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Abstract

Nonhuman primates provide a human-relevant experimental model system to explore the
mechanisms by which oxytocin (OT) regulates social processing and inform its clinical
applications. Here, we highlight contributions of the nonhuman primate model to our
understanding of OT treatment and address unique challenges in administering OT to awake
behaving primates. Prior preclinical research utilizing macaque monkeys has demonstrated that
OT can modulate perception of other individuals and their expressions, attention to others,
imitation, vigilance to social threats, and prosocial decisions. We further describe ongoing efforts
to develop an OT delivery system for use in experimentally naive juvenile macaque monkeys
compatible with naturalistic social behavior outcomes. Finally, we discuss future directions to
further develop the rhesus monkey as a preclinical test bed to evaluate the effects of OT exposure
and advance efforts to translate basic science OT research into safe and effective OT therapies.
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1| THERAPEUTIC INTEREST IN OXYTOCIN

The prevalence and societal impact of autism spectrum disorder (ASD) creates an urgent
need for innovative treatments for affected individuals. Current pharmacological treatments
target only peripheral symptoms such as anxiety, aggression, and depression, but not the
core impairments in reciprocal social interaction and communication that are hallmark
features of ASD (Doyle & McDougle, 20123, 2012b). Pro-social pharmacological
treatments delivered in parallel with early behavioral interventions could play a critical role
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in modifying social development and greatly improve the quality of life for individuals with
autism. The oxytocin (OT) system is emerging as one of the most promising areas of ASD
treatment research (Green & Hollander, 2010; Modi & Young, 2012). OT is a neuropeptide
that plays a central role in social cognition and behavior across species (Donaldson &
Young, 2008; Insel, 2010), including humans (Guastella & Hickie, 2016; Guastella &
MacLeod, 2012; Meyer-Lindenberg, Domes, Kirsch, & Heinrichs, 2011). In neurotypical
adults, OT administration enhances a variety of social functions, including social gaze, face
processing, emation recognition, and trust (Guastella, Mitchell, & Dadds, 2008; Kosfeld,
Heinrichs, Zak, Fischbacher, & Fehr, 2005; Lischke et al., 2012; Schulze et al., 2011). Acute
OT administration in adults with ASD is associated with a reduction in repetitive behaviors
and improvements in social cognition (Anagnostou et al., 2012; Andari et al., 2010;
Hollander et al., 2003, 2007). These results have recently been extended to younger
individuals with ASD, where acute (Guastella et al., 2010) and prolonged (Tachibana et al.,
2013; Yatawara, Einfeld, Hickie, Davenport, & Guastella, 2016) OT treatments have been
associated with improvements in social functioning. Although the data emerging from ASD
treatment studies are compelling, many questions remain regarding the therapeutic potential
of OT treatment in humans (Bethlehem, van Honk, Auyeung, & Baron-Cohen, 2012;
Churchland & Winkielman, 2012; Evans, Dal, Noble, & Averbeck, 2014; Guastella et al.,
2013). There is a clear need for systematic evaluation of long-term safety and efficacy, as
well as a better understanding of the mechanism of OT interventions in preclinical animal
models.

2| PRECLINICAL MODEL SYSTEMS

Much of our understanding of the OT system is based on pioneering studies carried out
initially in voles (Insel, 2010) and recently extended to ASD-specific mouse models (Bales
et al., 2014; Penagarikano et al., 2015; Teng et al., 2013). There are clear advantages to
initiating drug discovery efforts in rodent models including the power of genetic
manipulations, lower costs, potential for extensive pilot research, and shorter duration of
experiments. However, pharmacological interventions targeting the complex social and
communication deficits of ASD may ultimately require the use of an animal model more
closely related to humans. Nonhuman primates are thus uniquely positioned to bridge the
gap between rodent and human OT studies (Freeman & Young, 2016). In the present review,
we focus specifically on the rhesus monkey (Mococo mulatto) as a model system to explore
the effects of OT administration, though we note that the OT system in New World monkeys
supports social traits, such as pair-bonding, not found in macaques and thus provides an
alternative preclinical approach (Lee, Cool, & Parker, 2011; Vargas-Pinilla et al., 2015).

Although rodents are separated from humans by more than 70 million years of evolution,
rhesus macaques diverged from the human lineage closer to 25 million years ago (Gibbs et
al., 2004; Kumar & Hedges, 1998). The resulting similarities between macaques and
humans in neurobiology and behavior provide a model system that can be used to evaluate
etiologies, identify neurobiological mechanisms, and ultimately develop and test novel
pharmacological interventions for human neurodevelopmental disorders (Capitanio &
Emborg, 2008; Ruhela, Prakash, & Medhi, 2015). Indeed, rhesus monkeys and humans live
in complex social groups, show similar developmental trajectories and activity patterns in
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brain regions underlying complex social processing (Platt, Seyfarth, & Cheney, 2016), and
have evolved a sophisticated social communication system that includes a variety of facial
expressions, body postures, and vocalizations not shared with rodents (Chang et al., 2013).
Among macaque social signals, the use of facial expressions is one of the most salient
features of social behavior and the most similar to our own social communication (Bower,
Suomi, & Paukner, 2012; Deaner, Khera, & Platt, 2005; Ferrari et al., 2006; Ferrari,
Paukner, lonica, & Suomi, 2009). When viewing faces of conspecifics, macaques show a
remarkably human-like pattern of visual attention that focuses heavily on regions of the face
that are critical for social processing (i.e., eye and mouth) (Machado, Bliss-Moreau, Platt, &
Amaral, 2011). Though not all complex human behaviors can be modeled in any animal
(i.e., language, theory of mind), rhesus monkeys are a closer approximation to humans in
both brain and behavioral complexity than are rodents. Following this logic, researchers
have capitalized on the complex social development of rhesus monkeys to explore genetic
and environmental risk factors associated with ASD and are beginning to explore therapeutic
interventions (Bauman & Schumann, 2018).

Complex social behaviors, including dominance status, rearing experience, affiliations, and
processing abilities have been associated with variability in endogenous levels and
epigenetic regulation of the OT system in rhesus monkeys (Baker et al., 2017; Coplan et al.,
2015; Madrid et al., 2017; Weinstein, Bales, Maninger, Hostetler, & Capitanio, 2014;
Winslow, Noble, Lyons, Sterk, & Insel, 2003). Moreover, direct manipulation of the OT
system by focal infusion into the macaque brain alters social gaze, prosocial decisions
(Chang et al., 2015) and behavioral synchrony (Jiang & Platt, 2018), and the release of
serotonin in brain regions implicated in social processing (Lefevre, Richard, et al., 2017).
OT receptors in the rhesus monkey brain are highly expressed in regions involved with
visual processing, including the nucleus basalis of Meynert, the pedunculopontine tegmental
nucleus, the superficial gray layer of the superior colliculus, the trapezoid body, and the
ventromedial hypothalamus (Freeman, Inoue, Smith, Goodman, & Young, 2014). A recent
functional magnetic resonance imaging (fMRI) study carried out in macaques (Liu et al.,
2015) reported that treatment with OT diminished BOLD responses to aggressive and fearful
faces in the amygdala, as in humans (Domes et al., 2007), and reduced functional coupling
between the amygdala and areas in the occipital and inferior temporal cortex. Although a
high density of OT receptors has not been found in the regions of interest identified in the
fMRI study, activity in these regions may be modulated by anatomically connected areas
that do contain OT receptors (e.g., amygdala and nucleus basalis of Meynert) (Jones, Burton,
Saper, & Swanson, 1976; Mesulam, Mufson, Levey, & Wainer, 1983). The neuroanatomical
and behavioral complexity, paired with the conserved role of OT in humans and nonhuman
primates, suggests that the rhesus monkey provides a model system uniquely powered to
explore the efficacy and mechanism of OT treatment.

3| OT ADMINISTRATION ROUTES AND PHARMACOKINETICS

OT administration studies in rhesus monkeys have utilized a variety of administration routes,
including subcutaneous (SC) or intravenous (1V) injections, and intranasal spray delivery
(IN), though the majority has used a nebulizer to deliver OT via aerosolized exposure (AE)
(Table 1). A small number of nonhuman primate studies have evaluated pharmacokinetic

Am J Primatol. Author manuscript; available in PMC 2019 August 12.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Bauman et al.

Page 4

outcomes associated with these different routes of administration, though methodological
differences have contributed to inconsistent findings. While rodent studies have
demonstrated increases in both brain and plasma OT levels 30—60 min following nasal
administration (Neumann, Maloumby, Beiderbeck, Lukas, & Landgraf, 2013), the
relationship between central and peripheral levels of OT remains unclear, possibly due to
temporal differences in OT bioavailability (Lefevre, Mottolese, et al., 2017). Here, we
briefly summarize nonhuman primate studies reporting cerebrospinal fluid (CSF) outcome
measures, which provide a direct and relatively noninvasive assessment of central nervous
system (CNS) penetration routinely available for nonhuman primates.

Prior to evaluating the effects of OT administration on the behavior of awake, behaving
monkeys Chang et al. assayed CSF OT levels 0.5 h after awake AE and reported ~2.5-fold
increase in CSF OT levels compared with saline (Chang, Barter, Ebitz, Watson, & Platt,
2012). Modi, Connor-Stroud, Landgraf, Young, and Parr (2014) later compared effects of
IN, IV, and AE routes of OT administration under anesthesia on concentrations of OT and
vasopressin (AVP) in plasma and CSF, and found that all three administration routes
significantly increased plasma OT concentrations, but only the AE route significantly
increased concentrations of CSF OT. In contrast, Dal Monte, Noble, Turchi, Cummins, and
Averbeck (2014) found that IN and AE routes of OT exposure under anesthesia produced
similar elevations of OT concentration in CSF, while the changes in plasma OT
concentration were greater after IN compared to AE. It is important to note that variations in
AE nebulizer delivery protocols (i.e., mask placement, fit, and cooperation of the animal)
could influence the amount of OT actually inhaled by an individual. More recently, Freeman
et al. (2016) compared IV and IN spray administration in awake adult female macaques with
chronic intrathecal catheters to investigate the pharmacokinetic profile of OT in the central
nervous system and the peripheral vasculature. Following IV administration, they
documented a dose-dependent effect of OT treatment on plasma OT levels, though a change
in CSF OT was only observed at the highest 1V dose. In contrast, there was no significant
change in plasma OT at any of the three doses following IN administration, though an
increase in CSF OT was detected at the highest dose. Collectively, the studies highlighted
above provide evidence that OT exposure results in increased CSF OT in rhesus macaques,
though variability in dose, sample collection timing, and route of administration have
yielded inconsistent findings and made it challenging to compare across studies.
Importantly, CSF samples are not compatible with all experimental paradigms, including
chronic administration studies (Blevins et al., 2015).

4| BEHAVIORAL OUTCOMES AND EXPERIMENTAL DESIGN
CONSIDERATIONS

Although several routes of administration have been associated with increased OT levels in
the CSF, AE delivered via nebulizer is most compatible with measuring outcomes in awake
behaving animals. Initial studies in adult nonhuman primates found that OT delivered to
awake monkeys via nebulizer (25 IU/ml; Agrilabs) into the nose and mouth continuously for
5 min (5 IU/min) resulted in increased prosocial behaviors and social gaze in a reward
allocation test (Chang et al., 2012). It is important to note that the animals used in this study
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were equipped with head-restraint prostheses to facilitate single-neuron recordings and
monitor eye position, which also allowed for OT nebulizer delivery. Indeed, studies utilizing
similar acute OT delivery approaches in adult male monkeys have found that OT suppresses
vigilance toward potential social threats (Ebitz, Watson, & Platt, 2013), increases the
frequency of gaze following saccades in response to naturalistic social stimuli (Putnam,
Roman, Zimmerman, & Gothard, 2016), increases fixations to the eye region relative to the
mouth (Dal Monte, Noble, Costa, & Averbeck, 2014), and alters attention to emotional
distractors (Landman, Sharma, Sur, & Desimone, 2014). Most recently, Jiang and Platt
(2018) showed that nebulized OT flattens the social hierarchy and increases synchrony of
spontaneous social behaviors in pairs of male rhesus macaques, and that these effects are
reproduced by injecting OT into the medial prefrontal cortex, a brain region associated with
social processing. Taken together, these studies in adult macaques suggest homologies
between rhesus monkeys and humans in the effects of OT on social behavior and underlying
neural circuits (Chang & Platt, 2013; Ebitz & Platt, 2013).

Given that ASD is a neurodevelopmental disorder, it is also essential to evaluate the effects
of OT exposure in young animals. The nebulizer delivery approach described above is also
compatible with infant monkeys that can be hand-held during delivery and thus do not
require head-restraint. Nursery-reared macaques treated with intranasal OT demonstrate
increased facial gesturing to human care givers and a positive correlation between salivary
OT levels and time spent in proximity to the care giver (Simpson et al., 2014). In this acute
exposure study, early imitation skills predicted OT-associated increases in affiliative
behaviors, suggesting that infant macaques who demonstrate a high propensity for social
interactions early in life may be more sensitive to OT manipulation. A subsequent acute
exposure study from this same group found that OT improved working memory and gaze
following in nursery-reared macaques, but only for males (Simpson et al., 2017). While
acute exposure of OT in young monkeys has yielded intriguing pro-social outcomes, initial
evaluations of long-term OT exposure have raised concerns. Chronic administration of OT
from 2 to 6 months of age increased the time spent viewing videos of dynamic facial
expression, but selectively reduced attention to the eye region of neutral faces in a dose-
dependent manner (Parr et al., 2016). The authors suggest that repeated administration of OT
may homeostatically down-regulate OT receptors in regions of the brain that regulate social
attention—which bears important implications for treating children with OT. Additional
preclinical research is clearly needed to explore the differences between the effects of acute
and chronic OT treatments given that studies in patient populations are more likely to use
repeated OT treatments.

5| OT DELIVERY CHALLENGES

OT delivered by nebulizer has been successfully used for (i) adult animals fitted with a head-
restraint prosthesis, (ii) infant monkeys less than 6 months of age that can be hand held, or
(iif) 4-6 months old infant monkeys exposed in a small chamber. Given that monkeys mature
approximately four times as fast as humans, the ideal age range to explore OT treatments
relevant to treating human children would be between 6 months and 3 years of age. In this
age range, the monkeys are too large for physical restraint techniques used with infant
monkeys, and the head restraint approaches used in adult animals are not often compatible
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with more naturalistic social interactions, which may be more relevant to ASD targeted
treatments. For example, the infants in the Parr et al. (2016) chronic administration study
were hand held for OT nebulizer administration until 4 months of age and then exposed to
OT using a small chamber equipped with several port openings for the nebulizers until
reaching 6 months of age. The chamber delivery approach may be compatible with younger
animals, but would likely become cost prohibitive due to the amount of OT required to
expose juvenile monkeys in a larger chamber. To address this challenge, Parr, Modi, Siebert,
and Young (2013) developed a specially designed cage equipped with a nebulizer that does
not require restraint for OT delivery. Monkeys (four adults and two 3 year olds) were trained
to maintain their face in a position over the nebulizer and breathe through their nose by
sipping from a drink tube administering fluid reward (diluted yogurt) for 4 cumulative
minutes, within a 5 min window. For these studies, a dose of 48 1U was used because much
of the aerosol evaporates. One hour after OT administration, the monkeys performed a
computerized task to measure their attentional bias to social, emotional, and nonsocial
images. OT exposure significantly reduced monkeys’ attention to negative facial
expressions, but not neutral social or nonsocial images. Although this study yielded
intriguing behavioral changes associated with a novel route of OT administration,
pharmacokinetic evaluation of OT penetrance was not included.

We therefore recently carried out a pilot study to modify the Parr nebulizer mask described
above for use in juvenile (2 years old) macaques raised in a naturalistic social environment
with no previous laboratory experience (Figure 1). Experimental procedures were developed
in consultation with the veterinary staff at the California National Primate Research Center
and performed in accordance with the University of California, Davis Institutional Animal
Care and Use Committee. Four juvenile monkeys (2 male and 2 female) were trained to
drink a fluid reward (i.e., yogurt, baby food, etc.) from a small tube embedded adjacent to a
Pari Baby Nebulizer that delivered OT (Sigma-Aldrich, St. Louis, MO) or saline placebo.
We adapted the mask design and guidelines established by Parr (4 cumulative minutes,
within a 5 min window) (Parr et al., 2013) to be more compatible with a population of
young, experimentally naive animals (4 cumulative minutes, within a 10 min window). A
series of positive reinforcement training techniques were utilized over several months to
reach a target mask exposure time of approximately 4-5 min for each 10-min session. OT
doses ranging from 11.5 to 46 1U were evaluated in pilot studies and cumulative drinking
time was quantified for each experiment as an index of OT exposure within the 10 min
window. Levels of OT in CSF were measured using commercially available OT ELISA kits
(Enzo Life Sciences, Farmingdale, NY) following previously established methods (Freeman
et al., 2016). Briefly, assays were performed following the manufacturer’s protocols. CSF
samples were not diluted prior to assay and no samples went through extraction prior to
assay. Limits of detection were 15.6-1,000 pg/ml. Values falling below or above the limits of
detection were set to 15.6-1,000 pg/ml, respectively. Sample OT CSF data from animals
exposed for 3—4 cumulative minutes at the highest dose (461U) are shown in Figure 2.
Although our pilot study of OT exposure in experimentally naive juvenile animals is
ongoing, our initial pharmacokinetic analysis has yielded inconsistent results across multiple
animals (both male and female), doses and seasons. To illustrate these inconsistencies, we
have selected CSF samples from two juveniles (1 male, 1 female) with comparable mask
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exposure times (Figure 2). It is plausible that 3-4 min cumulative mask time was not
sufficient or that respiration parameters and kinetics into the sinuses may be different in
juvenile macaques or that sex differences may influence OT responses. Individual variability
in CSF oxytocin levels has also been reported in adult female macaque monkeys following
intranasal and intravenous OT exposure, though the functional significance of this variability
is not well understood (Freeman et al., 2016). At this time, the majority of OT exposure
studies in macaque monkeys is not adequately powered to explore sex effects (Table 1), and
will require additional research. Given these inconsistencies experienced in our pilot dosing
studies we adapted our project to include younger monkeys (<6 mos) that can be hand held
for OT delivery (Figure 3), but present our juvenile pilot data to alert other investigators to
the challenges in delivering OT to experimentally naive juveniles without restraint.

6| CONCLUSION AND FUTURE DIRECTIONS

Assuming that pharmacological agents targeted at improving social behavior ultimately act
upon brain regions that underlie species-typical social behavior, it will be essential to
evaluate these compounds in a species with neural and behavioral social functions
homologous to humans. The nonhuman primate model system is experimentally poised to
provide insights into the anatomy, physiology, and behavioral effects of the OT system.
However, there are challenges in delivering OT to experimentally naive juveniles. It is
plausible that OT administration that utilizes some form of restraint may provide the most
experimental control and therefore the best penetrance of the CNS. However, restraint may
not be compatible with experimental designs that seek to study the effects of OT on more
naturalistic interactions with conspecifics, especially in juveniles 6-24 months of age. We
propose the following considerations for OT delivery: (i) physiological differences in
respiration between adult and juvenile monkeys may contribute to inconsistencies; (ii)
training juvenile animals reared in naturalistic social environments will require a significant
time commitment (i.e., months) and may not be compatible with experimental constraints;
(iii) once juveniles reach target cumulative drinking time, additional training may be
required to maintain a constant exposure; (iv) it may be necessary to employ training
techniques that prepare laboratory animals to cooperate with restraint (Bliss-Moreau &
Moadab, 2016) to obtain adequate OT exposure.
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FIGURE 1.
Juvenile macaques trained to drink from a masknebulizer apparatus
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FIGURE 2.

CSF OT levels from animals exposed for 3—4 cumulative minutes at the highest dose (46
IU). These juveniles were trained to reach a cumulative mask exposure of 4 min (240 s) over
a 10 min exposure period. CSF samples were collected 60 min post-exposure. Mask
exposure time is noted above each bar. Note that Subject #1 (male) reached 233 s OT
exposure, yet OT CSF levels decreased from saline while Subject #2 (female) reached only
198 s and demonstrated an increase in OT CSF compared to saline. Similar inconsistencies
were noted across multiple subjects, doses, and seasons
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FIGURE 3.
Infant macaques hand held during OT exposure (<6 mos of age)
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