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ABSTRACT Malaria is a vector-borne disease that involves
multiple parasite species in a variety of ecological settings.
However, the parasite species causing the disease, the
prevalence of subclinical infections, the emergence of drug
resistance, the scale-up of interventions, and the ecological
factors affecting malaria transmission, among others, are
aspects that vary across areas where malaria is endemic. Such
complexities have propelled the study of parasite genetic
diversity patterns in the context of epidemiologic investigations.
Importantly, molecular studies indicate that the time and spatial
distribution of malaria cases reflect epidemiologic processes
that cannot be fully understood without characterizing the
evolutionary forces shaping parasite population genetic
patterns. Although broad in scope, this review in the
Microbiology Spectrum Curated Collection: Advances in
Molecular Epidemiology highlights the need for understanding
population genetic concepts when interpreting parasite
molecular data. First, we discuss malaria complexity in terms
of the parasite species involved. Second, we describe how
molecular data are changing our understanding of malaria
incidence and infectiousness. Third, we compare different
approaches to generate parasite genetic information in the
context of epidemiologically relevant questions related to
malaria control. Finally, we describe a few Plasmodium genomic
studies as evidence of how these approaches will provide new
insights into the malaria disease dynamics. *This article is part
of a curated collection.

INTRODUCTION
Malaria is a vector-borne parasitic disease endemic in
tropical and subtropical regions worldwide. Despite
progress on reducing its burden, nearly 40% of the
world’s population remains at risk of infection (1).
Malaria is caused by protozoa of the genus Plasmodium

(Apicomplexa: Plasmodiidae), a diverse group that
infects a variety of vertebrate hosts, including primates
(2–4). Such diversity has led to a disease involving
multiple parasites and vector species across various
ecosystems worldwide (1).

There are four species of Plasmodium that commonly
infect humans: Plasmodium falciparum, Plasmodium
malariae, Plasmodium ovale, and Plasmodium vivax. Of
these, P. falciparum and P. vivax cause most cases of
malaria morbidity, and mortality (1). These parasites
emerged independently as human pathogens during
the radiation of a Plasmodium clade associated with
nonhuman primate and rodent hosts (3, 4) and that
appears to be older than the origin of hominids (4–7)
(Fig. 1). Such complex evolutionary history may explain
the biological differences between parasite species
causing human malaria (2–7).
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There are definite similarities in the life cycles among
all Plasmodium species. In all species, a fraction of the
circulating parasites in the blood (merozoite) differen-
tiates into sexual stages (gametocytes) that are then taken
up by the mosquito vector (Fig. 2). However, there are
also marked differences between these parasite species in
terms of their life histories. For example, P. falciparum
infection produces gametocytes after a longer period
than does P. vivax infection, but P. falciparum gameto-
cytes are infectious longer than those in P. vivax (8). Such

differences may affect their transmission and how
interventions affect their fitness (8, 9).

Plasmodium vivax and P. ovale develop a dormant
liver stage (hypnozoite) that reactivates, causing relapse
(infection of the red blood cells) after several weeks
(to months or years) of the primary infection. Thus, a
radical cure of a malaria patient with any of these two
parasites requires eliminating those dormant stages not
found in P. falciparum or P. malariae (1, 2). On the
other hand, P. falciparum-infected erythrocytes can

FIGURE 1 Phylogeny of Plasmodium parasites based on the mitochondrial genome. The
phylogenetic tree shows all the Plasmodium species parasitic to humans, including those
that cause zoonotic malarias. Although not a comprehensive phylogeny, it evidences that
parasites causing human malaria are not a monophyletic group.
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adhere to the endothelium of capillaries and venules, a
process mediated by a gene family without clear ortho-
logs in the other human malarias (10). This process,
called sequestration, is linked to severe clinical presen-
tations that are seldom observed in other non-falciparum
malaria infections (11, 12). In contrast, P. malariae, if
untreated, can produce a chronic infection that remains
latent in blood for years (2).

The distributions of these malaria parasites also vary
worldwide (1); there could be only one species in some
areas where malaria is endemic, while all four Plasmo-
dium species can coexist in others. Plasmodium vivax
can be present in temperate zones, whereas the other
human parasites are generally restricted to tropical and
subtropical regions (1, 2). Plasmodium falciparum and
P. vivax may have overlapping distributions in many

FIGURE 2 Plasmodium life cycle. The Plasmodium haplontic life cycle comprises a ver-
tebrate host and a dipteran vector. In human malarias, an infected female Anopheles
mosquito inoculates haploid sporozoites into the host. These sporozoites invade the liver
cells and mature into schizonts. The schizonts rupture, releasing merozoites that infect
the red blood cells. Some species develop dormant liver stages or hypnozoites that can
produce merozoites at a later time (relapse). A fraction of merozoites differentiates into
gametocytes (micro- and macrogametocytes). All these stages are haploid. These
gametocytes are then taken up by an Anopheles mosquito, in which zygote formation
takes place (diploid stage). Due to the nature of the cycle, inbreeding is common. The
zygote differentiates into ookinetes and oocysts, the latter with a syncytial cell or
sporoblast containing thousands of nuclei in whichmeiosis takes place, producing haploid
sporozoites.
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areas of endemicity outside sub-Saharan Africa but
could differ in their temporal and spatial occurrence at a
local scale (13–15). In addition to these four Plasmodium
species, zoonotic infections and potential animal re-
servoirs further complicate malaria epidemiology.

The most recognizable zoonotic malaria agent is
Plasmodium knowlesi, a parasite found in nonhuman
primates from Southeast Asia (Fig. 1) (4, 16, 17). Al-
though human-to-human transmission has not been
demonstrated, the incidence of this zoonosis is increasing
in some areas compared to the more common human
malarias (1, 18). How this zoonosis affects the goal of
eliminating the disease is a matter that requires some
discussion in countries such as Malaysia (1). In addition,
there is growing evidence indicating that another nonhu-
man primate parasite from Southeast Asia, Plasmodium
cynomolgi, could naturally infect humans, even as an
asymptomatic infection (19, 20). The actual prevalence of
human P. cynomolgi infections seems to be low, and there
are no indications of human-to-human transmission (20).

The possibility of anthropozoonotic malaria cycles
may also hamper elimination efforts in regions such as
South America, as there are studies indicating that
nonhuman primates may act as reservoirs (21, 22). Two
previously accepted nonhuman primate species, Plas-
modium brasilianum and Plasmodium simium, are likely
synonyms of P. malariae and P. vivax, respectively,
found in humans (4, 23). The interpretation of these
findings, however, remains elusive. It has not been ruled
out that nonhuman primates could be actively infected
by human parasites without spillback to humans. This
has been observed in Africa in a process in which the
vectors may play a critical role (24, 25).

All these factors, together with the uneven scale-up of
control interventions across regions of endemicity, drive
a constantly changing malaria epidemiology. Unveiling
such complex dynamics requires the use of molecular
approaches and parasite population genetics.

MOLECULAR TOOLS IN MALARIA
EPIDEMIOLOGY
Detecting parasite genetic material is critical when tra-
ditional epidemiologic and clinical data, on their own,
cannot inform about processes leading to the observed
incidence and distribution of cases. Studying parasite
genetics allows us to (i) estimate the real incidence rate
and prevalence by detecting subclinical infections or
submicroscopic peripheral parasitemia, (ii) identify
potentially infectious individuals by targeting genes
expressed in gametocytes, (iii) differentiate a recrudes-

cent case from a new infection, (iv) evaluate interventions
(e.g., surveillance of mutations associated with drug re-
sistance or alleles of an antigen targeted by a vaccine), (v)
assess how spatial connectivity sustains malaria trans-
mission by measuring the parasite gene flow-migration-
colonization patterns, (vi) link parasite loci with pheno-
types of interest such as drug resistance or genes that
affect pathogenesis, and (vii) detect zoonotic or anthro-
pozoonotic infections (16, 20, 22, 26–30).

Given the broad application of molecular technolo-
gies in malaria epidemiology (Fig. 3), in this review,
commonly used methods are discussed intertwined with
population biology and population genetics questions
wherever these connections are relevant. In order to
assist the reader, Fig. 3 shows a diagram linking mo-
lecular techniques in the context of problems that are
commonly addressed.

DETECTING THE PARASITE USING
MOLECULAR METHODS
Although confirmation of a Plasmodium infection is a
necessary step in managing a malaria case, scaling up the
use of molecular diagnostic techniques in the context of
elimination and control remains a work in progress (26,
31). A precise diagnosis (detection) allows for studying
how risk factors drive incidence and the distribution
of cases (27, 28). It is also essential to assess the efficacy
of deployed interventions (27, 30–32). Given its impor-
tance, testing and developing molecular diagnostic
methods constitute an active research area. Those
readers interested in this issue could check one of the
many reviews available (32–34). Here the focus is limited
to some aspects of diagnostics that affect population-
level investigations.

The examination of thick blood smears using light
microscopy remains the standard for malaria laboratory
confirmation (1, 31). Unfortunately, microscopy shows
reduced sensitivity when parasitemias are low; such is
the case for asymptomatic patients (26, 34–36). It also
lacks the power to detect zoonotic and anthropo-
zoonotic infections that may be important in some
settings (16, 20–22). In addition, sustaining dependable
microscopists is challenging in underserved areas or
wherever malaria transmission is no longer perceived as
a threat. These problems have led to the development
of rapid diagnostic tests (RDTs) based on immuno-
chromatographic detection by monoclonal antibodies
against specific parasite proteins (32).

Current RDTs detect Plasmodium-specific antigens
such as falciparum-specific histidine-rich protein 2 and
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histidine-rich protein 3 (HRP-2 andHRP-3, respectively)
or Plasmodium-specific lactate dehydrogenase and al-
dolase (1, 26, 31, 32). RDT results are reproducible and
rapidly available, and RDTs require minimal training
and no instrumentation or dedicated facilities (31, 32).
There are still technical limitations, such as reduced
sensitivity with samples from malaria patients with low
parasitemias (e.g., P. vivax and P. malariae), as well as
handling problems that cause denaturation of anti-
bodies. Importantly, the Pfhrp-2 and Pfhrp-3 genes are
located in subtelomeric regions, areas of the Plasmodium
genome that undergo frequent recombination and re-
arrangements. As a result, there are Pfhrp-2 gene poly-
morphisms (37), including different forms of Pfhrp-2
and Pfhrp-3 deletions in P. falciparum, affecting the
efficacy of RDTs. Such deletions were initially discovered
in Peru, but there are reports of their occurrence world-
wide (34, 37–41). It has been proposed that the preva-
lence of these Pfhrp-2 and Pfhrp-3 deletions could be
selected for by the deployment of the RDTs, as those
parasites are “undetected” and not treated (28, 37, 38).
A stochastic simulation model suggested that the use of
Pfhrp-2-detecting RDTs was sufficient to select for
Pfhrp2 and -3 double deletions in this parasite species,

prompting the WHO to recommend implementation of
surveillance activities in identified regions of concern (40).

In addition to RDTs, there are a variety of molecular
methods, including conventional PCR, quantitative re-
verse transcription-PCR (qRT-PCR), RT-PCR, and
loop-mediated isothermal amplification. These methods
target the 18S rRNA, mitochondrial genes, and repeti-
tive sequences (20, 26, 27, 32–34, 37, 42–44). Their
commonality is that these methods target parts of the
parasite genome found in multiple copies, increasing
their sensitivity when parasitemias are low. However,
these methods are costly, and some require dedicated
infrastructure and a high level of technical training,
limiting their use mostly to research projects.

Although still limited compared with the use of mi-
croscopy or RDTs (1, 26, 31, 34), the use of molecular
diagnostic methods has changed our perception of ma-
laria transmission. There is overwhelming evidence in-
dicating that a significant proportion of the malaria
incidence rate is comprised of asymptomatic infections
(13, 26, 34–36, 44–46). Thus, the attention is shifting
from solely focusing on passive case detection (clinical
cases) to understanding how asymptomatic subclinical
infections may compromise control and elimination

FIGURE 3 Approaches in malaria molecular epidemiology. Shown are techniques and
approaches commonly used to generate molecular information in the context of epi-
demiologic investigations.
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efforts by sustaining transmission (8, 26, 30, 35, 45–47).
In addition, the actual prevalence of non-falciparum
malarias, such as those caused by P. malariae and
P. ovale, is now considered higher than previously
thought (48), particularly as part of mixed infections.
Finally, the discovery of zoonoses such as those caused
by P. knowlesi and P. cynomolgi has been possible be-
cause of the use of molecular methods (16–23).

INFERRING THE PREVALENCE
OF INFECTIOUS PATIENTS
Understanding malaria epidemiological patterns
requires deconstructing the incidence rate and clinical
outcomes in terms of population-level processes. There are
multispecies/multistage approaches to perform blood stage
and gametocyte quantification by qPCR and qRT-PCR (8,
49, 50). Such data are helpful in parameterizing mathe-
matical models developed to understand transmission and/
or inform interventions (for examples, see references 9 and
51). As an example, many control strategies were deployed
under the assumption that acquired immunity renders a
person noninfectious, so asymptomatic infections in semi-
immune individuals do not have a meaningful role in
transmission (52, 53). Ascertaining differential patient
infectiveness (e.g., those with clinical manifestations com-
pared to asymptomatics) requires detecting and quantify-
ing gametocytes (8, 49, 54).

Molecular assays (e.g., qRT-PCR) have been developed
to detect and measure genes expressed in gametocytes,
such as Pfs25 in P. falciparum and Pvs25 in P. vivax (8,
46, 49, 50, 55–61). Using such approaches, it has been
shown that asymptomatic P. falciparum patients can in-
fect mosquitoes fromAfrica (57). There are only a handful
of studies from areas with low transmission outside
Africa, or on any of the other malarial parasites. However,
pioneering investigations with P. vivax have found com-
parable expression levels of Pvs25 in symptomatic and
asymptomatic patients in South America (55, 58). There
is also progress in assessing the differential contributions
of lineages to gametocyte production, as well as pos-
sible within-host interactions, by targeting gametocyte-
expressed polymorphic loci in P. falciparum (e.g., pfs230
and pfg377) (8, 59, 60). Analogous approaches for other
malarial parasites have not been reported yet.

Nonetheless, gametocytemia and infectiousness are
the results of a process that is still poorly characterized
(50, 60–62); it is not a static parameter that can be es-
timated by sampling at a given time point and that is
directly comparable across studies (50, 60, 61). Thus,
developing gametocyte markers and approaches that

identify groups of individuals that disproportionally
sustain transmission (e.g., asymptomatic patients) is
becoming a critical issue in the context of malaria
elimination (8, 60–62).

STUDYING PARASITE GENETIC DIVERSITY
Beyond the detection of asexual or sexual stages
(infected and infectious patients), many molecular epi-
demiologic investigations follow or characterize parasite
genetic variants. Parasite genotyping initially focused on
the prevalence of mutations conferring resistance to
antimalarial drugs or on the diversity of genes encoding
antigens considered vaccine candidates (27, 28). The
controversies around the so-called “clonal theory of
parasitic protozoa,” however, energized the incorpora-
tion of population genetics concepts into malaria epi-
demiology (63).

At the time that the clonal theory was proposed,
many considered sexual reproduction as a simile to lack
of linkage disequilibrium and high genetic diversity (63).
As a result, finding population structures (nonrandom
mating) (64) in Plasmodium somehow was not expected
(63). The observation of linkage disequilibrium (associ-
ation of alleles segregating in different loci) in P.
falciparum demonstrated that population expansion of
linked groups (also called clonal expansions) was a rel-
atively common phenomenon. This early work led to a
better understanding of how linkage disequilibrium in
malaria parasites was driven by inbreeding or selection
(27, 28, 64–66) and also brought attention to charac-
terizing parasite genetic diversity in order to understand
disease dynamics. Nowadays, measurements of parasite
genetic polymorphisms are part of many epidemiologic
studies covering topics ranging from assessing how
transmission intensity affects the complexity of infection
to identifying/following polymorphisms on genes linked
to drug resistance or other forms of selection, such as
antigenic variation (10, 27–29).

There are several methods available for parasite
genotyping (27, 28), including single (or targeted)-gene,
multilocus, and genomic approaches (Fig. 3). Researchers
need to consider the advantages and limitations of each
method in the context of their specific studies. An es-
sential task in any molecular epidemiologic study, how-
ever, is to envision the expected molecular pattern under
a specific epidemiologic outcome or set of assumptions.

Traditionally, the sampling in epidemiologic inves-
tigations focuses on collecting specimens in a defined
population of patients in terms of time and space (27,
31). However, the time and spatial scales where the
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malaria cases occur will not fully account for the evo-
lutionary time and processes behind the genetic patterns
in the parasite populations. Leveraging on the dif-
ferences between the evolutionary time scale in the
parasite and the observed epidemiology informs about
the disease dynamics in ways that cannot be achieved by
using solely traditional metrics (27, 28, 65–70).

There are two sources of variation in any epidemio-
logic study using parasite genetics. One is the sampling
of cases that is addressed by estimating the number of
specimens to be collected given the question; this source
of variation is considered by epidemiologists when they
estimate their sample sizes. The other source of variation
comes from the evolutionary processes that affected
the sampled parasite loci that also need to be inferred
or modeled. Those processes are genetic drift (related to
historical demographic changes in transmission and
random uneven reproduction of parasite lineages), type
of mutations (point mutations or changes in the number
of repeats), mutation rates (given by the loci functional
constraints and mode of evolution), or whether such
allelic variants affect the parasite fitness (genetic variants
encoding phenotypes with different degrees of repro-
ductive success or natural selection) (27–29, 64, 65, 67).
These processes may also affect a set of loci differently
depending on other factors, such as inbreeding (self-
fertilization) and their relative locations in the chromo-
some (64).

As a result, a study design requires thinking about the
sampling at those two levels: the number of individuals
and number and type of loci. If the question involves
estimating a frequency (e.g., a mutation) in a population
or any other metric that consists of reporting the fre-
quency of parasite variants at the level of infections (e.g.,
the multiplicity of infection; see below), the sampling
should focus on individuals (cases). However, many
questions require also focusing on the number of loci
and whether they are linked (alleles at those loci do not
segregate independently, likely due to their proximity in
the chromosome) or unlinked (recombination allows
alleles at those loci to segregate independently) (64). This
is important when a study aims to compare whether two
infections are generated by the same parasite (e.g., sep-
arating recrudescence from new infections), patterns in
the parasite genetic diversity (e.g., population structure
or geographic differentiation), or contrasting cases and
controls given a phenotype (e.g., discovering mutations
linked to a particular phenotype such as drug resistance;
see below), among other investigations (27–29, 65, 71,
72). In all cases, the quality of phenotypic and epide-
miologic metadata associated with the specimens will

limit the information derived from the parasite genetic
data. In the following sections, we describe different
types of studies that interrogate parasite molecular data.
Those studies will progressively show, following a his-
torical trend, the link between epidemiology and popu-
lation genetics.

Antimalarial Drug Surveillance
A method that was widely used incorporated PCR and
restriction fragment length polymorphism to detect P.
falciparum mutations associated with drug resistance to
antimalarial drugs such as sulfadoxine-pyrimethamine
and chloroquine (27, 73, 74). These methods and others
follow the frequency of each mutation as an independent
locus. This approach has limitations when the goal is to
follow alleles with multiple mutations (e.g., double or
triple mutants) that differ in their levels of resistance (69,
75). In particular, alleles sometimes cannot be ade-
quately reconstructed from single-mutation reports be-
cause they are derived from patients infected by multiple
parasite lineages that differ in their mutation profiles. A
classic example is the three mutations in the Pfdhfr gene
conferring resistance to pyrimethamine in P. falciparum.
Those mutations could be found in a given sample;
however, whether this indicates an infection with two
alleles (two parasite lineages), each containingmutations
with intermediate resistance (two mutations), or a single
highly resistant triple mutant allele is difficult to ascer-
tain from a table with the frequency of individual
mutations (69, 75). Although the technology has
changed, the approach of tracking individual mutations
is still prevailing, as in the case of those reported in the
Pfk13 gene associated with delayed artemisinin parasite
clearance in P. falciparum (70).

Multiplicity of Infection
The first genotyping methods relied on agarose electro-
phoresis to detect genes encoding surface antigens with a
variable number of tandem repeats (76). These methods
are still in use around the world (27, 28). The loci more
commonly sampled are Pfmsp2 and Pfglurp in P.
falciparum (there are no orthologs of these loci in
P. vivax), Pvmsp3α in P. vivax (with no ortholog in P.
falciparum) (77, 78), and msp1 and csp in both species
(27, 71, 76, 79). Some of these antigen genes, such as
Pfmsp2 and Pfmsp1 (P. falciparum), have two or more
groups of alleles that share particular motifs (24, 71).
These groups are referred to as allele families. Usually,
fragment size polymorphisms are studied after identify-
ing the allele family as part of the genotyping process
(71). This approach has proven useful to determine the
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number of different parasite genotypes coinfecting a
single patient, or multiplicity of infection (MOI) (80).

MOI reflects coinfections (two or more genotypes
being transmitted simultaneously by a mosquito) and
superinfections (multiple but independent infections). As
a result, the frequency of infections by multiple lineages
is expected to decline as transmission decreases, and
superinfections/coinfections become less likely (28, 65,
80–83). However, the relationship between MOI and
transmission is far from linear (68, 80–84).

MOI is a summary of several processes, including the
genealogy of the circulating parasites (e.g., a superinfec-
tion by identical parasites at a given locus cannot be
detected) and the characteristics of the infection (e.g.,
superinfections may be more likely in asymptomatic
patients with a long time of exposure). Studies also in-
dicate that the prevalence of multiple infections is affected
by a variety of other factors, including age and immunity
(27, 28, 82). In addition, there is variance in transmission
driven by spatial differences in mosquito biting rates (28,
65). Thus, large-scale geographic associations between
MOI and transmission may be difficult to observe be-
cause of a combination of these factors (84, 85).

MOI can provide valuable information in the context
of following changes in transmission longitudinally in
a specific location (86). Indeed, cross-sectional and lon-
gitudinal studies indicate that the prevalence of P. falci-
parum single clonal infections increases with a reduction
in malaria transmission (28, 66, 87–89). However, these
trends in MOI have not been observed for P. vivax (28,
65, 84, 90, 91), for which multiclonal infections remain
common even in low-transmission areas (28, 65, 84, 90).
This could be the result of hypnozoites from prior infec-
tions accumulating in the liver and thus causing multiple
relapses of distinct genotypes (28, 65). Unfortunately,
there are no data published on P. ovale and P. malariae.

It is worth noting that MOI has also been used as a
proxy for intrahost dynamics under the hypothesis that
competition between parasite lineages may relate to dis-
ease severity (reviewed in reference 82). Like in the case of
transmission, there is conflicting evidence on howMOI is
associated with disease severity in human malarias. Part
of the problem is the variety of genotyping methods used
(not only fragment size polymorphism; see below) and
that often studies do not include suitable controls (82, 86,
90, 91). Thus, understanding and measuring MOI re-
quire well-planned epidemiologic investigations.

Single-Gene Studies
Many studies rely on sequencing partial or complete
genes from the nuclear or organelle genomes of Plas-

modium spp. These investigations aim to characterize
the diversity of a vaccine candidate, genes involved in
pathogenesis, or genes encoding drug targets that may
harbor point mutations that result in a drug-resistant
phenotype (10, 27, 78, 92–95). In addition, this ap-
proach has been used to understand global patterns of
diversity, including the malaria parasites’ evolutionary
histories, gene flow, and/or population structure (94,
96–102).

These types of investigations have contributed to our
knowledge of malaria genomic epidemiology. In the
context of genes encoding antigens, single-copy genes
expressed in the infective stage inoculated from the
mosquito vector, the sporozoite, and the erythrocytic
state (merozoite) tend to be more polymorphic than those
expressed in the gametocyte or in the mosquito vector
(10, 27, 94, 96). Among orthologous genes, P. falciparum
and P. vivax show differences in terms of how natural
selection drives the observed pattern of polymorphism
(94, 103–105). Finally, patterns from the mitochondrial
genome (considered a single-locus approach because of
lack of recombination) and housekeeping genes indicated
that P. vivax is far more diverse than P. falciparum (97–
99, 101). This pattern was also evidenced whenever
orthologous genes encoding antigens were studied.

The target gene approach is enriched by the use of
next-generation sequencing (NGS) technologies. In
particular, NGS on targeted amplification can detect the
relative abundance of different alleles in a single infec-
tion by counting hundreds of overlapping reads in
polymorphic regions. Thus, coupled with appropriate
sampling, NGS can inform intrahost dynamics in a way
that Sanger sequencing and other genotyping methods
cannot. These technologies have been used in the context
of evaluating vaccine efficacy, following dynamics of
mutations associated with drug resistance, measuring
the complexity of infections (MOI), and differentiating
recrudescence from new infections (91, 106–110).

Multilocus Genotyping
Multilocus genotyping studies seek to understand pro-
cesses that deviate from the expectation of random
mating (population structure), as well as the dispersion
of alleles linked to particular phenotypes of interest
(e.g., drug resistance). The genome is sampled by geno-
typing several loci so linkage disequilibrium and other
population-level parameters can be characterized. Linkage
disequilibrium (LD), however, can emerge for a variety of
reasons. First, loci could be physically close in the ge-
nome. This can be very informative if such loci are linked
to mutations that confer resistance to an antimalarial
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drug. In such cases, characterizing multilocus haplotypes
can be used to establish whether drug resistance origi-
nated one or more times. Second, linkage can emerge
because of processes that affect random mating, such as
inbreeding, reduction of the effective population size,
epidemic expansions, and geographic isolation (28, 64,
65). The available evidence indicates that population
structures are commonly observed in malarial parasite
populations; the use of these patterns to deploy and
evaluate the efficacy of interventions remains an area of
extensive research (28, 65, 69, 83).

Two types of loci are commonly used in multilocus
genotyping: microsatellites (65, 67, 68, 82, 83, 111,
112) and single nucleotide polymorphisms (SNPs) (113,
114). These loci can be used separately or in combina-
tion; they document similar processes (69, 75, 115–118).
Microsatellites are abundant in Plasmodium spp., but
their characteristics change across species. While the P.
falciparum genome has an average of one microsatellite
locus per 2 to 3 kb of sequence, the P. vivax genome has
far fewer microsatellites, and they usually occur in more
complex patterns (112). An advantage of microsatellites
is that they have a higher mutation rate than SNPs,
which allows detection of recent events with fewer loci
(65, 72). A limitation, however, is that microsatellites
evolve according to complex evolutionary models and
are not equally suitable worldwide (67, 68, 112).

Using these loci, researchers can study different
aspects of population structure, such as linkage dis-
equilibrium and gene flow (65, 66, 72, 83). We know
that P. falciparum and P. vivax have undergone clonal
expansions as evidenced by extensive linkage disequi-
librium (28, 65, 66, 69, 87–89, 118). Indeed, inbreeding
seems to be critical to explain many of the observed
patterns (65, 66, 119). Furthermore, clonal lineages tend
to replace each other through time and space (65). When
P. falciparum populations are compared across con-
tinents, it is found that genetic diversity and recombi-
nation rates are highest in areas of holoendemicity and
lowest in regions of hypoendemicity of Central and
South America (28, 65, 66, 87–89, 118). In contrast,
P. vivax genetic diversity was found to vary worldwide
and does not follow the same pattern (28, 65, 111, 120,
121). While transmission affects the inbreeding rate,
diversity in the parasite population by itself can be
affected by (among other factors) historical processes or
selective sweeps (28, 64, 66, 69, 96–101). In such cases,
polymorphisms physically linked to mutations that are
increasing in frequency because they are being selected
for (e.g., conferring drug resistance) leave a specific
pattern involving a reduction of genetic diversity in the

chromosome region harboring such mutations (64, 69,
116, 117, 122–125). In such investigations, micro-
satellites have been used to understand the multiple
geographic origins and dispersion of haplotypes with
mutations conferring drug resistance in P. falciparum
(69, 75, 115–117, 124).

SNPs are starting to replace microsatellites in several
contexts given their high reproducibility, which allows
exploration of patterns over long periods and spatial
scales. However, they have some limitations. Given their
relatively low mutation rate compared to that of
microsatellites, usually a larger number of loci is re-
quired to find the same patterns (72). In addition, as-
certainment bias is a problem in some contexts. In
particular, SNPs may be identified in relatively small
sample sizes and may be more likely to reflect common
rather than rare alleles (126), affecting assumptions in
some population genetic analyses (e.g., inferences about
parasite demographic history or selection). SNP data,
however, are starting to yield patterns similar to those
found with microsatellites, such as strong population
structure explained by geographic isolation and in-
breeding (91, 113, 114, 127, 128).

There are efforts directed to develop SNP typing
protocols for P. falciparum and P. vivax. Their goal is to
identify SNPs that can distinguish between parasites
from different geographic areas (113, 114) or separate
new infections from a recrudescence (91, 129). Many of
the SNPs currently used in P. falciparum have been se-
lected from different chromosomes so that demographic
processes, including infection origin, can be studied
(113, 114). These sets of standardized SNPs are usually
referred to as a molecular barcode (113, 114). However,
recombination between different parasite lineages will
break such multilocus genotypes, so the term barcode
used literally could be misleading. As in other ap-
proaches, the use of SNPs is challenged by multiclonal
infections (28, 90, 91).

In addition to gene flow and population structure,
multilocus genotyping has been used to assess changes in
transmission intensity. However, the parasite genetic
diversity is likely affected by events across multiple
transmission events (years), whereas a change in malaria
incidence may occur within weeks. Like in the case of
MOI, studies seek to identify patterns of genetic diversity
consistent with changes in transmission, such as a bot-
tleneck in the parasite population as a result of scaling
up interventions that should decrease the parasite pop-
ulation (63, 64, 127, 128). This will lead to changes in
allele frequencies, with the expected outcome that ge-
netic variation will be lost in response to the declining
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transmission. A first approximation is detecting changes
in linkage disequilibrium. As stated earlier in the context
of MOI, the proportion of infections comprised of a
single genotype (monoclonal) is expected to increase
when transmission declines, so the inbreeding rate is
expected to rise (28, 68). Thus, the number of infections
by identical nonsegregating genotypes (linkage disequi-
librium or LD) is expected to increase (28, 65, 68, 113,
127, 128, 130). However, in settings where a dramatic
increase in transmission occurred after a sustained de-
crease in malaria incidence, many infections were shown
to be caused by identical or highly related parasites (a so-
called clonal expansion identified by multilocus geno-
types that are stable in time and space) (68, 130). Thus,
the observed high LD reflects the past population
reduction (clonal expansion of a few lineages) rather
than the ongoing increase in transmission. Measuring
LD, however, is challenging in areas where multiclonal
infections are common simply because the circulating
lineages may be difficult to reconstruct (28, 83, 113,
114, 130).

Alternatively, other studies have attempted to follow
changes in genetic diversity (heterozygosity). However,
heterozygosity may show even more complex patterns
than LD since they depend on the effective population
size (see below) and the mutation rate of the loci
under study (28, 120). Changes in genetic diversity could
be almost undetectable if there are a few genetically
divergent inbred lineages coexisting in an area. The
parasite heterozygosity seems to be less affected by a
reduction of malaria incidence of short duration (28, 68,
83, 131).

Lastly, some studies have aimed to estimate changes in
the parasite effective population size, Ne (68, 120, 131).
Ne measures the uneven reproductive success of parasite
lineages, so it directly measures genetic drift (64). While a
reduction in the effective population size is expected if
transmission is reduced (120, 131), there are many factors
that could make such an outcome difficult to detect in the
context of epidemiologic investigations. First, there are
multiple ways to estimate Ne, each one focusing on dif-
ferent aspects (e.g., number of parents or differences in
the number of progeny) (64, 68, 131). Second, an increase
in malaria incidence could be driven by closely related
parasites and/or high variance in the number of secondary
infections generated by infected individuals (super-
spreaders) that will yield a low Ne (68). Third, Ne
estimates might be inflated by migration or population
substructure (131). Finally, the number of infections that
sustains the parasite population between transmission
seasons may have a greater impact on Ne than the total

number of cases in a given year or the number of cases
during the high-transmission season (131).

How to incorporate such concepts asNe into a metric
useful to those working on malaria control is a matter
for discussion (68, 120, 131, 132). Nevertheless, genetic
information and population genetic parameters can in-
form how increasing incidence may actually be driven by
local parasites rather than an introduction due to mi-
gration, and these observations can be used by control
programs to evaluate their efficacy in the context of
elimination (28, 68, 131, 132).

Whole-Genome-Sequence-Based Methods
Population genomics is a growing field with a significant
impact on malaria molecular epidemiology. However,
eliminating human DNA contamination remains a
challenge, especially for P. vivax given the absence of a
reliable culturing system. Fortunately, there has been
substantial technical progress in that regard (133, 134),
leading to many genomic studies reported for malarial
parasites (29, 116, 132, 135–144).

Of particular importance are genome-wide associa-
tion studies (GWAS) used to determine the molecular
bases of antimalarial drug resistance. The idea is to de-
tect specific patterns in the genome indicating that a
mutation has been selected for (directional selection)
(122, 123). In particular, when the frequency of a mu-
tation increases as a result of its selective advantage (e.g.,
it confers drug resistance), it is expected that the physi-
cally linked region of the genome will also increase
in frequency via hitchhiking (122, 123), showing the
same genetic background in high frequency; this process
is commonly called a selective sweep. The size of the
genome region affected by a selective sweep will be de-
termined by the recombination rate, as in each genera-
tion, recombination may break up the otherwise linked
sites (123). Selective sweeps also result in low genetic
variation around the adaptive mutation (expected be-
cause all individuals will share the adaptive mutation
and its linked genetic background) and high haplotype
homozygosity. GWAS require specimens with pheno-
typic information so the genetic bases of such pheno-
types can be characterized. Since other factors can
generate LD patterns similar to what are found after a
selective sweep, including epidemic/clonal expansions
such as the extensive inbreeding observed in malaria
(28), it is critical to consider such processes when sam-
pling for control specimens or for specimens without the
phenotype of interest (116, 135–138).

As an example, studies on the emergence of resistance
against artemisinin combination therapy (ACT) in South
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Asia were possible because there were well-characterized
P. falciparum isolates from patients showing low para-
site clearance rates (135). By comparing those samples
with others from sensitive parasites, GWAS approaches
were able to identify genes or genomic regions associated
with altered sensitivities to ACT. In particular, a region
on chromosome 13 was first implicated (116, 136, 137),
and then a specific locus was later identified, the kelch13
gene (138). Using a similar approach, genetic markers
for dihydroartemisinin-piperaquine (an ACT) in P.
falciparum have been identified (139).

Selective sweeps related to antimalarial drugs have
also been found for P. vivax. A pattern consistent with a
selective sweep was found in Colombia at the dhps gene,
which is targeted by sulfadoxine, a drug that combined
with pyrimethamine was used to treat P. falciparum but
not P. vivax malaria (140, 141). These mutations have
also been found in other P. vivax populations, indicating
that this parasite is under drug-related selective pressure
even when it is not the primary target of the drug.

One interesting finding from population genomics
studies is that P. vivax populations are far more genet-
ically diverse than P. falciparum. Even in a single pop-
ulation, P. vivax shows as much genetic diversity as a
sample including worldwide P. falciparum isolates
(140–142). This pattern was consistent with previous
observations made by single-gene and multilocus ap-
proaches (90, 98–100, 103, 111). Population genomic
approaches have also been used to detect patterns con-
sistent with positive selection that may lead to the dis-
covery of genes involved in parasite-host interaction,
including novel antigens and genes involved in invasion
(143, 144). These studies actually show how population
genomic approaches allow modeling demographic pro-
cesses (e.g., geographic structure) that may mask
signatures consistent with balancing selection.

Scaling up population genomics will require, however,
dealing with the high prevalence of multiple infections
(145, 146). There are several promising approaches that
attempt to identify chromosome fragments that are
identical by descent (similar because they share a com-
mon ancestry) even as part of multiple infections (more
than one lineage), and such approaches will likely im-
prove our understanding of the role played by natural
selection and demography in the variation emerging
from population genomics investigations (145–147).

Genome studies of P. falciparum also include com-
parative approaches against P. reichenowi, a parasite
from chimpanzees (5), while studies of P. vivax have
been carried out using P. cynomolgi, a macaque parasite
from Southeast Asia (29, 148), and a newly discovered

P. vivax-like parasite in chimpanzees (6, 7). Although
such studies seem distant from the questions formulated
by an epidemiologist, they improve our understanding
of the host-parasite relationship. In particular, these
studies are revealing that the success of Plasmodium
parasites in humans seems to be mediated by the evo-
lution of gene families that are related to pathogenesis
(5–7, 10). These studies have also identified genome
signatures consistent with positive selection on genes
that could be targeted by novel interventions. An inter-
esting result is that positive selection appears to be more
effective on single-copy genes located near telomeres
(148). It has long been known that gene families, many
located close to telomeres, are highly polymorphic and
likely under positive selection (5). However, this process
was harder to appreciate in single-copy genes. This result
(148) could be explained, at least in part, by the fact that
recombination is more common in these chromosome
regions, making natural selection more efficient. How-
ever, such results are still preliminary.

CONCLUSION
The use of parasite genetic information empowers ma-
laria epidemiologic investigations by unveiling factors
affecting transmission and clinical outcomes in new
ways. Nowadays, it is possible to study the disease dy-
namics with a combination of RNA- and DNA-based
assays that can assess the contribution of asymptomatic
or subclinical infections to malaria transmission. How-
ever, the translation of population genetic concepts into
actionable and epidemiologically relevant information
for malaria control is still a work in progress. Likely
future work will require the integration of parasite
genotyping into prospective investigations that can
train/test integrated population genetics and epidemio-
logic models. Such models can then be used by policy
makers to better deploy and evaluate interventions,
particularly in the context of elimination. Nevertheless,
genome approaches will likely allow the identification of
novel targets for interventions or biomarkers that can be
used to understand malaria transmission better in the
context of control and elimination efforts.
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