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In Brief

A highly multiplexed CRISPRi screen uncovers gene-enhancer relationships at scale.

SUMMARY

Over one million candidate regulatory elements have been identified across the human genome, 

but nearly all are unvalidated and their target genes uncertain. Approaches based on human 

genetics are limited in scope to common variants and in resolution by linkage disequilibrium. We 

present a multiplex, expression quantitative trait locus (eQTL)-inspired framework for mapping 

enhancer-gene pairs by introducing random combinations of CRISPR/Cas9-mediated 

perturbations to each of many cells, followed by single-cell RNA sequencing (RNA-seq). Across 

two experiments, we used dCas9-KRAB to perturb 5,920 candidate enhancers with no strong a 
priori hypothesis as to their target gene(s), measuring effects by profiling 254,974 single-cell 

transcriptomes. We identified 664 (470 high-confidence) cis enhancer-gene pairs, which were 
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enriched for specific transcription factors, non-housekeeping status, and genomic and 3D 

conformational proximity to their target genes. This framework will facilitate the large-scale 

mapping of enhancer-gene regulatory interactions, a critical yet largely uncharted component of 

the cis-regulatory landscape of the human genome.

Graphical Abstract

INTRODUCTION

Consequent to an era of biochemical surveys of the human genome (e.g., Encyclopedia of 

DNA Elements [ENCODE]) and “common variant” human genetics (i.e., genome-wide 

association study [GWAS] and expression quantitative trait locus [eQTL] studies), we are 

awash in candidate regulatory elements and phenotype-linked haplotypes, respectively 

(ENCODE Project Consortium, 2012; MacArthur et al., 2017). Determining whether and 

how each candidate regulatory element is truly functional, as well as pinpointing which 

variant(s) are causal for each genetic association, will require functional characterization of 

vast numbers of sequences.

We and others have recently adapted cell-based CRISPR/Cas9 genetic screens to evaluate 

candidate regulatory sequences in their native genomic context (Canver et al., 2015; Diao et 

al., 2016, 2017; Fulco et al., 2016; Gasperini et al., 2017; Klann et al., 2017; Korkmaz et al., 

2016; Rajagopal et al., 2016; Sanjana et al., 2016). However, two aspects of these studies 
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limit their scalability. First, they focus on the regulation of a single gene per experiment, 

typically entailing the development of a gene-specific assay. Second, each cell is a vehicle 

for one CRISPR-mediated perturbation, with the specificity-conferring guide-RNAs 

(gRNAs) usually introduced via lentivirus at a low multiplicity of infection (MOI). With 

millions of candidate regulatory elements and ~20,000 regulated genes in the human 

genome, these limitations preclude the comprehensive dissection of the cis-regulatory 

architecture of even a single cell line.

Here, we introduce a framework (Figure 1A) designed to overcome both limitations. First, 

by using single-cell RNA sequencing (scRNA-seq) instead of gene-specific assays, one 

experiment can globally capture perturbations to gene expression (Adamson et al., 2016; 

Datlinger et al., 2017; Dixit et al., 2016; Hill et al., 2018; Jaitin et al., 2016; Xie et al., 2017), 

with no strong a priori hypothesis as to the target gene of each regulatory element tested. 

Second, by introducing gRNAs at a high MOI, each individual cell acquires a unique 

combination of perturbations against the isogenic background of a cell line. Introducing 

multiple perturbations per cell markedly increases power (Figure 1B). An association 

framework inspired by eQTL studies (Morley et al., 2004; Stranger et al., 2012) is used to 

map cis and trans effects by comparing gene expression in the subset of cells that contain a 

given gRNA to those that lack that guide. This strategy is analogous to conventional eQTL 

studies, but with individuals replaced by cells, variants replaced by unique combinations of 

gRNAs per cell to induce multiplex CRISPR-interference (CRISPRi), and tissue-level RNA-

seq replaced by scRNA-seq. However, unlike eQTL studies, the resolution of our screen is 

not constrained by linkage disequilibrium, nor is it limited to studying sites in which 

common genetic variants happen to exist. Although we recognize the imperfection of the 

analogy given that a reverse genetic screen using CRISPRi is far from equivalent to mapping 

the natural genetic variation that underlies QTLs, the fact that we were directly inspired by 

the eQTL framework led us to originally term this method “crisprQTL mapping.”

RESULTS

A Proof-of-Concept Multiplex Enhancer-Gene Pair Screen Targeting 1,119 Candidate 
Enhancers

To establish the feasibility of the assay formerly known as crisprQTL mapping, we targeted 

1,119 candidate enhancers in the chronic myelogenous leukemia cell line K562, with 

CRISPRi as our mode of perturbation. For CRISPRi, we used a nuclease-inactive Cas9 

tethered to the KRAB repressor domain to induce heterochromatin across an ~1–2 kb 

window around a gRNA’s target site (Thakore et al., 2015). The 1,119 candidate enhancers 

were all intergenic DNase I hypersensitive sites (DHSs) representing various combinations 

of H3K27 acetylation, p300, GATA1, and RNA Pol II binding (Figure 2A). Candidate 

enhancers were required to fall within the same toplogically associated domain (TAD) as at 

least one gene from the top decile of K562 expression and were collectively distributed 

across 510 TADs on every chromosome (Rao et al., 2014). 5,611 of the 12,984 genes 

expressed in K562 cells fell within 1 Mb of at least one candidate enhancer (K562-expressed 

genes defined as those observed in at least 0.525% of cells profiled in this pilot experiment).
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Two gRNAs were designed to target each candidate enhancer. Additional pairs of gRNAs 

served as positive controls (targeting the transcription start sites [TSSs] of genes sampled 

from the top decile of K562 expression, or alternatively hyper-sensitivity sites of the α-

globin locus control region [LCR]) and negative controls (50 non-targeting controls or 

“NTC” that target nowhere or in a gene desert) (Table S1A).

This gRNA library was cloned into the lentiviral CROP-seq vector modified to include a 

CRISPRi-optimized backbone (Chen et al., 2013; Datlinger et al., 2017; Hill et al., 2018), 

and K562 cells were transduced at a high MOI (Figure 2B). After 10 days to allow for 

effective CRISPRi, the transcriptomes of 47,650 single cells were profiled. With a targeted 

amplification protocol (Adamson et al., 2016; Dixit et al., 2016; Hill et al., 2018), we 

identified a median of 15 ± 11.3 gRNAs per cell (Figure 2C). Each candidate enhancer or 

control was targeted in a median of 516 ± 177 cells (Figure 2D). For each targeted element, 

we partitioned the 47,650 cells based on whether they did or did not contain gRNA(s) 

targeting it. We then tested for a reduction in the expression of each K562-expressed gene 

within 1 Mb of that element (Figure 2B) (Stranger et al., 2012). We also tested the 50 NTCs 

against all K562-expressed genes within 1 Mb of any targeted candidate enhancer. For 

perspective, with a “one gRNA per cell” framework, achieving equivalent power would 

require profiling the transcriptomes of ~715,000 single cells.

A quantile-quantile plot showed an excess of significant associations involving the targeting 

of candidate enhancers relative to NTC controls (Figure 2E). We defined a 3.5% empirical 

false discovery rate (FDR) threshold based on the NTC tests as they are subject to the same 

sources of error as the element-targeting gRNAs. At this threshold, 94% (357 of 381) of 

TSS-targeting positive controls repressed their associated genes, as did all β-globin LCR 

controls (examples shown in Figure 2F). Additionally, we re-identified a known enhancer 

3.6 kb upstream of GATA1 (Fulco et al., 2016).

At this same threshold, targeting of 11% of candidate enhancers (128 of the 1,119) repressed 

1+ gene(s) within 1 Mb. As there were 13 candidate enhancers whose targeting impacted 

more than one gene (Figure S1A), this analysis yielded a total of 145 enhancer-gene pairs 

(Table S1B). Of the 105 downregulated target genes (Figure S1B), 26 were impacted by 

targeting of more than one of the 128 candidate enhancers (Figure S1A).

We examined the characteristics of paired enhancers whose targeting significantly impacted 

expression of 1+ genes in cis. We found paired candidate enhancers to be enriched for high 

chromatin immunoprecipitation sequencing (ChIP-seq) peak strength (based on average 

enrichment in ChIP-seq peak region) for enhancer-associated histone modifications 

(H3K27ac, logistic regression p value = 4e 5, candidate enhancers in the top quintile were 

1.4-fold more likely to be paired than those in the bottom quintile), certain co-activators 

(p300, p value = 4e–16, 1.1-fold) and lineage-specific transcription factors (TFs) (GATA1 p 

value = 2e–7, 1.4-fold; GATA2 p value = 3e–10, 1.5-fold; SMAD1 p value = 1e–6, 1.4-fold; 

TAL1 p value = 6e–6, 1.1-fold; CCNT2 p value = 3e–7, 1.4-fold), whereas RNA Pol II and 

H3K4me1 were not associated (Figure S1C). Using these features, as well as average 

enrichment within the DHS and whether each had been previously validated in vivo (Visel et 

al., 2007), we trained a multivariate logistic regression classifier to distinguish the 128 
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paired candidate enhancers from the 991 candidate enhancers for which we did not identify 

a target gene, achieving an AUPR of 0.31 (area under precision-recall curve; median from 5-

fold cross validation; Figure S1D).

A Scaled Multiplex Enhancer-Gene Pair Screen Targeting 5,779 Candidate Enhancers

To demonstrate this approach at a substantially greater scale, we performed a second 

experiment targeting five times as many candidate enhancers (n = 5,779). First, two-thirds of 

these (n = 3,853) were new DHSs chosen by the classifier trained on the first experiment 

(Figures 3A and S1D). Second, as this set may be biased toward annotations used to select 

the initially targeted candidate enhancers (Figure 2A), we also targeted 948 exploratory 

DHSs chosen independent of the model (see STAR Methods). Third, we re-targeted 978 of 

the 1,119 initially targeted pilot candidate enhancers, including the aforementioned 

candidate enhancers paired with target genes in the pilot. Altogether, candidate enhancers 

targeted in this scaled experiment were within 1 Mb of 10,560 of 13,135 K562-expressed 

genes. As previously, we designed two gRNAs per candidate enhancer. However, to evaluate 

whether poorly efficacious gRNAs might contribute to false negatives, we designed an 

additional two gRNAs for 377 of the 978 re-targeted candidate enhancers (Figure 3B). 

Finally, in addition to gRNA pairs targeting 5,779 candidate enhancers, we included the 

same positive and negative control gRNA pairs targeting 381 TSSs, the globin LCR, and 50 

NTC pairs (Table S2A).

K562 cells were transduced at an even higher MOI than in the proof-of-concept experiment. 

We profiled the transcriptomes of 207,324 single cells and identified a median of 28 ± 15.3 

gRNAs per cell (Figure 3C). Each candidate enhancer was targeted in a median of 915 ± 280 

single cells (Figure 3D). Testing for associations as previously, a quantile-quantile plot again 

showed an inflation of significant associations involving the targeting of candidate enhancers 

(Figure 3E). Using the NTCs to set a more inclusive empirical FDR of 10%, 97% (369 of 

381) of TSS-targeting positive controls repressed their associated genes, as did all β-globin 

LCR controls. At this same threshold, of the 5,779 candidate enhancers, we identified 600 as 

repressing 1+ gene(s) within 1 Mb. These included 397/3,853 model-selected candidate 

enhancers (10%), 35/948 systematically sampled exploratory DHS (4%), and 168/978 

previously targeted candidate enhancers (17%). As targeting of 53/600 candidate enhancers 

downregulated more than one gene (Figure 3F), we collectively identified a total of 664 

enhancer-gene pairs (Table S2B). As 113 genes were downregulated by targeting of more 

than one candidate enhancer, these pairs involved 479 target genes (Figure 3G). These 

ranged in effect size from −1.4% to −97.5% target gene repression (Figure 3H).

To evaluate reproducibility, we compared our results for the 978 candidate enhancers 

targeted in both experiments. Applying the same empirical FDR threshold of 10% to each 

dataset, 187/978 were identified as paired candidate enhancers in the pilot experiment, and 

168/978 as paired candidate enhancers in the scaled experiment. Of these, 105 were 

identified in both experiments (hypergeometric test of overrepresentation p value 7e–45; 3.3-

fold enriched over expectation). The pairs identified in both experiments had stronger effect 

sizes (median 25% versus 13% repression), better correlated effect sizes (Spearman’s rho for 
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% repression: 0.82 versus 0.13; Figure S2A), and involved more highly expressed genes 

(median0.90 versus 0.63 UMIs per cell), than pairs identified in only one experiment.

As noted above, an additional pair of gRNAs for 377/978 re-targeted candidate enhancers 

were included in this experiment, to facilitate evaluation of the extent to which poorly 

efficacious gRNAs might contribute to false negatives. In the scaled experiment at a 10% 

empirical FDR, 109/377 of the original gRNA pairs and 119/377 of the new gRNA pairs 

mediated enhancer-gene pairs. Of these, 84 were directed at the same candidate enhancers, a 

highly significant overlap (hypergeometric test of overrepresentation p value 4e–33; 2.4-fold 

enriched over expectation). Furthermore, the effect sizes on the most highly repressed genes 

for gRNA pairs targeting the same candidate enhancer were well-correlated (Spearman’s rho 

for % repression: 0.73; Figure S2B). Overall, this analysis suggests that targeting candidate 

enhancers with more than two gRNAs could modestly increase our sensitivity.

Due to the noise from variability in expression levels, effect sizes, and gRNA quality, we 

defined a high-confidence subset of reproducible enhancer-gene pairs as those identified in 

both experiments at the 10% empirical FDR (112 pairs; 359/381 [94%] of targeted TSSs 

also met this criteria), as well as those internally reproducible between the 2 independently 

targeting gRNAs for candidate enhancers only tested in the scaled experiment (358 pairs; 

337/381 [88%] of targeted TSSs also met this criteria). Putting these sets together, we 

annotated 470 enhancer-gene pairs as high-confidence (Table S2B), involving 441 candidate 

enhancers (Figure S2C) and impacting expression of 353 target genes. These ranged in 

effect size from −7.9% to −97.5% (Figure 3H). We use this high-confidence subgroup for all 

summary analyses described below, unless otherwise noted. Of note, 24 candidate enhancers 

are paired with multiple target genes (Figure S2D); it is possible that some of these pairings 

represent indirect effects (e.g., if a gene that is the primary target of the enhancer is involved 

in the regulation of the other gene).

Replication or Validation of 22 Selected Enhancer-Gene Pairs in Singleton Experiments

We next sought to individually replicate 15 enhancer-gene pairs with a range of effect sizes 

(−10% to −81%) and 6 “null” candidate enhancers not paired with any target gene (Table 

S3A). We transduced K562 cells separately with small pools of gRNAs targeting individual 

candidate enhancers, and investigated the impact on gene expression via bulk RNA-seq 

(Table S3A). For 12/15 replication experiments targeting candidate enhancers associated 

with downregulation of a target gene, the effect sizes were similar in magnitude and 

direction of effect (Figures 4A–4D and S5). For all 9 experiments predicted to cause >30% 

repression, replication effects were also significant in a test of differential expression (cis 
adjusted p value <0.1). Of the 6 lines targeting a “null” candidate enhancer, none 

significantly decreased expression of a gene located within 1 Mb of the target (cis adjusted p 

values >0.1).

Although the field often refers to singleton independent re-testing via CRISPRi as 

“validation,” it is a recapitulation of the modality of perturbation of the screen and perhaps 

better classified as another form of replication. Therefore, we also performed a more 

stringent validation by generating 3+ monoclonal homozygous deletion lines for each of 3 

enhancers (effect size in scRNA-seq screen: e-NMU = −81%, e-CITED2 = −35%, e-GLUL 
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= −21%; Figure S4; Table S3B). All three selected enhancers are quite distal from the gene 

whose expression they regulate (>50 kb). These homozygously deleted lines all had the 

expected and magnitude of direction of effect (Figure 4E–4G), indeed with stronger effect 

sizes than seen by CRISPRi perturbation in the scRNA-seq screen (effect size with deletion: 

e-NMU = −100%, e-CITED2 = −57%, e-GLUL = 67%; Table S3B).

In our validations of the NMU candidate enhancer (“e-NMU”), we also applied RNA 

flowFISH (Choi et al., 2018) and again observed decreased NMU expression in singleton 

CRISPRi populations targeting NMU’s TSS (−79% less NMU than untreated cells) and e-

NMU (−73% less NMU, Figure 4H, ii–iii). We also used flowFISH to phenotype a 

heterogeneous pool of cells that harbored a mix of full, partial, or no deletions of e-NMU, 

generated by transient transfection of flanking pairs of gRNAs. 12% of the cells showed 

reduced NMU expression in comparison to untreated cells (Figure 4H, iv), which is in-line 

with expected full deletion efficiency (Gasperini et al., 2017). Cells were sorted into bins of 

low, medium, or high NMU expression. PCR of the e-NMU locus revealed enrichment of 

the full deletion in the low and medium NMU bins, whereas full deletion was rarer in the 

high NMU bin (Figure S4B). To further dissect e-NMU, we additionally transfected with 19 

gRNAs interspersed every ~100 bp across e-NMU to generate deletions of diverse lengths 

and locations, inducing reduction of NMU expression in 35% of cells compared to untreated 

(Figure 4H, v). PCR of e-NMU again showed a similar enrichment of longer deletions in the 

cells with lower NMU expression (Figure S4C).

In summary, of the high confidence pairs that we re-tested by singleton CRISPRi and/or 

singleton CRISPR-mediated deletion, 13/16 matched with respect to both their direction and 

magnitude of effect size, whereas 3/16 failed to validate. This false-positive rate is consistent 

with the 10% FDR that we used to assign a threshold for calling pairs (p value on whether 

3/16 disagrees with 10% FDR = 0.21).

Selected Examples of Enhancer-Gene Pairs

We highlight four of the enhancer-gene loci in Figure 5. An “e-” prefix is used to denote 

candidate enhancers that we targeted in singleton replication experiments. In the scaled 

experiment, we targeted four candidate enhancers across the region upstream of PRKCB. 

The furthest of these (Figure 5A, i; 50 kb upstream) did not have an effect, but candidate 

enhancers 32, 14, and 9 kb upstream of the TSS were associated with repression of PRKCB 
(Figure 5A, ii–iv). The strongest of these, located 14 kb upstream, was also targeted and 

replicated in both the pilot and singleton experiments (“e-PRKCB”, Figure 4A and Figure 

5A, iii).

In the pilot, scaled, and singleton replication experiments, we targeted only one candidate 

enhancer within 1 Mb of PTGER3 (“e-PTGER3,” Figure 4B and Figure 5B), located 371 kb 

downstream of the PTGER3 TSS. In each of the three experiments, targeting of e-PTGER3 

consistently repressed expression of PTGER3.

We targeted three candidate enhancers in the region upstream of GYPC, a human 

erythrocyte membrane protein. Targeting of candidate enhancers 4.5 kb upstream (Figure 

5C, iii) and 10 kb (“e-GYPC”, Figure 4C and Figure 5C, ii) upstream of GYPC’s TSS 
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resulted in its repression in the scaled experiment. Interestingly, a candidate enhancer so 

close to e-GYPC as to likely be unresolvable from it by CRISPRi (Figure 5C, i) did not 

result in repression of GYPC in the scaled experiment, potentially attributable to poor gRNA 

quality or another source of false negatives.

Targeting of multiple candidate enhancers decreased expression of the same gene, NMU, 

which encodes neuromedin U, a neuropeptide that plays roles in inflammation as well as 

erythropoiesis (Gambone et al., 2011). One candidate enhancer was associated with light 

repression of NMU (Figure 5D, i; located 30.5 kb upstream of the NMU TSS). An 

additional four candidate enhancers were located in close proximity to one another, but 

nearly 100 kb upstream of the NMU TSS (“e-NMU”, Figure 4D and Figure 5D, ii–v; located 

87, 93.4, 94.1, and 97.6 kb upstream). Because of their proximity, these closely located 

candidate enhancers internally replicate e-NMU within the scaled experiment, in contrast to 

the neighboring candidate enhancers of e-GYPC.

Insights into the Properties of Human Enhancers and Their Target Genes

Distance between Paired Enhancers and Promoters—We find that of the class of 

enhancers surveyed here (nonintronic, unbuffered by other enhancers), paired enhancers are 

separated from the TSS of their target genes by a median distance of 24.1 kb (Figure 6A, top 

row). Note that this analysis is restricted only to high-confidence pairs that fall upstream of 

their target genes (n = 354), to avoid bias from the length of the gene body consequent to the 

fact that we avoided targeting intronic candidate enhancers for which CRISPRi might 

directly inhibit transcription. Upstream and downstream enhancers do not exhibit large 

differences in their effect size distributions (Figure S2E). Given that we tested for 

associations against all genes within 1 Mb of each candidate enhancer (Figure 6A, fourth 

row; median distance of 440.2 kb, similarly restricted to upstream tests), this supports a very 

strong role for proximity in governing enhancer-promoter choice. Nonetheless, 153/770 

(33%) of enhancer-gene pairs involved skipping of at least one closely located TSS of 

another K562-expressed gene (Figure 6B). Interestingly, low-confidence enhancer-gene 

pairs (i.e., the subset of the 600 that were not high-confidence and also fall upstream; n = 

127) were also enriched for proximity to their target genes, suggesting that a substantial 

proportion of these are bona fide enhancers (Figure 6A, second row; median distance of 45.0 

kb).

Of our 359 “positive control” TSSs whose targeting successfully repressed the expected 

gene in both experiments, 35 reduced expression of 1+ additional genes (45 apparent 

promoter-promoter relationships in total). 15 of these 45 involved overlapping promoters 

(TSSs within 1 kb), such that the observed effect of CRISPRi is likely direct. As for the 

remaining 30, one possibility is that these represent examples of promoters acting as 

enhancers, as recently reported (Diao et al., 2017; Fulco et al., 2016). Additionally, as 

repressive epigenetic effects may spread a few kilobases from the target site, it is possible 

that CRISPRi of promoters may be silencing proximal enhancers as well. However, these 30 

are largely not enriched for proximity to affected genes (Figure S5A; median distance of 

405.3 kb, similarly restricted to upstream tests), in contrast with enhancer-gene pairs 

(median distance = 24.1 kb). We therefore hypothesize that these are more likely consequent 
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to trans effects of repressing the primary target of these TSS-targeting gRNAs. In other 

words, rather than these gRNA-targeted promoters acting as noncoding regulatory elements 

of other genes, the reduction in protein levels of the targeted gene may secondarily affects 

the expression of other genes.

Characteristics of Target Genes—The 353 genes included in 1+ 470 high-confidence 

enhancer-gene pairs had several notable characteristics. First, their expression levels are 

distributed similarly to the full set of 10,560 genes against which we tested (Figure 6C), 

suggesting we are reasonably well-powered to detect regulatory effects on even modestly 

expressed genes. Second, housekeeping genes were underrepresented, relative to all tested 

genes (hypergeometric test p value = 3e–5 and 2.1-fold depleted using the housekeeping 

gene list of Eisenberg and Levanon [2013]; hypergeometric test p value = 2e–6 and 3.9-fold 

depleted using the housekeeping gene list of Lin et al. [2017]). Similar depletions of 

housekeeping genes are observed when we instead compare paired target genes to the K562-

expressed genes most proximal to tested candidate enhancers. Although these analyses 

support the view that a prevailing characteristic of housekeeping genes may be a dearth of 

distal regulatory elements (Ganapathi et al., 2005; Gasperini et al., 2017), we cannot fully 

rule out that the possibility that this result is influenced by our choice of candidate enhancers 

to target. Finally, paired target genes were enriched for genes with roles in leukocyte 

migration and differentiation, consistent with distal enhancers shaping the expression of 

K562-specific genes (Table S4A).

Characteristics of Paired Enhancers—We also examined the characteristics of the 

candidate enhancers for which targeting significantly impacted expression of 1+ genes in cis. 

First, as compared with the full set of 5,779 candidate enhancers targeted in either or both 

experiments, we tested if the 441 high-confidence candidate enhancers were enriched for 

strong peaks in 169 K562 ChIP-seq datasets (ENCODE Project Consortium, 2012). We 

identified 87 that were significantly enriched (threshold of an adjusted p value <0.005), but 

the eight most significant were co-activators (p300 logistic regression p value = 1e–46, 

candidate enhancers in the top quintile were 1.8-fold more likely to be paired than those in 

the bottom quintile; BRD4 p value = 2e–33, 1.6-fold), an enhancer-associated histone 

modification H3K27ac (p value = 8e–37, 1.6-fold), the MYC activator TBL1XR1 (p value = 

2e–34, 1.5-fold), and line-age-specific TFs (TAL1 p value = 2e–33, 1.6-fold; GATA2 p value 

= 1e–31, 1.5-fold; DPF2 p value = 5e–31, 1.5-fold; RNF2 p value = 2e–33, 1.5-fold; Figure 

6D). Other expected enhancer-associated marks also exhibited significant enrichment 

(CCNT2 p value = 4e–21, 1.3-fold; H3K4me1 p value =1e–19, 1.8-fold; MYC p value = 2e–

12, 1.3-fold; Table S4B). However, many of these features are correlated, and BRD4, 

H3K4me1, TRIM24, p300, H3K27ac, ETS1, and ZNF274 were the only significant 

predictors in a multivariate logistic regression (p value <0.01, Table S4B). Of note, high 

conservation as measured by median phyloP scores (Pollard et al., 2010) was not enriched in 

these candidate enhancers as compared to all tested candidate enhancers (independent 

logistic regression p values >0.5).

Second, we examined whether paired enhancers were more likely to intersect with K562 

super-enhancers. Overall, 474 of the 5,779 candidate enhancers that we tested fell within 65 
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K562 super-enhancers (Cao et al., 2017); however, a much higher proportion of high-

confidence paired enhancers belonged to this set (102/441). Several super-enhancers 

contained multiple targeted enhancers that were paired with the same gene. More 

specifically, 20 genes were linked with two candidate enhancers, and 6 genes were linked 

with three or four candidate enhancers, that were located within the same super-enhancer 

(Table S4C).

Third, we evaluated enrichment of TF motifs in either our associated enhancers or the 

promoters of their target genes. Motifs for the known blood TFs KLF-1, −5, −6, −15, 

leukemogenesisrelated SALL4, and the MYC-interacting ZN281 were enriched in the 

promoters of the inclusive set of 479 paired-target genes, as compared to the promoters of all 

genes within 1 Mb of a tested candidate enhancer (Table S4D). Similarly, motifs for a 

largely distinct set of known blood TFs (TAL1, KLF-1, −3, −4, −5, −8, and GATA-1, −2, −3) 

and AP2C were enriched in the inclusive set of 600 paired enhancers, as compared to the 

overall set of 5,779 candidate enhancers tested (Table S4D).

Pairs of Transcription Factors Act Together across Enhancer-Gene Pairs—To 

investigate whether there was any discernible logic underlying why particular enhancers 

were associated with particular promoters, we next sought to identify pairs of TFs that are 

“co-enriched” in the inclusive set of 664 enhancer-promoter pairs(i.e., they occur across 

pairs at a higher frequency than expected by chance given their background frequency in 

each category). We identified 6 TF pairs whose sequence motifs were co-enriched in this 

way, suggesting potential interactions (Table S4E). For example, presence of the NR2C2 

motif (implicated in regulation of the globins [Tanabe et al., 2007]) in a paired promoter was 

associated with presence of a KLF1 or RXRA motif in the corresponding paired enhancer. 

On the other hand, presence of the GATA3 motif in a paired promoter was associated with 

the absence of a KLF1 motif in the corresponding paired enhancer.

We also explored such pairings via ChIP-seq data. Although ChIP-seq peaks often reflect 

indirect binding, such secondary partners might still play a role in the restriction of 

enhancer-promoter interactions. We identified 24 TF pairs that are “co-enriched” in 

enhancer-promoter pairs (Table S4E). Unfortunately, none of the TF pairs identified in either 

analysis had corresponding ChIP-seq datasets or high quality consensus motifs for both TFs 

involved in the pair, preventing cross-confirmation between the two modalities of analysis.

Comparison of Enhancer-Gene Pairs to Hi-C-Based Measurements of Physical 
Proximity—We sought to evaluate whether our enhancer-gene pairs are enriched for 

physical proximity as measured by the global chromo-some conformation mapping 

technique Hi-C. To control for the dominant effects of genomic distance and TADs in Hi-C 

data-sets, we ranked the Hi-C contact frequencies in K562 cells (Rao et al., 2014) for the 

71% of the enhancer-gene pairs that fell in the same TAD (333/470 high-confidence pairs) 

against all other possible interactions at similar distances within the same TAD (median 66 

other genomic-loci pairs, range 6 to 260, Figures S5B and S5C). Upon plotting the fractional 

ranks of high-confidence pairs, we found their contact frequencies to be strongly enriched at 

the highest ranks (Kolmogorov-Smirnov [K-S] test against a uniform distribution p value 

<2e 16, Figure 6E). To ensure that this enrichment was not an artifact of paired enhancers or 
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genes interacting more frequently with all neighboring loci (as in FIREs [Schmitt et al., 

2016], we repeated this analysis twice but shuffled the genomic loci paired to either the 

enhancers or genes (keeping these shuffled pair sets’ overall distance distributions the same 

as the original enhancer-gene pair set’s distance distribution). This did not result in the same 

enrichment as seen in the high confidence pair distribution (K-S test of high confidence 

enhancer-gene pair versus enhancer-pair shuffling p value 1e–9; high confidence enhancer-

gene pair versus TSS-pair shuffling p value 2e–7), consistent with more frequent looping 

specifically between the high confidence enhancer-gene pairs (Figure 6E). Although 

enriched for proximity, we note that only a minority of our hits are called as proximate to 

their target genes based on this analysis; as such, many enhancer-gene pairs would not have 

been identified if we had limited tested candidate enhancers to those physically proximate to 

a promoter according to Hi-C or related data.

CRISPRi Is Highly Multiplexable within Cells—To our knowledge, prior to this study, 

it was unknown whether extensively multiplexing gRNAs within a single cell would dilute 

the efficacy of CRISPRi. To evaluate this, we conducted a biological replicate of the pilot 

experiment, targeting the same 1,119 candidate enhancers but at a low MOI. From this 

experiment, we profiled the transcriptomes of 41,284 cells and identified a median of 1 ± 1.6 

gRNAs per cell (Figure 7A). Each perturbation was only seen in a median of 43 ± 16 cells, 

as compared with 516 ± 177 cells in the high MOI pilot experiment (Figure 7B). At a 10% 

empirical FDR, only 316 TSSs and 69 enhancer-gene pairs were identified in the low MOI 

experiment, as compared with 359 TSSs and 226 enhancer-gene pairs in the high MOI pilot 

experiment, validating the substantial increase in power resulting from multiplexed 

perturbation (Figure 1B). As the same 381 TSS controls were targeted in the low MOI, pilot, 

and scaled experiments, we compared the degree of repression conferred by CRISPRi at 

increasing MOI (median 1 versus 15 versus 28 gRNAs per cell), and found them to be well-

correlated (Spearman’s rho’s ranging from 0.73 to 0.87; Figure 7C). On average, the degree 

of repression conferred by targeting a TSS in both high MOI experiments was only ~6% less 

than by targeting it in the low MOI experiment (Figure 7D). Similarly, for candidate 

enhancers paired in the scaled experiment (10% empirical FDR) that were also targeted in 

the low MOI and pilot experiments, effect sizes were well correlated (Spearman’s rho’s 

ranging from 0.54 to 0.70; Figure 7C), and effect sizes ratios clustered around 1 (Figure 7D). 

Overall, these results suggest that multiplexing gRNAs within individual cells, even to MOIs 

of ~28, does not dilute the efficacy of CRISPRi.

DISCUSSION

Understanding the regulatory landscape of the human genome requires the validation and 

identification of target genes for the vast numbers of candidate enhancers that have been 

nominated by biochemical marks or that reside within haplotypes implicated by GWAS or 

eQTL studies. Our multiplexed enhancer-gene pair screening method has the potential to 

help address this challenge. In the scaled experiment, we evaluated 78,776 potential cis 
regulatory relationships involving 5,779 candidate enhancers and 10,560 expressed genes. In 

contrast, nine recently published CRISPR screens of noncoding sequences cumulatively 

studied regulatory effects on a total of 17 genes (Canver et al., 2015; Diao et al., 2016, 2017; 
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Fulco et al., 2016; Gasperini et al., 2017; Klann et al., 2017; Korkmaz et al., 2016; 

Rajagopal et al., 2016; Sanjana et al., 2016). By delivering a median of 28 perturbations to 

each of 207,324 cells, this experiment was powered equivalently to a “one gRNA per cell” 

experiment profiling 5.8 million single cell transcriptomes. Of note, one recent study used 

scRNA-seq as a readout for the effects of CRISPR-based perturbations of 71 candidate 

regulatory elements on ~100 genes in seven genomic regions (Xie et al., 2017). However, its 

power and scope was limited by a low MOI (Figure 1B) and a gRNA barcoding strategy that 

suffers from a ~50% rate of template switching (Hill et al., 2018; Xie et al., 2018).

For future iterations of target prioritization for multiplexed enhancer-gene pair screening, 

several characteristics of our identified enhancer-gene pairs are important to keep in mind. 

Foremost, although a wide range of effect sizes (7.9% to97.5% for the 470 high-confidence 

pairs, Figure 3H) were observed on genes with a broad range of expression levels (0.0058 to 

313 UMIs/cell, Figure 6C), effect sizes were correlated with expression levels (Spearman’s 

rho 0.53; Figure S5D). This is likely consequent to power, as small effects are more 

challenging to detect on lowly expressed genes. Additionally, we note that although we 

identified many genomic features that were significantly correlated with the likelihood of 

belonging to an identified pair, a pilot-trained classifier informed by biochemical marks did 

not appreciably increase our hit rate in the at-scale screen. Furthermore (1) 29% of 

enhancers did not fall within the same TAD as their target gene, (2) although enriched for 

proximity in 3D space as measured by Hi-C, the majority of enhancer-gene pairs are not 

identified as contacts in such data-sets, and (3) although enriched for sequence-level 

proximity, one-third of enhancer-gene pairs involved skipping of at least one closely located 

TSS of another K562-expressed gene. These observations underscore the difficulty of the 

prediction task, and we recommend that future screens do not overly bias themselves toward 

looking under the lamppost until additional examples accrue and the rules of mammalian 

gene regulation are better understood.

Although it may be surprising that cis changes in gene expression were identified for only 

~10% of the candidate enhancers tested here, there are several potential caveats to bear in 

mind. First, previous studies have identified shadow enhancers acting to mask the effects of 

perturbing individual enhancers (Hong et al., 2008), although a genome-wide survey of such 

enhancer redundancy has yet to be conducted. To investigate such interactions more 

thoroughly, future iterations of our method could randomly distribute programmed pairs of 

multiplexed enhancer perturbations per locus. Second, other technical caveats include (1) not 

all enhancers may be susceptible to dCas9-KRAB perturbation, (2) gRNAs may be variably 

effective in targeting enhancers (Figure S2B), (3) some enhancers required for the initial 

establishment rather than maintenance of gene expression could be missed in a screen in a 

stable immortalized cell line, and (4) we did not comprehensively survey the noncoding 

landscape surrounding each gene, and the marks we used to define candidate enhancers may 

be excluding some classes of distal regulatory elements. These caveats are respectively 

addressable in the future by using other epigenetic modifiers or nuclease-active Cas9, by 

using more gRNAs per candidate enhancer, by combinatorial perturbation of selected loci 

(Xie et al., 2017), by using cell models of differentiation, and by densely tiling selected loci 

with perturbations.
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Nonetheless, the fact that our paired candidate enhancers are predicted by the strength of 

enhancer-associated marks (e.g., H3K27ac, p300) supports the assertion that we are 

identifying bona fide enhancers and simultaneously weakens the case for elements that were 

negative. Our study provides new insights into key properties of human enhancers, e.g., the 

distribution of distances between at least some types of enhancers (i.e., unbuffered, 

upstream) and their target genes. A full understanding of the precise rules governing 

enhancer-promoter choice is a topic of great interest and will be facilitated by the 

identification of more enhancer-gene pairs.

A limitation of enhancer-gene pair screening as implemented here relates to the resolution of 

CRISPRi. In the future, this can potentially be improved upon by adapting enhancer-gene 

pair screening to use single or pairs of gRNAs with nuclease-active Cas9 to disrupt or delete 

candidate enhancers at the sequence level. A separate concern is whether high MOI 

transduction is inducing a cellular inflammatory response, and therefore biasing discovery. 

However, although some genes with roles in inflammation are among our paired target genes 

(e.g., NMU, IL6), we only observed pathway-level enrichment of one immune-system 

related pathway (Table S4A). Moreover, the effect sizes observed in our high MOI versus 

low MOI experiments were well correlated.

To date, ENCODE has cataloged over 1.3 million human candidate regulatory elements 

based on biochemical marks (http://screen.umassmed.edu/), while GWAS have identified 

over 75,000 unique haplotype-trait associations (https://www.ebi.ac.uk/gwas/). Validating 

candidate elements, fine-mapping of causal regulatory variants, and identifying the target 

genes of both enhancers and regulatory variants, represent paramount challenges for the 

field. Given the scale of the problem, we anticipate that the multiplex, genome-wide 

framework presented here for mapping gene regulation can help overcome these challenges.

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Jay Shendure (shendure@uw.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines and Culture—K562s cells are a pseudotriploid ENCODE Tier I 

erythroleukemia cell line derived from a female (age 53) with chronic myelogenous 

leukemia (Zhou et al., 2017). K562 cells expressing dCas9-BFP-KRAB (Addgene #46911, 

polyclonal) were a gift of the Bassik lab, grown at 37°C, and cultured in RPMI 1640 + L-

Glutamine (GIBCO) supplemented with 10% fetal bovine serum (Rocky Mountain 

Biologicals) and 1% penicillin-streptomycin (GIBCO). K562s were authenticated by bulk/

single-cell RNA-seq and visual inspection.

HEK293Ts (a human embryonic kidney female cell line) used for housemade virus 

production were cultured at 37°C in DMEM also supplemented with 10% fetal bovine serum 

and 1% penicillin-streptomycin. HEK293Ts were authenticated by visual inspection.
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METHOD DETAILS

gRNA-library design

Note about terminology used below:  A gRNA-group is defined as all the gRNAs that are 

targeting the same candidate enhancer or positive control site. To note, all novel TSS and 

candidate enhancer targeting gRNA-groups are referred to as “perturbative gRNA-groups,” 

whereas all others are referred to as “control gRNA-groups.”

Pilot Library - 1,119 candidate enhancers as detailed in Table S1A:

Picking candidate enhancer regions: K562 DNase-seq narrowPeaks (ENCSR000EKS) < 1 

Kb away from any gene (GENCODE March 2017 v26lift37) were bedtools-intersected 

(Quinlan and Hall, 2010) with K562 Hi-C domains (Rao et al., 2014) that contained at least 

one of the top 10% most highest expressed genes in a previously generated 6,806 single-cell 

K562 dataset. The remaining regions were largely taken from intersections with K562 

GATA1 ChIP-seq narrowPeaks (ENCSR000EFT, lifted to hg19), H3K27ac ChIP-seq 

narrowPeaks (ENCSR000AKP, lifted to hg19), RNA Pol II ChIP-seq narrowPeaks 

(ENCSR000AKY), and EP300 ChIP-seq narrow-Peaks (ENCSR000EHI) (Figure 2A). Ten 

further sites were handpicked and do not overlap either of these four marks.

Candidate enhancer gRNAs: NGG-protospacers within these candidate enhancers were 

scored using default parameters of FlashFry (McKenna and Shendure, 2018), and the two 

top-quality-scoring gRNA per region were chosen as spacers to be used in the gRNA library 

(scores prioritized by Doench2014OnTarget > Hsu2013 > Doench2016CDFScore > 

otCount).

TSS positive control gRNAs: 381 genes were randomly sampled from the highly-expressed 

genes within the same Hi-C domains (as described above) and 2 gRNA were chosen per 

gene from spacers with the best empirical and predicted scores of the hCRISPRiv2 library 

(Horlbeck et al., 2016). To note - these spacers are designed as 19 bp, rather than the full 20 

of the spacers used in the rest of our gRNAs.

NTC gRNAs: 50 scrambled-sequence spacers with no targets in the genome and 11 

protospacers targeting 6 gene-devoid regions of the genome (hg19 chr4:25697737–

25700237, chr5:12539119–12541619, chr6:23837183–23839683, chr8:11072736–

11075236, chr8:23768553–23771053, chr9:41022164–41024664) were chosen as evaluated 

by Benchling’s CRISPR tool. These were randomly paired to create a gRNA group. More 

were chosen from 6 random regions of the hg19 genome (chr4:25697737–25700237, 

chr5:12539118–12541619, chr6:23837183–23839683, chr8:11072736–11075236, 

chr8:23768553–23771053, chr9:41022164–41024664) using FlashFry (McKenna and 

Shendure, 2018) to total 50 targeting these gene-devoid regions of the genome. A further 39 

NTCs were sampled from those recommended by Horlbeck et al. (2016). A gRNA to the 

CAG promoter was additionally included as an internal control (labeled “cag_promoter” in 

Table S1A and Table S2A, but excluded from analysis for simplicity).
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Distal enhancer positive control gRNAs: 15 gRNAs targeting the HBE1 TSS, and HS1–4 of 

the Globin LCR were chosen as validated from Klann et al. (2017) and Xie et al. (2017). 

These were manually paired based on their target sites to create gRNA-groups.

Note about Pilot Library:  Our initial FlashFry quality annotations when designing the 

pilot experiment did not label a small number of protospacers with perfect repeat off-targets, 

permitting their inclusion in our library (81 of 2,238 spacers ordered in the pilot library; only 

9 gRNA-groups with both spacers affected). gRNA-groups with an impacted spacer were 

rare in our 145 significant enhancer-gene pairs. We also note that we still expect these guides 

to target their intended site, but with potentially more off-targets. This error was fixed for 

evaluating gRNA quality in the scaled experiment.

At-Scale Library - 5,779 candidate enhancers as detailed in Table S2A:

Choice of new and repeated sites: A logistic regression classifier built using the 145 

enhancer-gene pairs originally identified in the pilot experiment (see Aggregate analysis of 
enhancer-gene pairs: ChIP-seq strength quintile analysis and logistic regression classifier) 
was used to select the top 5,000 intergenic open chromatin regions in K562s (as defined by 

DNase-seq narrowPeaks (ENCSR000EKS)). Of these, 3,853 were over 1 Kb away from 

boundaries (GENCODE March 2017 v26lift37) of any genes expressed in the pilot 47,650 

K562 single-cell dataset, were not previously included in the pilot library, and had minimum 

two gRNAs with high quality as again determined by FlashFry. Of the top 5,000, 120 

corresponded to a candidate enhancer in one of the original 145 pilot enhancer-gene pairs, 

and 851 of these corresponded to candidate enhancers targeted in the pilot library but not 

originally identified as part of a enhancer-gene pair. We additionally included 7 more 

candidate enhancers not top-ranked by our model, but identified as part of the original 145 

enhancer-gene pairs. The only candidate enhancer that was identified in an original 145 pilot 

enhancer-gene pair but not included in this library had no high quality gRNAs by this second 

library’s standards (see Note about Pilot Library). Only 15 sites did not overlap any of the 

marks shown in Figure 3A.

Two alternative gRNAs were designed for 377 of the sites repeated from the pilot library. 

NGG-protospacers within these candidate enhancers were again scored using default 

parameters of FlashFry (McKenna and Shendure, 2018), and the third and fourth top scoring 

spacers were chosen to be used as an alternative gRNAs.

Choice of 948 exploratory candidate enhancers:  Because the logistic regression classifier 

is biased toward the annotations that were used to select the initially targeted candidate 

enhancers (Figure 2A), we additionally used submodular subset selection to include DHSs 

optimized for a diversity of epigenomic features (Wei et al., 2015). We first removed from 

the full set of 29,833 DHSs (ENCSR000EKS) those 1,119 DHSs that were a part of the 

original screen. Note that we did not remove the 128 DHSs that had been selected again by 

the logistic regression model, because doing so would bias our remaining DHSs away from 

the same annotations. Then we calculated the Pearson correlation of overlapping epigenomic 

marks between the remaining DHSs. Lastly, we applied a facility location function 

(Mirchandani and Francis, 1990) to this similarity matrix and used a greedy submodular 
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selection algorithm to identify 948 additional DHSs as exploratory candidate enhancers. The 

top two highest quality gRNAs (as scored by FlashFry) were included to target each 

candidate enhancer.

Note on choice of gRNA design for future screens of CRISPRi candidate enhancers: We 

used our set of enhancer-gene pairs to assess if there was a specific gRNA-target location 

within the candidate enhancer that increased CRISPRi efficacy. We correlated enhancer-gene 

pair effect size with each gRNA’s absolute distance to center of either DHS-peak or 

overlapping p300 ChIP-seq peak. However, neither the absolute-distance-to-center-of-DHS-

peak (Pearson’s r:0.02) nor the absolute-distance-to-center-of-overlapping-p300-peak 

correlated with effect size (Pearson’s r: 0.07). Thus, we currently only recommend 

prioritizing gRNAs that fall within an open chromatin site based on quality and on-target 

efficiency as assessed by a gRNA quality algorithm like Flashfry (McKenna and Shendure, 

2018).

gRNA-library cloning—The lentiviral CROP-seq gRNA-expression vector (Datlinger et 

al., 2017) was modified by Q5-Site Directed Mutagenesis (New England BioLabs, F:5-

acagcatagcaagtttAAATAAGGCTAGTCCGTTATC-3 R:5-

ttccagcatagctcttAAACAGAGACGTACAAAAAAG-3) to incorporate the previously 

described gRNA-(F+E)-combined backbone optimized for CRISPRi (Chen et al., 2013; Hill 

et al., 2018, Addgene #106280). Prepared vector was digested with BsmBI and alkaline 

phosphatase (FastDigest Esp3I and FastAP, Thermo Fisher Scientific), “filler” sequence 

removed by gel extraction, and cleaned (Zymo Research DNA Clean & Concentrator-5) 

vector without “filler” was used for all downstream cloning.

Spacer libraries were ordered as single stranded pools (CustomArray, 5-

atcttgtggaaaggacgaaacaccGNNNNNNNNNNNNNNNNNNNNgtttaagagctatgctggaaacagcata

gcaagt-3). 1 ng of each pool was amplified (F = 5-atcttGTGGAAAGGACGAAACA-3, R = 

5-acttgctaTGCTGTTTCCAGC-3, 64C Tm, Kapa Biosystems HiFi Hotstart ReadyMix 

(KHF), see Special note about gRNA-library cloning below, as we now recommended a 

different R primer = 5-CTGTTTCCAGCATAGCTCTTAAAC-3) and purified amplicons 

(Zymo Research DNA Clean & Concentrator-5) were cloned into CRISPRi-optimized 

CROP-seq vector prepared as described above (NEBuilder® HiFi DNA Assembly Cloning 

Kit, NEB, 100 fmol purified vector: 200 fmol cleaned insert). 2 ul of each product was 

transformed into Stable Competent E. coli (NEB C3040H) in enough replicates to produce > 

20 transformant clones per gRNA in the library. Plasmid DNA was purified using 

ZymoPURE Maxiprep kits, following by DNA Clean and Concentrator cleaning (Zymo 

Research).

Special note about gRNA-library cloning: In Sanger sequence of the final gRNA plasmid 

libraries and in the 8–15 bp immediately downstream of the spacer (7 bp of the gRNA 

backbone transcript captured in all single-cell RNA-sequencing datasets), we identified that 

~80% of gRNAs harbored a small insertion or deletion (vast majority 1 bp deletions, Figure 

S7A) in between the spacer and the R primer 5-acttgctaTGCTGTTTCCAGC-3 used in the 

initial amplification of spacer-oligos. We inferred that this is due to slippage of the KHF 

polymerase as it copies the secondary structure of the first stem extension loop added as part 
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of the more stable sgOPTI backbone. In the scRNA-seq data, ~70% of gRNA carried a 1 bp 

deletion, ~8% carried a 2 bp deletion, and ~2% carried a 3 bp deletion (Figure S7A).

Fortunately, 1 bp deletions did not correlate with significant disruption of CRISPRi efficacy 

in the scRNA-seq data. (1 bp deletion % reduction) / (full length gRNA reduction) ratio was 

1.01 (high confidence enhancer-gene pair) or 0.958 (TSS control). For 2 bp deletions, this 

ratio was also not extreme (0.959 (high confidence pair) or 0.806 (TSS control)). However, 

for 3 bp deletions (very rare), the ratio was 0.908 (high confidence pair) or 0.644 (TSS 

control). Overall correlation of all these deletion lengths to full length efficacy was very high 

(Figure S7B).

Thus, the vast majority (~90%) are either wild-type or harbor 1 bp deletions that create zero-

to-little effect on CRISPRi efficacy. 8% of the remaining gRNA harbor 2 bp deletions that 

also largely do not affect CRISPRi efficacy. However, to avoid this problem in cloning future 

gRNA libraries into the sgOPTI-CROP-seq plasmid, we now recommend amplifying with a 

reverse primer that is flush with the spacer (5-CTGTTTCCAGCATAGCTCTTAAAC-3), 

potentially enabling a boost in repression efficacy.

Virus production and transduction—The Fred Hutchinson Co-operative Center for 

Excellence in Hematology Vector Production core produced all virus for the multiplexed 

enhancer-gene pair screening experiments. For the singleton CRISPRi recapitulation, virus 

was made in-house by co-transfecting (Lipofectamine 3000, ThermoFisher, L300015) 

HEK293Ts with the small pools of CRISPRi-optimized CROP-seq with the ViraPower 

Lentiviral Packaging Mix (ThermoFisher). After 3 days, supernatant was syringe filtered 

with a 0.45 uM filter (cellulose acetate, VWR) to prepare virus for transduction.

Cells were transduced (8 μg/mL polybrene) with varying titers and amounts of virus to 

achieve differing MOI. 400,000 and ~2.5 million original cells were transduced for the pilot 

and at-scale experiments, respectively. At 24 hours post-transduction, cells were spun and 

resuspended with virus- and polybrene- free media. At a total 48 hours post-transduction, 2 

μg/mL puromycin was added to the culture, and changed to 1 μg/mL puromycin at the next 

passage for maintenance. A total of 10 days post transduction, cells were collected for 

scRNA-seq or bulkRNA-seq.

Single cell transcriptome capture—~4000–8000 cells were captured per lane of a 10X 

Chromium device using 10X V2 Single Cell 3′ Solution reagents (10X Genomics, Inc). Six 

lanes were used for both the low and high MOI 1,119-pilot library experiments, and 32 lanes 

were used for the scaled experiment. All protocols were performed as per the Single Cell 3′ 

Reagent Kits v2 User Guide (Rev B), except prior to the enzymatic shearing step, 10% of 

full length cDNA was taken for PCR enrichment of gRNA-sequences off the CRISPRi-

optimized CROP-seq transcripts as described below. After RT, the 32 lanes of the scaled 

experiment were split into two batches (16 lanes each) for the remainder of the prep to 

enable easier handling.

gRNA-transcript enrichment PCR—A three-step hemi-nested PCR reaction was 

performed to enrich gRNA sequences from the 3′ UTR of puromycin resistance gene 
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transcripts produced by the CRISPRi-optimized CROP-seq integrant. PCR was monitored 

by qPCR to avoid overamplification, and each reaction was stopped immediately before it 

reached saturation.

PCR 1:  10–13 ng of full-length 10x scRNA-seq cDNA were amplified in each 50 μL KHF 

reaction (annealing temp 65C), spiked with SYBR Green (Invitrogen) for qPCR monitoring 

(10% of all unfragmented 10x cDNA).

F: U6_OUTER 5- TTTCCCATGATTCCTTCATATTTGC −3

R: R1_PCR1 5- ACACTCTTTCCCTACACGACG-3

PCR 2:  Sample replicates were pooled, cleaned with 1x Agencourt AMPure XP beads 

(Beckman Coulter), and 1/25th of the cleaned pooled product was amplified in a 50 μL KHF 

reaction spiked with SYBR Green and monitored as above (annealing temp 65C).

F: U6_INNER_with_P7_adapter 5-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGcTTGTGGAAAGGACGAAACAC 

−3

R: R1-P5 5-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACG-3

PCR 3:  The PCR 2 replicate reactions were pooled and 1x AMPure cleaned. 1/25th of the 

cleaned pooled product was amplified in a 50 μL KHF reaction (spiked with SYBR Green 

and monitored as above, annealing temp 72C) and products cleaned once again via 1x 

Ampure.

F: 5-CAAGCAGAAGACGGCATACGAGATIIIIIIIIIIGTCTCGTGGGCTCGG-3 (standard 

NEXTERA P7 indexing primer) R: R1-P5 again

Sequencing of scRNA-seq libraries

Pilot library experiments: The final libraries were sequenced on a NextSeq 500 using four 

75-cycle high-output kits (R1:26 I1:8, I2:0, R2:57) for each experiment (low and high MOI).

Scaled library experiments: The final library was sequenced by the Northwest Genomics 

Center on a NovaSeq 6000 using an S4 flow cell (R1:26, I1:8, I2:0, R2:91).

All libraries were sequenced to ~20% sequencing saturation.

Digital gene expression quantification—Sequencing data from each sample was 

processed using the Cell Ranger software package as provided by 10x Genomics, Inc., to 

generate sparse matrices of UMI counts for each gene across all cells in the experiment.

Each lane of cells was processed independently using cellranger count, aggregating data 

from multiple sequencing runs. The pilot library experiments were each processed with 

cellranger 2.0.2; the at-scale library experiment was processed with cellranger 2.1.1.
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Definition of genes well-expressed or ‘detectably expressed’ in K562: Unless otherwise 

notes, genes were defined as well expressed or detectably expressed in K562 if they had at 

least one read in 0.525% of cells in their respective (pilot or at-scale screen) single cell 

RNA-seq datasets.

Assigning genotypes to cells: gRNAs were assigned to cells in the following method (Hill 

et al., 2018): Sequences corresponding to the gRNA-containing CRISPRi-optimized CROP-

seq transcripts are extracted from the cellranger position sorted BAM file after running our 

custom indexed libraries through the cellranger pipeline to tag reads with corrected cell 

barcodes and UMIs. gRNA sequences are extracted and corrected to the library whitelist 

within an edit distance of two, and gRNA-cell pairs are tracked when a valid cell barcode 

and UMI are both assigned to the read. Likely chimeric reads are detected and removed to 

reduce noise in the assignments as previously described. We utilized thresholds to set 

minimum acceptable values for the total reads for a gRNA-cell pair and for the proportion of 

all CROP-seq transcript reads accounted for by each gRNA observed in a cell to distinguish 

noise from real assignments (Hill et al., 2018). Here, given the larger number of guides 

contained in each cell, we find that UMI counts provide a much cleaner distribution than 

read counts and have used UMI counts in all calculations. For the 1,119 pilot library 

experiments we used 0.01 read counts and 5 UMI in both our low and high MOI for each of 

these thresholds. For the scaled library experiment, we used 0.005 read counts and 5 UMI. 

Only cell barcodes that appear in the set of passing cells output by cellranger, which imposes 

an automated threshold on the total UMIs observed in cells, are carried forward in 

downstream analysis.

Differential expression tests: In our cis analyses, we tested each perturbing gRNA-group 

against genes within 1 Mb of the gRNA. These gRNA-gene pairs were identified by using 

bedtools to intersect the DHSs targeted by the gRNA library with 1 Mb windows in either 

direction of TSS annotations from GENCODE March 2017 v26lift37 (total of 2 Mb, 

centered around the TSS). In our trans analysis, all gRNA-groups were paired with all genes 

that were defined as expressed in K562. In both cis and trans analyses, NTCs were tested 

against any genes used to test perturbing-gRNAs.

For each gRNA-group we assigned a label of “1” to cells that contained a gRNA belonging 

to that group and a label of “0” to all other cells in the dataset. Monocle2 (Qiu et al., 2017) 

was used to perform a differential expression test, using the negbinomial.size family, over 

this categorical label to find differentially expressed genes between these two groups. Due to 

its support of complex model formulas, Monocle2 does not provide model coefficients as 

part of the differential expression results. We created a modified version of the 

differentialGeneTest function and associated helper functions that return both the intercept 

term and the coefficient of the group assignment to facilitate more robust prioritization and 

characterization of hits from our screen. The negative binomial family uses log as the link-

function, so we can calculate the initial expression level as exp(intercept), and the fold 

change in expression between the two groups as exp(group_coefficient + intercept) / 

exp(intercept). We verified data from our power simulations that the appropriate effect sizes 

can be obtained with this method using the coefficients output by VGAM.

Gasperini et al. Page 19

Cell. Author manuscript; available in PMC 2019 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For the scaled experiment, as we collected a much larger number of lanes and observed the 

highest MOI, we regressed out the number of guide RNAs observed in a cell (as a proxy for 

the number of integrants), the percentage of total transcripts observed that are mitochondrial, 

and the prep batch (as following reverse transcription, the 32 lanes were prepared in two 

batches to make handling easier). In practice, we observe a modest boost in sensitivity when 

regressing out each of these factors in DE testing. This was done using the full model 

formula ~gRNA_group+guide_count+percent.mito+prep_batch and the reduced model 

~guide_count+percent.mito+prep_batch in Monocle2.

Calling hits from differential expression test results—All differential expression 

test results were performed for all K562 expressed genes within 1 Mb of the target site as 

defined by GENCODE March 2017 v26lift37. NTCs were tested against all genes within 1 

Mb of any target site.

Tests with two sources of potential false positives were excluded:

1. In the pilot experiment, we identified inflation of NTCs when testing them 

against genes highly impacted by perturbing-gRNA in our library (for example, 

NTCs associated with targets of our TSS and globin LCR controls). This was due 

to subtle yet detectable nonrandom associations of gRNA-groups with other 

gRNA-groups across cells, potentially due to slight bottlenecking at the 

transduction level (400,000 cells transduced for 1,119 pilot library versus 2.5 

million transduced for 5,779 scaled library). To exclude this source of inflation in 

the pilot dataset, we used Fisher’s exact test to identify when an NTC was 

nonrandomly assorted with a perturbing-gRNA (adjusted P-value < 0.01 & odds 

ratio > 1). Then, any test of an NTC against a gene within 1 Mb of that gRNA’s 

gRNA-group was excluded from further analytical steps.

2. We noted Monocle was susceptible to inflating P-values when a gene was highly 

expressed but only in few cells. Three of our 381 TSS controls fell into this 

category. To avoid this problem, we excluded outlier genes that were expressed 

in < 20,000 cells in either the high-MOI 47,650-cell dataset and/or the scaled 

207,324-cell dataset, and with log10(total UMIs / cells with a UMI) > 0.2 greater 

than predicted by a spline fit generated via smooth.spline() with spar = 0.85 to 

limit overfitting (35 genes total).

Remaining tests were filtered to those that decreased expression of the target gene.

Then, an empirical P-value was defined for each gene-gRNA-group pair test as: [(the 

number of NTCs with a smaller P-value than that test’s raw P-value) + 1] divided by [the 

total number of NTCs tests + 1].

These empirical P-values were Benjamini-Hochberg corrected, and those < 0.1 were kept for 

10% empirical FDR sets.

Use of 3.5% empirical FDR to initially select enhancer-gene pairs from the pilot 
study: We originally used an alternative method to call the original 145 enhancer-gene pairs 

from the original pilot dataset (a universal cutoff of the P-value at which the proportion of 
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passing NTC-tests/total NTC-tests was 10% of the proportion of passing candidate enhancer 

tests/total candidate enhancer tests). However, upon further discussion and review of the 

eQTL literature, we revised our method to the one defined above. This original threshold 

corresponded to a 3.5% empirical FDR rate, as defined above.

Inclusive versus high confidence enhancer-gene pairs as described in Table S2B: The 

only requirement of enhancer-gene pairs in the inclusive set was that they passed a 10% 

empirical FDR in the scaled experiment. To be included in the high confidence set, 

enhancer-gene pairs either had to be replicated at a 10% empirical FDR in the pilot dataset, 

or (if a candidate enhancer was unique to the scaled experiment) both gRNAs had to be 

individually associated with > 10% repression of the gene.

Analyses to evaluate reproducibility between gRNA: To evaluate reproducibility between 

gRNAs, we subset the 377 pairs (two sets of gRNA pairs targeting the same candidate 

enhancers in the scaled experiment) to pairs where both pairs negatively repressed at least 

one target gene (no significance requirement). 20 of the 377 did not meet this criteria. Then, 

we ranked all tested genes by average repression between the two gRNA pairs, and kept the 

top ranked gene for each pair. The repression levels of each type of gRNA pair on this top-

ranked gene are plotted in Figure S2B, regardless of significance.

Intracellular abundance of gRNA and dCas9-KRAB transcript does not correlate with 
effect size: As both the dCas9-BFP-KRAB and the sgOPTI-CROP-seq construct transcripts 

are poly-A tagged, we are able to test if there is an association between the CRISPR 

components’ UMI counts and transcript abundance of a targeted gene. For the 441 candidate 

enhancers in a high confidence pair, we subsetted to the cells that held a guide targeting each 

enhancer. Within this set of cells, we tested for a significant association between the 

expression of the target gene and the UMI count of the dCas9-BFP-KRAB or the guides 

(adjusting for total cell UMI count). Of the 470 enhancer-gene pairs, only 2 and 10 had any 

significant (adjusted P-value <0.01; 7 and 27 for adjusted P-value < 0.05) association with 

dCas9-BFP-KRAB count or guide count respectively (0.4% and 2% or 1.5% and 5.7% of 

tests for each adjusted P-value threshold respectively). Based on this, we conclude there is 

not evidence for a substantial effect of dCas9-BFP-KRAB or guide counts on the observed 

effect size for a given enhancer-gene pair.

Quantifying gRNA abundance: In the process of assigning gRNAs to cells, we had already 

quantified the number of reads and UMIs associated with gRNA-cell pairs. These counts 

were used as is for the above analysis.

Quantifying dCas9-BFP-KRAB in cells: We constructed a bowtie2 (Langmead and 

Salzberg, 2012) index for a reference including both the PuroR transcript from the sgOPTI-

CROP-seq vector (extending from PuroR to the 3′ LTR encoding the guide sequence as N’s) 

and dCas9-BFP-KRAB (including the 3′ LTR). Note that both gRNA and dCas9 transcripts 

were included in this analysis because several regions are identical within the 3′ UTR of the 

transcripts encoded by these two constructs. We then took all the unmapped reads from the 

unbiased (cell) libraries and converted them back into fastq format adding the final cell ID 

and UMI from cellranger into the read name for use downstream. We mapped these reads to 
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the reference above using bowtie2 using the command “bowtie2 -p 8–n-ceil 20–np 0 -x 

<reference> -U <fastq input> -S <bam output>.” We then took only reads that map uniquely 

to the dCas9 contig with mapq of 30 or greater and enumerated the number of UMIs and 

total reads seen for each cell / barcode pair dCas9.

In each case, we tested for associations between the gRNA/dCas9 counts and the abundance 

of each high confidence hit in our screen, only within cells that had a guide to the target. 

This was done using our modified version of differentialGeneTest as described above. Note 

that in this case we observed that size factors typically used to account for variation in total 

UMI counts across cells did not appear to sufficiently correct for the strong correlation 

between the counts of two transcripts (the gRNA transcript / dCas9 and the target) that 

results from variation in total UMI counts across cells. This initially resulted in residual 

associations that indicated increased gRNA transcript / Cas9 resulted in higher target 

expression. To account for this, we added an additional term to both the full and reduced 

model “~ log10(total_umis)” and set all size factors to 1. This is the model from which we 

report the above results.

Individual replications and validations

Individual replication by CRISPRi singletons: To replicate a enhancer-gene pair’s 

phenotype outside of the pooled mapping format, we prepared small pools of gRNAs re-

targeting 15 high-confidence candidate enhancers or the TSSs of their respective paired-

target genes (Table S3A). These enhancer-gene pairs were chosen from the following 

requirements: candidate enhancer tested in both the pilot and at-scale study (replicated 

between both); target gene in upper 50% of expression of all paired genes; target gene had 

no strong cancer associations or growth phenotypes. Additionally, we chose 6 candidate 

enhancers that were not paired with any target gene using the following requirements: tested 

in both the pilot and at-scale screen; empirical P-values for any cis gene > 0.5 in both 

experiments; overlapping H3K27Ac ChIP-seq peak is in the top half of all the peaks that 

overlap the entire at-scale library (thus to be comparable with our paired enhancers); and 

within 1 Mb of a K562 expressed gene.

The two original gRNAs and two new gRNAs (making up the top 4 ranked on-target activity 

per candidate enhancer, filtering out those with high off-target scores using Flashfry 

(McKenna and Shendure, 2018); exception is candidate enhancer chr11.4680 where only 3 

gRNAs passed these quality filters) were used for each respective pool, for a total of 4 

gRNAs in the pool (Table S3C). The two original gRNAs were used for the TSS controls 

(plus two more alternative TSS gRNAs in the cases of NMU, GYPC, PTGER3, and 

PRKCB). These small gRNA pools were cloned into the CRISPRi-optimized-CROP-seq 

vector (as described above, except in the case of e-NMU targeting pool, which was cloned 

by ordering two reverse complement single stranded oligos and annealing them together into 

px459 (CRISPR-Reagent-Description_Rev20140509.pdf) (Cong et al., 2013). House-made 

lentiviral preps from these gRNA pools were transduced at low MOI into the K562-dCas9-

BFP-KRAB line, and cultured for 10 days under puromycin selection before two technical 

replicates of total RNA were collected from each sample (RNeasy Mini Kit, QIAGEN).
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Bulk RNA-seq libraries were prepared from each replicate via a TruSeq mRNA kit (400 ng 

input, Illumina, TruSeq RNA Sample Prep Kit v2 RS-122–2002 or TruSeq Stranded mRNA 

Library Prep 20020595), and sequenced on a NextSeq 500 (total two 150-cycle kits cycling 

80/80/6 in mid output mode for e-NMU, e-PRKCB, e-GYPC, e-PTGER3; total two 75-cycle 

kits cycling 40/40/8 in high output for all others; aiming for 10–20 million reads/sample). 

Gene-level quantifications and differential expression tests were performed via kallisto 

(Bray et al., 2016) and sleuth (Pimentel et al., 2017). Repression percentages were 

calculated from the kallisto transcript per million output table (normalized by size factors): 

(mean between the two replicates / mean between all-non targeting samples). To note, 

targeting the TSS of CITED2 did not seem to successfully repress CITED2’s expression, 

though this is potentially due to inaccuracy of 1 of 2 technical replicates for this sample. The 

3 that matched direction and magnitude of effect but were not significant in a test of 

differential expression potentially were not detectable due to lack of power, as we sequenced 

only two RNA replicates per sample.

To note: we additionally generated singleton datasets for chr6:34191315–34191338 (paired 

with HMGA1 in the pilot screen), but did not include this in analysis as it did not reproduce 

between the pilot and at-scale screen, and thus was not part of our high confidence enhancer-

gene pair set.

Validation by sequence deletions: To generate monoclonal sequence lines of three 

candidate enhancers (Table S3B), we designed protospacers to flank the DHSs targeted in e-

NMU, e-GLUL, and e-CITED2. Spacers were order as single stranded oligos (IDT, Table 

S3D) and then amplified (KHF, 5-GTGGAAAGGACGAAACACCg-3, 5-

gctaTTTCtagctctaaaac-3, 55°C tm, 15 s extension; followed by clean-up via Zymo Research 

DNA Clean & Concentrator) to be made double stranded for Gibson Assembly cloning (50 

ng prepared vector: 0.66 ng prepared insert) into the Cas9- and gRNA- expression vector 

px459 (Ran et al., 2013), expressing both the gRNA and a cassette of Cas9–2A-puromycin 

resistance; NEBuilder® HiFi DNA Assembly Cloning Kit). Some e-NMU targeting oligos 

were cloned by annealing two complementary oligos together followed by ligation into 

px459, in the method of CRISPR-Reagent-Description_Rev20140509 (Cong et al., 2013).

We transiently transfected the small px459 pools into the K562+dCas9-KRAB cell line 

using the Neon nucleofection system (500,000 cells per library, 10 uL tips, 500 ng of 

plasmid, pulse voltage 1450–pulse width 10–pulse number 3; ThermoFisher). Beginning 24 

hours after transfection, cells were selected with 1 ug/mL puromycin for 48–72 hours, then 

single-cell sorted into 96 well plates using a FACSAria II (Becton Dickinson). To finally 

achieve clones that harbored fully homozygous deletions of e-NMU, this process was 

repeated on an initial set of heterozygous clones using a second round of flanking gRNAs.

After 3–4 weeks of growth, gDNA was extracted by concentrating cells into 20 uL of media, 

and adding 40 uL of house-made Quick Extract buffer (EB + 4 mg/mL proK + 0.45% 

Tween20), followed by 65°C for 6 minutes and 98°C for 2 minutes. 1 uL of this gDNA 

extract was used for genotyping PCRs (Kapa2G Robust PCR kit, 35 cycles 60°C-HS-3 

minute extensions).
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Two rounds of genotyping PCRs were performed. First, clones were screened with primers 

flanking the deletion to identify clones that harbored a deletion on at least one allele. 

Second, to confirm homozygosity, primers internal to the deleted region were used to 

identify candidates that still harbored wild-type alleles (Figure S4A; Table S3D). Clones that 

harbored full deletions with no remaining wild-type alleles were submitted to bulkRNA-

sequencing (Figures 4E–4G). Two technical replicates of RNA were extracted from each 

monoclonal line (RNeasy Mini Kit, QIAGEN), bulkRNA-seq libraries prepared via a TruSeq 

mRNA kit (400 ng input, Illumina, TruSeq Stranded mRNA Library Prep 20020595), and 

sequenced on a NextSeq 500 (one 75-cycle kits cycling 40/40/8 in high output for 

monoclonal samples; aiming for 10–20 million reads/sample). Gene-level quantifications 

were performed as for the CRISPRi singletons, and reduction percentages calculated from 

kallisto transcript per million output table (normalized by size factors): (mean of all 

replicates per candidate enhancer) / (mean between all-non targeting samples).

Phenotyping e-NMU perturbations by flowFISH: Cells harboring e-NMU CRISPRi 

perturbations were generated as in Individual replication by CRISPRi singletons. A 

heterogeneous population of cells harboring full e-NMU deletions was generated as in 

Validation by sequence deletions (though without single-cell clone sorting; Table S3D). A 

heterogeneous population of cells harboring scanning deletions across e-NMU was 

generated by cloning and transfecting 19 gRNAs (Table S3D) targeted every ~100 bp across 

the e-NMU locus as described above in Validation: sequence deletions.

Fluorophore labeled complementary probes to NMU transcript were designed on and 

ordered from https://www.molecularinstruments.com/ (Table S3E). The ‘non-targeting’ 

probes were scrambled versions of the original NMU-targeting probes (to preserve sequence 

features such as GC content). RNA flowFISH was performed according to Molecular 

Instruments’ in situ HCR v3.0 protocol (Choi et al., 2018), which we have described again 

here: Cells were by resuspending in 4% formaldehyde to reach 106 cells/mL, and fixing for 

1 hour. Formaldehyde was then removed, cells were washed four times in PBST (1x PBS 

+ 0.1% Tween 20), and then resuspended in 70% ethanol. For labeling, cells were first 

washed twice with PBST, and then pre-hybridized by incubating at 37C for 30 minutes in 

30% probe hybridization buffer (30% formamide, 4x sodium chloride sodium citrate (SSC), 

9 mM citric acid, 0.1% Tween 20, 50 ug/mL heparin, 1x Denhardt’s solution, and 10% low 

MW dextran sulfate). Cells were then incubated overnight at 37°C in a final 4 nM probe 

solution (prepared by adding 2 pmol each probe (a mix of 1 uL of 2 uM stock per each 

probe) + 100 uL of 30% probe hybridization buffer). Cells were then repeatedly resuspended 

in 30% probe wash buffer and incubated for 10 minutes at 37°C, for a total of four washes. 

Cells were then resuspended in 5x SSCT (5x SSC + 0.1% Tween 20) and incubated at room 

temperature for 5 minutes before amplification.

For amplification, cells are resuspended in amplification buffer (5x SSC + 0.1% Tween 20 

+ 10% low MW dextran sulfate) and preamplified by incubating for 30 minutes at room 

temperature. 15 pmol of each fluorescently labeled hairpin was snap-cooled by heating 5 uL 

of 3 uM stock in hairpin storage buffer (Molecular Instruments) to 95°C and then cooling for 

30 minutes to room temperature in a dark drawer. Snap-cooled hairpins were then mixed 

with amplification buffer, added to the sample for a final and then cooling for 30 minutes to 
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room temperature in a dark drawer. Snap-cooled hairpins were then mixed with 

amplification buffer, added to the sample for a at room temperature. 15 pmol of each 

fluorescent0 minutes at room temperature with 0.5 uL Vybrant Dye Cycle Orange (DNA 

stain).

For sorting, the cells are first gated based on size and granularity using forward versus side 

scatter to discriminate between debris and cells. Cells in G0/G1 stage are then selected using 

DNA dye (Vybrant Dye Cycle Orange). Cells are then sorted into low, medium, or high bins 

of NMU expression using AF647 (Becton Dickinson; ~500,000 cells for the full deletion 

low NMU bin, ~1,000,000 cells forall other bins).

To reverse cross-link the sorted samples, cell pellets were resuspended in 500 ul of elution 

buffer (4 mL H2O + 500 ul 10% SDS + 500 ul NaHCO3 – 1M) + 30 ul of NaCl (5M) and 

incubated overnight at 65°C. 8 ul of RNase (10 mg/mL) was added to each sample, mixed 

by inversion, and incubated at 37°C for 2 hours. 4 ul of Proteinase K (20 mg/mL) was 

added, mixed by inversion, and incubated for 2 hours at 55°C. gDNA was extracted by 

phenol chloroform, ethanol precipitated, and resuspended in QIAGEN elution buffer.

PCR to identify e-NMU genotype enrichments in each of the NMU expression bins (Figures 

S4B and S4C) was performed using Kapa2G Robust (e-NMU outer PCR: F primer 

5′CCAACCCCTCAACTTGTT3′ Reverse primer 5′TGCCTTCTCTGCCTTTCATT3′; 

anneal 60°C, extension time 1:50) on 10 ng of gDNA. PCRs were spiked with SybrGreen, 

and monitored on a qPCR to allow removal before overamplification to prevent excessive 

PCR biases. 1 uL of each PCR reaction was run on a 6% TBE polyacrylamide gel 

(Invitrogen) for 35 minutes at 180 V and stained with Sybr Gold for visualization. Replicate 

PCRs are represented by different lanes in Figures S4B and S4C.

QUANTIFICATION AND STATISTICAL ANALYSIS

Aggregate analysis of enhancer-gene pairs—The high confidence enhancer-gene 

pairs were used for these analyses unless otherwise noted. Details of empirical FDR and the 

significance thresholds used to call enhancer-gene pairs can be found above in Calling hits 
from differential expression test results. Singleton re-testing and validations of enhancer-

gene pairs used to functionally test if the data met the assumptions of these statistical 

methods can be found above in Replication of enhancer-gene pairs as singletons.

Distance between perturbation and target gene: Distance was calculated between the 

GENCODE March 2017 v26lift37 annotated TSS of the perturbed gene and the middle of 

the originally targeted open chromatin region (if targeting a candidate enhancer, 

ENCFF001UWQ) or the GENCODE-annotated TSS of the originally targeted transcript (if 

targeting a TSS). To note, in Figure 6A and to calculate the median distance, we have only 

used enhancers that are upstream of the target gene, as the length of the gene body would 

confound distance-to-TSS measurements for downstream enhancer-gene pairs.

Expression distributions: Average expression of each transcript was defined as mean UMI 

counts per cell in the 47,650 or 207,324 cell scaled dataset. K562 expressed genes were 

defined as at least one read in 0.525% of cells in the same dataset.

Gasperini et al. Page 25

Cell. Author manuscript; available in PMC 2019 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ChIP-seq strength quintile analysis and logistic regression classifier: All candidate 

enhancers targeted in each library were bedtools-intersected with 170 ChIP-seq of histone-

associated marks (ENCODE Project Consortium, 2012)), broken into quintiles of the 7th 

“signalValue” column (peak strength, usually representing overall average enrichment in the 

region), and the rates of enhancer-gene pairs identified in each quintile were used. In 

addition to average phyloP conservation score per candidate enhancer, these were used to fit 

both independent and multivariate logistic regression classifiers using the glm() function 

with binomial family. We calculated fold changes for how likely a candidate enhancers was 

paired by: 1 + (((odds ratio - 1) * highest quintile ChIP-seq value) - ((odds ratio - 1) * lowest 

quintile ChIP-seq value)).

Motif enrichment in enhancers and promoters: Using the AME tool (Analysis of Motif 

Enrichment) from the MEME suite (McLeay and Bailey, 2010), enhancer analysis: we 

compared motifs enriched in the 600 candidate enhancers in the inclusive set of 664 pairs as 

compared to all 5,779 in the at-scale library; promoter analysis: compared motifs enriched 

the 1 Kb upstream of the TSS (~promoter) of the 479 genes in the inclusive 664 pairs as 

compared to the ~promoters of all K562 expressed genes within 1 Mb of a tested candidate 

enhancer. Parameters were set to default, and Hocomoco Human v11 (core) (Kulakovskiy et 

al., 2013) was used as the motif library.

Motifs of TF couples across paired promoters and enhancer: To test if pairs of 

transcription factor (TF) motifs were enriched for co-presence across paired promoters and 

enhancers, we first identified 179 TFs that were expressed in K562s and had high quality 

motifs in Hocomoco. Using the FIMO tool (Find Individual Motif Occurrences) from the 

MEME suite, we annotated all 600 candidate enhancers and the promoters of all 479 genes 

(1 Kb upstream of the TSS) in the inclusive set of 664 pairs. Motifs in the bottom quartile of 

how often seen in a promoter were excluded for lack of power. Then, we looped through all 

possible pairs of 179 TFs in the enhancer (TFe) × 179 TFs in the promoter (TFp), and for 

each TFe × TFp pair, performed a Fisher’s Exact test on contingency tables designed as 

follows:

For the promoters of 479 paired genes: TFp in promoter or TFp not in promoter versus 

Promoter paired with an enhancer that contains TFe or Promoter not paired with an enhancer 

that contains TFe

For the 600 paired enhancers: TFe in enhancer or TFe not in enhancer versus Enhancer 

paired with an enhancer that contains TFp or Enhancer not paired with an enhancer that 

contains TFp

The six TFe × TFp co-enriched couples that had a Benjamini Hochberg corrected P-value < 

0.1 for both the 479 paired promoter analysis and the 600 paired enhancers analysis were 

described in the main text and Table S4E.

ChIP-seq of TF couples across paired promoters and enhancer: Bedtools was used to 

mark when a paired enhancer or promoter in the 664 inclusive dataset overlapped a ChIP-seq 

peak from ENCODE generated K562 datasets were used. ChIP-seq datasets that that were in 
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the bottom quartile of how-often-overlapping with a paired enhancer or promoter were 

excluded for power (leaving 168 TFe and 166 TFp). Analysis was then performed the same 

as in the TFe × TFp motif analysis (Fisher’s Exact Test, adjusted P-value < 0.1, pair required 

to be enriched when looping through both enhancers and then through promoters, TFe and 

TFp required to be different, Table S4E).

Functional annotation enrichment: We used the Piano package (Väremo et al., 2013) to 

perform functional annotation enrichment from the ‘all pathways’ Gene Ontology (http://

download.baderlab.org/EM_Genesets/June_20_2014/Human/June_20_2014_versions.txt). 

The 10,560 K562-expressed genes within 1 Mb of a perturbing-gRNA were used as our 

background dataset, and randomly sampled from genes with expression greater than one 

standard deviation below the mean of our 353 targeted genes was used as the comparison set 

of “expression matched controls” (Figure 6C).

Hi-C analysis: We used the in situ Hi-C dataset for K562 cells from Rao et al. (2014), using 

the MAPQ 0 threshold and KR normalization, at 5 Kb resolution. We first created shuffled 

control loci pairs by starting with the set of enhancer-gene TSS pairs, and randomly 

shuffling the oriented distances between enhancer-TSS pairs, keeping either the enhancers or 

the TSSs intact. The rare cases where shuffling resulted in an invalid chromosomal 

coordinate were excluded. For each set of loci pairs, we identified the TADs (as defined in 

Rao et al. [2014] using Arrowhead) encompassing each loci pair. For overlapping domains, 

we used the farthest domain boundary on each side of the loci pair. We omitted loci pairs 

that were not encompassed by any TADs from further analysis. We then extracted the 

normalized Hi-C counts for each loci pair, along with those for all other bins representing 

interactions at the same genomic distance within the same TAD, and calculated its fractional 

rank (scaled from 0 to 1, with 1 representing the highest interaction frequency). Finally, the 

distributions of fractional ranks were plotted and compared. In addition to comparing 

interactions within TADs, we also compared loci pairs to other bins within 200 Kb or 1 Mb 

of each loci pair.

Analyses for multiplexability of CRISPRi within cells - low versus high MOI 
comparisons—In order to confirm the efficacy of repression in our high MOI experiments 

(pilot library MOI = ~15 and at-scale library MOI = ~28), we sought to compare the degree 

of repression observed in each of these experiments to that observed in our low MOI control 

experiment (pilot library MOI = ~1). We took all gene-target site differential expression tests 

passing a 10% empirical FDR in any one of the three experiments (as evaluated 

independently in each screen). We used this set rather than our final hit list to ensure that we 

were not biasing our comparison by excluding tests that would be independently called by 

any one screen but not the others, although we note that the results of the same set of 

analyses using our final set of hits are very similar.

For each of these tests, we calculated the observed fold changes of repression (where 1 is no 

change and 0 is complete loss of expression) for each screen and then calculated the 

following ratios: (pilot high MOI fold change) / (pilot low MOI fold change) and (at-scale 

fold change) / (pilot low MOI fold change), using a pseudocount of 0.01. As we found it 

potentially confusing that a higher value of these ratios represents worse efficacy of 
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repression in the high MOI experiments, we considered making these ratios of percent 

repression (1 - fold change). However, as this value could be negative in some cases (where 

the fold change was greater than one in one of the screens), this was not compatible with 

display on a log scale. Therefore, in all plots showing such ratios, we are actually showing 

the inverse of the fold change ratios described above, which should approximately represent 

the ratios of percent repression without producing any negative values. Thus, in our plots 

and reported summary statistics, values less than one represent cases where more repression 

was observed in the low MOI control.

Despite the distributions of the ratios described above being centered at one, which indicates 

largely equivalent repression in high and low MOI experiments, there was a left tail, 

representing a smaller number of tests with reduced estimated efficacy in the high MOI 

experiments. We reasoned that this could be an artifact of these genes being more lowly 

expressed and/or being represented by fewer cells given the sparse sampling of the pilot 

library in the low MOI experiment. In either case we might tend to underestimate the 

amount of transcript remaining after repression or at the very least the estimates would be 

substantially noisier, resulting in an artifactual tail. To confirm the lower expression levels 

genes in the observed tail, we took all tests falling in the first quartile of each distribution 

and compared the expression of these genes (average expression for the pilot low MOI 

experiments in the group of cells without the relevant gRNA; calculated by exponentiating 

the intercept from the differential expression test, which in the pilot high differential test is 

the estimated expression in UMI counts for the group of cells without the relevant gRNA). 

We further scaled these values by the total number of cells observed for each gRNA group in 

the pilot low MOI experiment to examine the combined effect of representation and 

expression level, which both contribute to what we expect is simply less robust estimation of 

fold change. We note that this scaling does not appreciably impact the overall distributions 

in this case.

Power simulations—In order to predict the impact of multiplexing on the power of 

enhancer-gene pair screens, we developed a simulation framework. First, using single-cell 

RNA-seq data collected from the pilot 47,650 K562 cells, we estimated a dispersion 

function that relates the mean expression of a gene to its dispersion estimate (one of the two 

parameters required for the negative binomial distribution) calling the Monocle2 functions 

estimateSizeFactors and estimateDispersions. This function is typically used in differential 

expression testing to shrink dispersion estimates, but here we use it to estimate dispersion 

values for simulated transcripts. This dispersion function is then extracted from the 

CellDataset object output by Monocle2 and used as input to our simulations.

Next, we chose relevant ranges for each of the parameters varied in our simulation: the MOI, 

total cell count, effect size (fraction repressed by CRISPRi), and mean expression level of 

the gene being tested. By examining the range of expression values observed in our data, we 

chose to simulate expression data for genes having mean expression values (size parameter 

of the negative binomial distribution) of 0.01, 0.1, 0.32, 1.0, 3.16, and 10.0 UMIs (0.10, 0.32 

and 1.00 used respectively as low, medium, and high in Figure 1B) to provide a range of 

representative values.
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We simulated MOIs at several values from 0.3 to 50, a range which includes the MOIs 

estimated from our own enhancer-gene pair screens. For each MOI, we calculate the 

expected number of cells containing a given guide by assuming a Poisson distribution of 

lentiviral delivery, zero-truncating the distribution to account for drug selection for cells that 

contain a guide transcript, and rescaling the probability distribution of guide counts 

accordingly. Perfect library uniformity was assumed to obtain the expected number of cells 

containing a given guide and the number of cells that do not contain that guide. Effect sizes 

of CRISPRi repression were chosen using estimates from the literature and were simulated 

at several values between 10% to 90% percent repression of the average expression level of 

the target transcript (size parameter input to the negative binomial distribution).

Finally, we simulated several values of total cells included in the experiment ranging from 

35,000 to 300,000 cells (45,000 cells shown in Figure 1B). Expression data from transcripts 

corresponding to 100 samplings per set of parameters were generated for the populations of 

cells containing the gRNA and not containing the gRNA respectively. Our expression data 

simulation assumed a negative binomial distribution with the appropriate size parameter for 

the cells with and without the gRNA, and a dispersion value estimated using the dispersion 

function described above given the starting mean expression level being simulated. For each 

set of parameters, the simulated transcripts were subjected to a differential expression test 

performed between cells with and without the gRNA assigned using our modified version of 

the Monocle2 function differentialGeneTest as described above (see Differential Expression 

Tests). P-values were obtained and corrected assuming an average number of 20 tests per 

group in the library to approximate the number of genes contained within 1 Mb on either 

side of each gRNA-group and the impact of multiple testing. The rate of tests falling below a 

adjusted P-value of 0.05 were tabulated at each set of parameters to make power curves.

Quantify errors in gRNA backbone as described in Method Details: “Special 
note about gRNA-library cloning,” Related to Figure S7—To quantify the rate of 

mismatches and indel lengths in the gRNA backbones for each library, we extracted the 

backbone portion of the gRNA transcript for each read in our gRNA transcript enrichment 

libraries and aligned it to the expected reference, (gtttAagagc 
taTGCTGGAAACAGCAtagcaagttTaaat), using semi-global version of the Needleman-

Wunsch algorithm implemented by RecNW (Yahi et al., 2018). Mismatch and indel counts 

were made within the hairpin portion of the backbone (we initially screened backbone bases 

8 to 31 downstream of the spacer), to restrict to bases that would be the most likely to have 

some if any functional impact. However, it should be noted that the overwhelming majority 

of all indels were small deletions observed in bases 8 to 14 or so; thus, rates provided in 

Figure S7A are limited to these 7 bp. For the pilot-gRNA libraries, where we had a shorter 

cDNA read length that does not cover the entire hairpin, so we simply quantified 

mismatches and indels in the 8 to 14 bp window (which again contained the overwhelming 

majority of all indels in our at-scale gRNA library). For each target-UMI pair in each cell, 

we averaged the observed mismatch and indel counts/lengths to get a consensus over all 

reads with a given UMI. We then averaged the statistics derived from UMIs for each target-

cell assignment to get a final set of statistics for each. Each average was rounded to the 
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nearest integer for plotting. This allowed us to quantify rates across screens and also 

examine how any changes in effect sizes correlated with effect sizes.

tSNE clustering of each dataset to check for biological distortions—We tested 

for enrichment of gRNAs in specific tSNE-based clusters of the at-scale single cell 

transcriptome dataset, to identify any perturbed targets that resulted in stronger changes to 

global expression, presumably mediated through trans effects of the target gene. For the at-

scale dataset, we subsetted to genes that were expressed in at least 0.5% of cells and 50,000 

cells were randomly sampled. We then processed the dataset using Seurat (Butler et al., 

2018). We removed cells with greater than 10% mitochondrial transcripts, ran 

NormalizeData, and found the top 5,000 variable genes using FindVariableGenes. Using 

these top 5,000 variable genes as input we then ran ScaleData, regressing out the percent of 

each cell’s transcriptome accounted for by mitochondrial genes. We then computed 100 PCs 

using RunPCA (weighting PCs by variance explained), which were used as input to both the 

FI-tSNE method using RunTSNE and Louvain clustering at a resolution of 0.5 using 

FindClusters. Fisher’s Exact tests were performed to test for a perturbed target’s enrichment 

in each cluster. 8 TSS controls and 6 candidate enhancers were enriched within specific 

clusters (odds ratio > 5, adjusted P-value < 0.01). However, even in these cases, only 10% of 

cells in which the target is perturbed actually fall into the cluster in which they are found to 

be enriched. Thus, this is not expected to compromise the screen, as in order to be a chronic 

source of false positives, the gRNAs targeting these global-change genes would have to be 

non-randomly associated with other gRNAs in the library.

DATA AND SOFTWARE AVAILABILITY

The accession number for the sequencing data (single cell RNA-seq and bulkRNA-seq) and 

processed data files is GEO: GSE120861 (metadata file), and GSM3417251–GSM3417303 

(actual datasets).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Perturbed 5,920 human candidate enhancers for impact on gene expression

• Multiplexed ~28 CRISPRi perturbations per single-cell transcriptome

• Adapted the eQTL analytical framework to identify 664 cis human enhancer-

gene pairs

• Characterized genomic features associated with these enhancer-gene pairs
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Figure 1. Multiplex Enhancer-Gene Pair Screening
(A) Enhancer-gene pairs are screened by introducing random combinations of CRISPR/Cas9 

candidate enhancer perturbations to each of many cells, followed by scRNA-seq to capture 

expression levels of all transcripts. Then, all candidate enhancers are tested against any gene 

by correlating presence of any perturbation with reduction of any transcript.

(B) Multiplex perturbations increase power to detect changes in expression in single-cell 

genetic screens while greatly reducing the number of cells that need to be profiled. Power 

calculations on simulated data show that increasing the number of perturbations per cell 

increases power to detect changes in expression, including for genes with low (0.10 mean 

UMIs per cell), medium (0.32), or high (1.00) mean expression. x axis corresponds to the 

simulated % repression of target transcript.

Gasperini et al. Page 35

Cell. Author manuscript; available in PMC 2019 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Pilot Multiplex Enhancer-Gene Pair Screen Testing 1,119 Candidate Enhancers in 
K562 Cells
(A) 1,119 candidate enhancers were chosen based on intersection of enhancer-associated 

features and each targeted by two gRNAs.

(B) Schematic of this multiplex enhancer-gene pair screening method. (i) gRNAs were 

cloned into a lentiviral vector, and delivered to K562 cells at a high MOI. (ii) scRNA-seq 

was performed on these cells, with concurrent capture of the multiple gRNAs present in each 

cell. (iii) For each candidate enhancer, cells were partitioned based on whether or not they 

contained a gRNA targeting it. (iv) For each such partition, we tested for differential 

expression between the two populations for any gene within 1 Mb of the candidate enhancer.

(C) gRNAs were delivered to K562 cells at a high MOI, with median of 15 ± 11.3 gRNAs 

identified per cell.

(D) A total of 47,650 single cell transcriptional profiles were generated. Each perturbation 

was identified in a median of 516 ± 177 cells.

(E) Quantile-quantile plot of the differential expression tests. Distributions of observed 

versus expected p values for candidate enhancer-targeting gRNAs (orange) and NTC gRNAs 

(gray; downsampled) are shown.

(F) Expression of selected TSS (top row) and β-globin LCR positive controls (bottom row). 

Nearly all targeted TSSs, and all positive controls, showed significant differential expression 

of the expected target genes between cells with (+) versus without (−) targeting gRNAs, in 

contrast with NTCs. Percent changes and p values show the effect size and significance of 

differential expression of the denoted target gene between these cell groups. See also Figure 

S1 and Table S1.
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Figure 3. Multiplex Enhancer-Gene Pair Screening at Scale in K562 Cells
(A) For a scaled experiment, gRNAs were designed to target a total of 5,779 candidate 

enhancers. Characteristics are shown for 3,853 sites chosen by a model informed by the hits 

identified in the pilot experiment.

(B) 948 exploratory candidate enhancers were sampled from K562 DHSs. 978 candidate 

enhancers from the pilot were re-targeted with the same gRNA pair, and 377 of these were 

also targeted with a second, alternative gRNA pair.

(C) gRNAs were again delivered to K562 cells, but at a higher MOI than the pilot 

experiment (median 28 ± 15.3 gRNAs identified per cell).

(D) A total of 207,324 single cell transcriptional profiles were generated. Each perturbation 

was identified in a median of 915 ± 280 single cells.

(E) Q-Q plot of the differential expression tests. Distributions of observed versus expected p 

values for candidate enhancer-targeting gRNAs that were correlated with decrease in target 

gene expression (orange) and NTC gRNAs (gray; downsampled) are shown.

(F) Histogram of the number of target genes impacted by each candidate enhancer identified 

as part of a pair (10% empirical FDR).

(G) Histogram of the number of paired candidate enhancers detected as regulating each 

target gene (10% empirical FDR).
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(H) Effect sizes for the 664 enhancer-gene pairs that pass a <0.1 empirical FDR, the 470 

high-confidence enhancer-gene pairs, and the 97% of TSS controls that are detected as 

repressing their target genes.

See also Figure S2E and Table S2.
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Figure 4. Replication and Validation of Selected Enhancer-Gene Pairs in Singleton Experiments
(A–D) For each singleton replication experiments of enhancer-gene pairs, bulk RNA-seq 

was performed on CRISPRi+ K562 cells transduced with gRNAs targeting (purple) e-

PRKCB (A), e-PTGER3 (B), e-GYPC (C), e-NMU (D), or the TSSs (dark red) of their 

respective target genes. Target gene expression in the singleton-target cell lines (red/purple) 

as compared to replication experiments in which the other 4 candidate enhancers or TSSs 

were targeted (gray). Eleven other singleton CRISPRi experiments are summarized in Figure 

S5.

(E–G) To validate three enhancer-gene pairs by sequence deletion, monoclonal lines were 

generated with full deletion of the locus’s genomic sequence in three to six independent 

clones (e-NMU, E; e-CITED2, F; and e-GLUL, G), followed by bulk RNA-seq. See also 

Figure S4A.
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(H) NMU-targeting cells were phenotyped by fluorophore-labeling of intracellular NMU 
transcripts by RNA flowFISH. (ii–iii) Singleton CRISPRi targeted cells as in (D). (iv–v) A 

heterogeneous pool of cells engineered such that a portion (based on deletion efficiency) 

harbor full or scanning deletions of e-NMU (see also Figures S4B and S4C).

See also Figure S3 and Table S3.
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Figure 5. Highlighted Examples of Enhancer-Gene Pairs
(A) Three candidate enhancers (labeled ii–iv) that reside 32, 14, and 9 kb upstream of 

PRKCB were paired with PRKCB, but a fourth (i) that lies 50 kb upstream was not (shown: 

hg19 chr16:23791225–23851797; iii is e-PRKCB in Figure 4A).

(B) A single candidate enhancer (e-PTGER3 in Figure 4B) located 371 kb downstream of 

PTGER3 was paired with PTGER3 (shown: chr1:71104684–71582921).

(C) Two candidate enhancers paired with GYPC (ii–iii) lie in the 11 kb region upstream of 

GYPC. However, a third candidate enhancer (i) immediately adjacent to (ii) was not paired 

with GYPC (shown: chr1:71104684–71582921; ii is e-GYPC in Figure 4C).
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(D) Targeting five candidate enhancers (i–v) located 30.5, 87, 93.4, 94.1, and 97.6 kb 

upstream of NMU, significantly reduced expression of NMU (shown: chr1:71104684–

71582921; iii-iv is e-NMU in Figure 4D).

Target genes’ normalized expression presented on log scale.

Asterisks denote the candidate enhancers that were targeted as part of a singleton replication 

experiment (Figure 4). + and - denote thecells from the at-scale screen with or without 

gRNAs targeting that locus. Percent changes and p values denote the size and significance of 

a differential expression between these cell groups.
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Figure 6. Characteristics of K562 Enhancer-Gene Pairs
(A) Paired candidate enhancers fall close to target genes. Distribution of distances between 

the paired candidate enhancers and their target gene’s TSS (top row, high confidence pairs; 

second row, lower confidence pairs), the TSS of whatever K562-expressed gene is closest 

(third row), or the TSS of every K562-expressed gene within 1 Mb (fourth row). Plotted with 

respect to gene orientation. Of the 470 high confidence pairs, this plot displays only the 354 

that fall upstream of the target genes (as the gRNA library does not include candidate 

enhancers within 1 kb of any gene body, downstream enhancers are biased to fall further 

from the target TSS). A TSS-focused zoom of this plot is included as Figure S5E.

(B) 317 of 470 high-confidence pairs target the most proximal K562-expressed gene. Target 

genes are ranked by their absolute distance to the paired candidate enhancer (1 = closest, 2 = 

second closest, etc.).

(C) This framework captures regulatory effects on genes from a broad range of expression 

levels (expression = mean transcript UMIs/cell in the entire 207,324 cell dataset, for 13,135 

K562-expressed genes, 10,560 of these within 1 Mb of a targeted candidate enhancer in the 

scaled experiment, and 470 high-confidence enhancer-gene pairs). See also Figure S5D.

(D) Paired candidate enhancers tend to fall in enhancer-associated ChIP-seq peaks that show 

stronger signals. All ChIP-seq peaks that overlap the scaled experiment’s 5,779 candidate 
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enhancers were divided into quintiles defined as the average enrichment in ChIP-seq peak 

region (0 = no such peak overlaps the candidate enhancer, 1 = lowest, 5 = highest). 

Histograms of the proportion of which candidate enhancers in each quintile that were paired 

with a target gene are shown for the eight most-enriched ChIP-seq datasets.

(E) Enhancer-gene pairs interact more frequently in K562 Hi-C data (left, fractional ranking 

of enhancer-gene pairs’ Hi-C interaction-frequency against all other possible interactions at 

similar distances within the same TAD, K-S test against a uniform distribution p value <2e - 

16), as compared to two control distributions: paired target gene TSSs paired with a shuffled 

genomic locus (middle: K-S test versus actual enhancer-gene pairs distribution = p value 2e - 

7) or paired candidate enhancers paired with a shuffled genomic locus (right, K-S test versus 

actual enhancer-gene pairs distribution = p value 1e - 9). See also Figures S5B and S5C.

See also Table S4.
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Figure 7. CRISPRi Is Robust to Multiplexing within a Cell
(A) A biological replicate of the pilot study, targeting the same 1,119 candidate enhancers 

and 381 TSSs, was performed at a low MOI (median 1 ± 1.6 gRNAs identified per cell).

(B) A total of 41,284 single cell transcriptional profiles were generated. Each perturbation 

was identified in a median of 43 ± 16 single cells.

(C) Correlation of effect sizes for TSS controls (top, purple) or enhancer-gene pairs 

identified in the scaled experiment (10% empirical FDR, bottom, orange) across increasing 

rates of gRNA per cell (left, 1 versus 15; middle, 15 versus 28; right, 1 versus 28 gRNAs/

cell). Point sizes are proportional to each target gene’s expression level.

(D) The ratios of repression for each TSS control or paired candidate enhancer (as identified 

with a 10% empirical FDR in any experiment) in the low MOI experiment versus a high 
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MOI experiment (top = median 1 gRNA versus 15 gRNAs; bottom = median 1 gRNA versus 

28 gRNAs). The candidate enhancer outliers with stronger effect sizes in the low MOI 

experiment (right panel, ratios in long left tail) are likely largely due to stochastic under-

sampling of lowly expressed target genes in the low MOI experiment (see also Figure S6).
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