, feature stability and predictive performance of radiomic 

features cannot easily be externally validated unless other researchers have access to either 

the extraction software or the medical images (or both).

Heterogeneity in statistical metric and cutoff values—The human subject studies in 

this synthesis were highly heterogeneous regarding statistical metrics for repeatability and/ 

or reproducibility. The metrics encountered were the intra-class correlation coefficient (ICC) 

in 14 studies, concordance correlation coefficient (CCC) in 7 studies, Spearman rank 

correlation in 5 studies, and various descriptive measures of difference among the remaining 

9 studies. Some studies reported more than a single metric. However, the specific cutoff 

values used to segregate stable from unstable features were not always stated. When stated, 

the threshold values were highly study dependent. This led to differences in the individual 

features that were deemed repeatable or reproducible, and there was no universal consensus.

The ICC metric (69) is appropriate where one expects strong correlation within a given class 

but weak correlation between classes, and it was most commonly reported in reproducibility 

experiments. Five of these ICC-based studies failed to report the threshold value used to 

consider a feature as reproducible. The others defined a feature as highly reproducible if ICC 

was >0.9 (30, 43, 51); if ICC was >0.81 (58); if ICC was >0.8 (37, 39); and finally, if ICC 

was ≥0.8 (42, 52).

The CCC metric (70) assumed each observation was independent and was commonly 

reported in both repeatability and reproducibility studies. In the studies by Kalpathy-Cramer 

et al (38) and Zhao et al (46), the cutoff was set at CCC ≥0.75. Other reported cutoffs were 

CCC ≥0.8 (33, 56), CCC >0.85 (57), and CCC >0.9 (28, 36). Spearman rank correlation (71) 

measures the ordinal correlation between features in 2 experiments and was reported in 5 

studies.

Human studies also tended to stratify features into ordinal groups (eg, poor, medium, or high 

reproducibility or repeatability) according to the statistical metric. No study made available 

its calculated metrics at the level of the individual feature. We did not attempt a meta-

analysis of summary statistics in this review.
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The phantom studies also used diverging statistical metrics. In the study by Kim et al (63), 

the metric was ambiguous. Two studies used the coefficient of variation (62, 65); one study 

used the mean standard deviation (64); one study used a multilinear regression method (66); 

and Buch et al (61) used a t test. Only Forgacs et al (62) reported the cutoff used to select 

reproducible features. For phantom studies, lack of consensus also excluded quantitative 

meta-analysis of the results.

Reporting of digital image manipulations before feature extraction—Radiomic 

feature values appeared to be sensitive to preprocessing filters applied to the original image. 

There was some consensus that first-order features were not as sensitive to image 

preprocessing as were textural features. Because the latter class of features is highly 

sensitive to perturbations in local intensity distribution and short-range correlations, the use 

of prefilters might have enhanced certain details and eliminated information from others.

However, the aforementioned preprocessing steps (if any) were embedded within each 

software implementation and were seldom explicitly documented. Discrepancies between 

studies using the same image modalities and the same software may be partly due to 

undocumented differences in preprocessing, but it would be impossible to rule out 

differences resulting from image reconstruction algorithm or image acquisition settings.

Qualitative synthesis

Lung studies generally agreed that ROI segmentation affects the reproducibility of radiomic 

features for both PET and CT modalities, especially among the shape metrics and textural 

features. Image reconstruction algorithms revealed a difference between filtration and voxel 

sampling. The former had more impact on reproducibility of textural features, but the latter 

reduced the reproducibility of all features. Respiratory motion appears to have had a 

significant adverse impact on reproducibility of PET and CBCT features. Feature values 

were correlated to ROI volume in some software implementations, which may lead to a 

confounding association with certain outcomes.

In general, the head and neck cancer studies agreed that either modifying voxel size or 

applying intensity discretization influenced feature reproducibility for both CT and PET, but 

PET seemed overall less sensitive with respect to differences in segmentation. This review 

did not find any studies addressing differences in image acquisition settings, reconstruction 

algorithms, or scanners for head and neck cancers.

In PET human subject studies, first-order entropy was one of the most stable features across 

multiple settings. There were mixed findings for reproducibility of skewness and kurtosis. 

Shape metrics were also reproducible using PET but were less reproducible using CT, likely 

because of the manual delineation sensitivity of the latter. Coarseness and contrast appeared 

to be least stable among the textural features. There was no overall pattern for stable textural 

features, nor were any significant differences noted due to different isotopes (52) (ie, 18F and 
11C).

First-order entropy emerged as among the most consistently reproducible features on CT for 

both oropharyngeal and lung cancers. Single-institution studies concluded that CT shape 
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metrics were highly reproducible, but the only multi-institutional study concluded that shape 

descriptors (ie, flatness and sphericity) and textural features were the least reproducible (38). 

Kalpathy-Cramer et al (38) also showed that first-order CT features were highly 

reproducible across participating centers, even for skewness and kurtosis. There was 

consensus that certain texture features, such as coarseness and contrast, were poorly 

reproducible. No emergent pattern regarding reproducible PET texture features was found.

No overall trend emerged regarding repeatable and reproducible CBCT textural features. 

Among first-order features, entropy was one of the most stable features, whereas kurtosis 

was the least stable.

In general, all phantom studies on CT consistently reported that first-order features such as 

histogram mean and entropy were the most reproducible features. Similar results for entropy 

were observed on PET radiomic analysis (62) when examining reproducibility with respect 

to different acquisition time intervals and reconstruction settings. The aforementioned 

qualitative synthesis across all included studies has been summarized in Fig. 2, indicating 

which process steps are most likely, probable, or least likely to affect the repeatability and 

reproducibility of radiomic features.

Discussion

The total number of published predictive modeling studies using image-based quantitative 

features has been rapidly rising, but global consensus about features that are repeatable and 

reproducible has not yet emerged. Lack of unified synthesis could potentially undermine 

future discussions about clinical applicability and prospective multi-institutional external-

validation trials. The primary objective of this review was to identify radiomic features that 

were shown to be repeatable and reproducible through an electronic search of peer-reviewed 

journal publications. We also evaluated the methodologic details provided in each of the 

studies. Summaries of our findings have been presented in tables.

We located a number of general reviews focusing on the process and challenges of radiomic 

studies (15, 72). The previous work has drawn particular attention to the lack of 

standardization (73) and need for calibration of imaging settings. At the time of this writing, 

there has been no systematic review focusing on repeatability and/or reproducibility studies 

of radiomic features.

General recommendations for radiomic research

To homogenize radiomic reproducibility and repeatability studies, we suggest that the 

community perform bench-marking studies on common, shared, and publicly available data 

sets. In particular, this concept has already been proposed within the Image Biomarker 

Standardization Initiative, where different institutions computed features on a common data 

set. However, to expand this effort, we have been working on (1) providing users with a 

common repository with shared data sets for feature benchmarking; (2) providing a 

computational infrastructure, which directly connects to the repository; and (3) suggesting a 

standardized way of reporting and collecting computational results.
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With regard to point 1, we believe that common data sets should include both phantom and 

human studies. Because features could be dependent on several acquisition parameters (eg, 

slice thicknesses and different scanning protocols and/or scanner manufacturers), our 

recommendations are as follows:

1. Include benchmarking data sets collected by different institutions to guarantee 

the maximum heterogeneity in terms of the aforementioned parameters.

2. Include different data sets for most common modalities and diseases because, as 

we have shown in the review, feature reproducibility results can be different 

when considering different diseases and/or different modalities.

With regard to point 2, we are currently working on developing an infrastructure, based on 

workflow programming language, that allows users to connect to the mentioned repository 

and run their feature extraction software. This infrastructure can be expanded by introducing 

in the workflow a “benchmarking module,” where users can easily “test” their software on 

common data sets, directly choosing them according to the modality and/or disease 

population of interest. In such a module, computational results can then automatically be 

uploaded, and a “sanity” report of feature reproducibility, compared with values already 

obtained by other institutions (bench-marking), is returned to the user. We believe that such 

an infrastructure not only will stimulate users to perform benchmarking calculations but also 

will help them in terms of debugging their software in case of possible errors.

Point 3 is strictly related to point 2. In fact, bench-marking intrinsically brings the concept of 

comparisons. For this reason, a standardized way of reporting should be preferred. As 

already pointed out in this article, users should report not only the obtained features’ raw 

values but also the configurations and/or parameters used to perform computations, together 

with details of the software used for computations. To facilitate this process, we are working 

on providing users with standard template tables that need to be filled in by the users and 

that include all the information mentioned earlier. In our view, this represents the first step 

toward homogenizing and increasing the quality of reporting. However, to facilitate feature 

comparison, we recommend using ontology techniques combined with Semantic Web to 

transform template tables into semantically linked data that can easily be queried by means 

of universal concepts defined by the ontology.

Finally, to increase the general validity of a radiomics-based model, we believe that external 

validation of the developed model should be performed, and only reproducible and 

repeatable features should be included in the model. To achieve this goal, we suggest using a 

distributed learning approach. In fact, in a distributed learning environment, models are 

“learned” and validated in different centers to increase their general validity. In addition, we 

recommend that authors describe in detail the procedure adopted for selecting features in the 

model. We suggest the following possible workflow:

1. Perform a reproducibility experiment and rank features from most reproducible 

to least reproducible.
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2. Start scanning the list, picking up the most reproducible features; train the 

model; and validate the model externally to investigate the predictive or 

prognostic power of the features.

As a final point, we recognize the need to create a community of radiomics users, sharing 

common methodology in terms of both feature computation and methodology. In addition, 

we believe that this community should be guided by findable, accessible, interoperable, and 

reusable (FAIR) principles for a standardized, reliable, and reproducible use of radiomics.

Limitations of review

We are not able to rule out possible publication bias toward favorable results among the 

included studies. We did not generate a funnel plot because of the relatively low number of 

eligible studies and because of the specific exclusion of unpublished reports and conference 

proceedings. Every published study included in our review identified at least 1 radiomic 

feature that was repeatable or reproducible.

This systematic review was limited to only 2 reviewers; though a third reviewer was 

available to resolve disagreements, this option was not exercised. No disagreements were 

found after discussion, when comparing the results of the quality of reporting and the 

qualitative synthesis.

Furthermore, our search was limited to only 1 literature repository (PubMed) after its 

incorporation of MEDLINE and Embase citations. We did not permit conference 

proceedings, non—peer-reviewed publications, or other sources of gray literature in this 

review, which may have limited the number of studies located.

As a fundamental final point, this review would have benefited from a quantitative synthesis 

of the analyzed articles. Unfortunately, as already mentioned, the reviewed studies applied 

arbitrary cutoffs during the statistical analysis of reproducible and repeatable features; in 

some cases, as we documented in our article, thresholds used to define a feature as 

“reproducible” were not reported. We have performed the analysis that was amenable to us 

at this time. However, we strongly support consensus toward a standardized metric to 

quantitatively evaluate reporting of radiomic studies that will be useful for the community. 

No such consensus presently exists, and our review was the first attempt to describe what 

has been reported in the reviewed literature. We did not specifically propose a metric to 

evaluate the quality of reporting because this needs to be a consensus effort by our 

community. This can be seen as one of our studys limitations.

An anticipated update of the current review is proposed for April 2019. We hope by that date 

to have agreed on a common quantitative evaluation metric within the research community 

so that we will be able to update the review, in terms of not only up-to-date publications but 

also the inclusion of a quantitative analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram. The 

primary PubMed search returned 624 records. A further 5 records were added from 

references in full-text articles. Two records were added owing to prior knowledge. After 

screening and full-text assessment, a total of 41 studies were included in the qualitative 

synthesis.
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Fig. 2. 
Qualitative synthesis of radiomic feature classes, indicating processing steps that are either 

highly likely (3 diamonds), probable (2 diamonds), or less likely (1 diamond) to exert an 

adverse effect on repeatability and reproducibility for each class of radiomic features. 

Feature classes for which no information was available are marked as unknown (question 

mark). Abbreviations: CBCT = cone beam computed tomography; CT = computed 

tomography; H&N = head and neck cancer; NSCLC = non-small cell lung cancer; PET = 

positron emission tomography; ROI = region of interest.
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