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Abstract

Cholera is a severe diarrheal disease and remains a global threat to public health. Climate change 

and variability have the potential to increase the distribution and magnitude of cholera outbreaks. 

However, the effect of heatwave on the occurrence of cholera at individual level is still unclear. It 

is also unknown whether the local vegetation could potentially mitigate the effects of extreme heat 

on cholera outbreaks. In this study, we designed a case-crossover study to examine the association 

between the risk of cholera and heatwaves as well as the modification effects of rainfall and tree 

cover. The study was conducted in Matlab, a cholera endemic area of rural Bangladesh, where 

cholera case data were collected between January 1983 and April 2009. The association between 

the risk of cholera and heatwaves was examined using conditional logistic regression models. The 

results showed that there was a higher risk of cholera two days after heatwaves (OR=l.53, 95% CI: 

1.07 – 2.19) during wet days (rainfall>0 mm). For households with less medium-dense tree cover, 

the heatwave after a 2-day lag was positively associated (OR=1.80, 95% CI: 1.01– 3.22) with the 

risk of cholera during wet days. However, for households with more medium-dense tree cover, the 

association between the risk of cholera and heatwave in 2-day lag was not significant. These 

findings suggest that heatwaves might promote the occurrence of cholera, while this relationship 

was modified by rainfall and tree cover. Further investigations are needed to explore major 

mechanisms underlying the association between heatwaves and cholera as well as the beneficial 

effects of tree cover.
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1. Introduction

Cholera is an acute diarrheal disease caused by the bacterium Vibrio cholerae (V. cholerae) 
(Reidl and Klose 2002). It is extremely virulent and can lead to death within hours if 

untreated (Glass and Black 1992; Reidl and Klose 2002). Poor environmental conditions, 

such as shortage of safe water and poor sanitation, have long been recognized as the 

illuminating factors for spread of the disease (Glass and Black 1992). Cholera incidence has 

been greatly reduced due to improved environmental conditions and implementation of 

intervention measures (Ali et al., 2012; Tappero and Tauxe 2011). However, it remains a 

global threat to public health and has emerged in some areas, such as Haiti (Barzilay et al., 

2013), and recently in Yemen (Qadri et al., 2017). It is estimated that cholera cases range 

from 1.3 million to 4.0 million each year worldwide, resulting in 21,000 to 143,000 deaths 

(Ali et al., 2015).

Evidence suggests that climate change and variability play an important role in the emerging 

and reemerging of cholera (Colwell 1996; Constantin de Magny and Colwell 2009; Islam et 

al., 2009; Lipp et al., 2002). Specifically, factors including rainfall patterns, sea surface 

temperature, and El Niño Southern Oscillation (EÑSO) are linked to the occurrence of 

cholera (Colwell 1996; Constantin de Magny and Colwell 2009; Eisenberg et al., 2013; 

Emch et al., 2010; Hashizume et al., 2008; Lipp et al., 2002; Lobitz et al., 2000; Pascual et 

al., 2000). EÑSO has showed a positive effect on cholera incidence with a 2-month lag in 

the fall period in Bangladesh (Pascual et al., 2000), while the effect may change at different 

time periods (Rodo et al., 2002). In Haiti, a significant positive correlation was found 

between rainfall and cholera incidence 4-7 days later (Eisenberg et al., 2013). The increase 

in the number of cholera cases was also observed with high and low rainfall in Bangladesh 

(Hashizume et al., 2008). While another study showed that rainfall had no influence on the 

variation of cholera incidence in Matlab area during 1988-2001(Ali et al., 2013). Several 

studies identified a positive association between temperature and cholera incidence (Ali et 

al., 2013; Lobitz et al., 2000). It was reported that the increase in minimum temperature by 

1°C was associated with 6% increase in cholera incidence in Matlab, Bangladesh (Ali et al., 

2013). It was also observed that cholera outbreaks had a significant association with the 

annual bimodal cycle of sea surface temperature (Lobitz et al., 2000). However, no 

significant association between the sea surface temperature and cholera incidence was 

observed in another study (Emch et al., 2010). Seasonality patterns also indicate an 

association between cholera occurrence and climatic factors (Ali et al., 2013; Emch et al., 

2008; Hashizume et al., 2010). The outbreaks of cholera are more frequently observed in 

warmer seasons while vary in different latitudes (Emch et al., 2008), suggesting the need to 

further investigate the effect of climate on cholera transmission (Lipp et al., 2002).

It is projected that surface temperature will rise in the 21st century under all assessed 

emission scenarios (IPCC 2014). For example, temperature may increase by 1.4 −3.1°C by 
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the end of the century under medium emission scenarios. It is likely that heatwaves will 

become more frequent and extreme precipitation will become more intense. Evidence shows 

that extreme weather events and climatic variations have a profound influence on human 

health and infectious disease transmission (Patz et al., 2005; Wu et al., 2016b). Heatwaves 

are expected to lead to an increase in cholera outbreaks because V. cholerae population may 

increase as temperature rises (Baker-Austin et al., 2013; Levy 2015). Baker-Austin et al 

(2016) reported that non-cholera Vibrio species infections were substantially higher in 

summer 2014 in northern Scandinavia during an extreme heatwave compared to previous 

years in the summer, suggesting heatwaves were associated with the emergence of vibrios in 

that area. Studies in the Baltic Sea area, the Chesapeake bay, and the coast of Bangladesh 

also demonstrated that climate factors, such as temperature and rainfall have driven the 

prevalence of V. cholerae both geographically and temporally (Baker-Austin et al., 2013; 

Constantin de Magny and Colwell 2009; Huq et al., 2005; Levy 2015). The connection 

between temperature and cholera risk is expected because the increase of the abundance of 

V. cholerae has been linked to increased water temperature in several coastal areas 

(Heidelberg et al., 2002; Huq et al., 2005; Louis et al., 2003). A positive association between 

temperature and cholera risk has also been observed (Reyburn et al., 2011). Therefore, future 

climate change will likely increase the risk of cholera outbreaks.

Greenspace, referred to land partly or completely covered by trees, grass or other vegetation, 

is expected to lower heat-related health risks (Gunawardena et al., 2017; Hondula et al., 

2018). Studies showed that greenspace, particularly trees, could effectively mitigate the 

effects of heatwaves and urban heat islands (Hondula et al., 2018; Lee et al., 2016). By 

shading and evapotranspiration, trees reduce the exposure to heat hazards and exert cooling 

effects on the ambient temperature (Hondula et al., 2018; Lee et al., 2016; Qiu et al., 2013). 

Given the effect of tree cover on extreme heat, it is likely that tree cover can effectively 

mitigate the risk of cholera associated with heatwaves.

To date, several studies have shown how temperature, rainfall and EÑSO are linked to 

cholera outbreaks (Ali et al., 2013; Eisenberg et al., 2013; Emch et al., 2010; Hashizume et 

al., 2008; Hashizume et al., 2010; Islam et al., 2009; Ohtomo et al., 2010; Pascual et al., 

2000; Reyburn et al., 2011). However, the association between extreme heat (e.g., 

heatwaves) and the occurrence of cholera has scarcely been examined (Baker-Austin et al., 

2016), and it is also unknown how tree cover might modify the effect of heatwaves on the 

occurrence of cholera. Additionally, most of the existing studies are based on time series 

analysis using population-level data (Ali et al., 2013; Hashizume et al., 2010; Islam et al., 

2009; Ohtomo et al., 2010; Reyburn et al., 2011), the results of which could not reflect the 

effect of climate factors on cholera at the individual scale. Herein, we designed a case-

crossover study and evaluated long-term (1983-2009) cholera data of a rural area of 

Bangladesh at the individual level. First, we investigated the association between heatwaves 

and cholera occurrence. We then examined the co-effects of rainfall and tree cover on the 

association between heatwave and cholera.

Wu et al. Page 3

Environ Int. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Methods

2.1. Study area

The study area, Matlab, is located approximately 57 km southeast of the capital city Dhaka, 

Bangladesh (Figure 1). During the study period, Matlab had a population of approximately 

220,000, and the majority of people worked in agriculture or fishing. Matlab is also a field 

site of International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), which 

maintains one of the most comprehensive population-based databases through a longitudinal 

Health and Demographic Surveillance System (HDSS) (Alam etal., 2017), providing a 

unique opportunity to study the relationship between climate and cholera.

2.2. Cholera data

Cholera data were obtained for individuals living in the Matlab HDSS area who were treated 

between January 1983 and April 2009 at the icddr, b hospital. We selected this study period 

because cholera incidence was lower post 2009 due to several interventions implemented in 

the study area. A cholera case was identified by isolating Vibrio cholerae O1 or O139 from 

the fecal specimen of a patient seeking treatment for diarrhea at the icddr,b hospital. For 

each case, patient’s age, sex, the household identification number, and the date of hospital 

visit were recorded. The data collection procedures were approved by the ethical review 

committee of icddr, b.

2.3. Climate data and heatwave definition

Daily temperature and rainfall data near Matlab (Chandpur station) from 1982-2001 were 

obtained from the Bangladesh Meteorological Department (BMD). Since climate data from 

BMD were unavailable after 2001, we obtained daily temperature data during 2002-2011 

from the National Climatic Data Center (NCDC), USA. Pearson correlation was performed 

using data from both sources from 2000 and 2001 to ensure consistency. Data from the two 

sources are highly correlated (r=0.953, p<0.001). Missing data (219 data points, ~ 2% of 

total data points) were replaced by averaging data from two neighboring time points. Daily 

rainfall data from 2001-2009 were obtained from the TRMM (Tropical Rainfall Measuring 

Mission) online visualization and Analysis System (TOVAS). Similarly, Pearson correlation 

analysis shows that the 2000 and 2001 rainfall data from both sources are significantly 

correlated (r=0.312, p<0.001).

To define a heatwave, we used the 30-year (1982-2011) daily mean temperature data as a 

reference and calculated the 95th percentile of the distribution as the threshold (30.5 °C). A 

heatwave is defined as two or more consecutive days with daily mean temperatures above 

the threshold (Wu et al., 2014). Therefore, the heatwave variable is a binary variable. 

Considering the potential lag effect of heatwaves, we also created 5 heatwave lag variables 

by shifting times by 1 to 5 days.

2.4. Tree cover data

Tree cover data were obtained from the Landsat Forest Cover Change dataset (http://

glcf.umd.edu/data/landsatFCC/) for years 2000, 2005 and 2010. The tree cover datasets were 

originally created by classification of Landsat satellite images with a spatial resolution of 30 
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m (Hansen et al., 2013). Each pixel in the tree cover data layer (excluding water areas) was 

given a tree coverage value ranging from 0 to 100%. We further reclassified the free cover 

into four categories: no free cover (free coverage=0%), sparse free cover (free 

coverage=l-20%), medium free cover (tree coverage=21-40%), and dense free cover (free 

coverage > 40 %) (Figure SI).

The percentage of household free coverage was estimated using the geographic location of 

each bari (a patrilineally-related cluster of households with an average of 5 households) 

obtained via a global positioning system survey, and the tree cover classification data for the 

year 2000. We placed a 250 m buffer around each bari and calculated the percentage of free 

coverage within the buffer using ArcGIS 10.1 (ESRI Inc, CA, USA). We selected the 250 m 

buffer distance based on study area characteristics, and previous studies using 100 m to 2000 

m buffers to examine the relationship between greenspace and health outcomes (Astell-Burt 

et al., 2013; Browning and Lee 2017; Dadvand et al., 2014; Wolch et al., 2011). Because of 

the dense population in Matlab area, the distance between two neighbor baris is relatively 

small. The buffers of neighbor baris are largely overlapped when the buffer distance is 500 

m or above (Figure S2). In contrast, a smaller distance (e.g., ≤100 m), in most instance, 

would not cover a bari, because a bari is comprised with several patrilineally related 

households living in a compound. Thus, the percentage of tree cover would likely to be 

under represented. Considering the size of our study area and the spatial distribution of the 

population, we assumed that a 250 m buffer is ideal for evaluating the relationship between 

green space and cholera transmission in our study setting.

2.5. Case-crossover design

We designed a case-crossover study to investigate the association between heatwaves and 

cholera. A unique characteristic of the case-crossover design is that cases are used as their 

own controls at a different time point (before or after the cases are diagnosed) (Maclure 

1991). This self-matching design has advantages when studying the associations between 

transient exposures and acute effects because it controls for potential individual confounders 

(e.g., sex, race and socio-economic status) that do not vary considerably over the case-

control match periods (Carracedo-Martínez et al., 2010). We used a semi-symmetrical bi-

directional approach to select control days (Mittleman and Mostofsky 2014). Each case is 

supposed to have two control days which are the days one week before and one week after 

the hospital visit. In addition, the control days were selected in the same calendar month as 

the case was recorded. For cases that were recorded early or late in the month, only one 

control day might be selected. For instance, if a case was presented in the earlier part of the 

month, then the control days were one week after presentation of the case, and if the case 

was presented in the later part of the month, then the control days were one week before the 

presentation of the case. The one-week time interval was chosen because cholera is an acute 

disease. The transmission of cholera normally starts when people ingest water or food 

contaminated with V. cholerae. Direct transmission among people is rare. When a person is 

infected with the pathogen, it may take a few hours to 5 days to show symptoms because the 

pathogen has an extremely short incubation period.
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2.6. Statistical analysis

A conditional logistic regression model was applied to identify the climatic risk factors for 

cholera. Since a case and its control were the same individual, they were assigned the same 

identification number, which was used as the strata in the model. The climatic variables 

included temperature, heatwave, heatwave in 1-day lag, heatwave in 2-day lag, heatwave in 

3-day lag, heatwave in 4-day lag, heatwave in 5-day lag, and rainfall. The heatwave 

variables were binary: days meeting the heatwave definition (value = 1) and days not 

meeting the heatwave definition (value = 0). Both bivariate and multivariable models were 

used to measure the association between climatic factors and cholera. We used Pearson 

correlation to identify highly correlated predictors. Amongst the highly correlated predictors 

(e.g., r >0.6, p <0.001), only one was included in the multivariable model (Wu et al., 2016a). 

For example, since heatwave in a 1-day lag was highly correlated with heatwave (r = 0.71, p 

<0.001), we included only heatwave in the multivariable model. Akaike information 

criterion (AIC) was used to compare model fit, with lower AIC values indicating improved ft 

(Neter et al., 1996). The final model included temperature, heatwave, heatwave in a 2-day 

lag and heatwave in a 4-day lag as the explanatory variables. We did not include rainfall and 

rainfall lag variables in the final model because preliminary model results did not identify a 

significant association between these variables and cholera risk (Table S1).

We further stratified models by rainfall, sex, age, and tree cover. We classified the days as 

dry (no rainfall) and wet (rainfall) based on the rainfall data. We also created a rainfall 

variable, the number of wet days in 2 days prior to hospital admittance (including the same 

day of hospital admittance, one day before hospital admittance and two days before hospital 

admittance), to examine effect modification by rainfall on the association between cholera 

and heatwave. We chose the number of wet days in the prior 2 days because the incubation 

period of cholera usually takes 2-3 days. Age was categorized into three groups: children 

(age <18 years), adult (age=18-64 years), and elder (age>64 years). In terms of tree cover, 

we were interested in medium and dense tree cover. Since dense tree cover accounted for a 

small percentage, we combined it with the medium tree cover. We divided the households 

based on the quantile classification of medium-dense tree cover. For the tree cover analysis, 

we selected the lowest quantile classification of the medium-dense tree cover (Q1) and the 

highest quantile classification of the medium-dense tree cover (Q4). Odds ratios (OR) and 

95% confidence intervals (CI) were calculated to indicate the magnitude of association 

between risk of cholera and the climatic variables. Similarly, we also divided the households 

into four categories based on quantile classification of sparse tree cover to examine the effect 

of heatwaves on cholera. We did not examine the effect of no tree cover because it is mainly 

water, which are not expected to mitigate heatwaves. We set the significance level at 0.05 

(p<0.05). If the OR was significantly above 1.00, a positive association was assumed, while 

a negative or inverse association was assumed if the OR was significantly below 1.00. All 

statistical analyses were carried out using SAS 9.3 (SAS Institute, Inc., Cary, NC).
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3. Results

3.1. Description of cholera data and exploratory variables

In total 9,519 hospital-identified cholera cases were observed from January 1983 to April 

2009. 50% (4748/9517) of the cases were male. The highest number of cases were observed 

in 1993 (n = 1142), followed by 1983 (n = 822) and in 1986 (n = 785) (Figure S3). The 

months with the highest number of cases were October 1983 (n = 253), March 1983 (n = 

207), and May 1986 (n = 193) (Figure 2).

During the study period, 348 heatwave days were observed. Annual heatwave days ranged 

from 0 to 32 days. Years with the highest number of heatwave days were 1988 (n = 32) and 

2004 (n = 23) (Figure S3). Heatwave days were not observed in 1985, and only 2 heatwave 

days were observed in 1984, 2001, and 2002. Months with the highest number of heatwave 

days were April, May, and June, with an average of 2.2, 5.2, and 3.6 heatwave days, 

respectively (Figure 2). The average temperature during the study period was 25.8 °C. The 

highest average monthly temperatures were observed in August (28.8 °C), May (28.7 °C), 

and June (28.7 °C). The average daily rainfall was 5.81 mm. Months with the highest 

average daily rainfall observed in June (13.42 mm), July (12.31 mm), and August (10.71 

mm) (Figure S4). The majority of tree cover around households were classified as sparse 

tree cover (74.4% on average) (Table 1).

3.2 Association between heatwave and cholera

The bivariate logistic regression results did not show any significant association between 

risk of cholera and climate factors (Table S2). Results from the stratified multivariable 

logistic regression models (Table 2) show a significant positive association between the risk 

of cholera and heatwave after a 2-day lag (OR=l .53, 95% CI: 1.07 – 2.19) in wet days 

(rainfall>0 mm). No significant associations were observed between the risk of cholera and 

climate variables in dry days. The risk of cholera was negatively associated with heatwave 

after a 4-day lag in the male stratified model (OR=0.75, 95% CI: 0.60 – 0.95). Age stratified 

models identified a significant negative association between risk of cholera and heatwave 

after a 4-day lag (OR=0.79, 95% CI: 0.64 – 0.99) among children (age< 18years). 

Significant associations were not observed in the adult (18<age<65 years) or elder (age>64 

years) in the age stratified models (Table 2).

3.3 Co-effects of rainfall and tree cover

Tree cover modified the associations between heatwave and the risk of cholera (Figure 3). 

Heatwaves after a 2-day lag were positively associated (OR=1.80, 95% CI: 1.01 – 3.22) with 

the risk of cholera in wet days among households with a lower percentage (Ql) of medium-

dense tree cover, but was not significant for households with a high percentage (Q4) of 

medium-dense tree cover. Significant associations were not observed during dry days 

regardless of the distribution of medium-dense free cover (Figure 3). Consistent results were 

observed when the models were stratified by the number of wet days and medium-dense tree 

cover (Table S3). For households with the intermediate level of medium-dense tree cover 

(Q2 and Q3), the associations between the risk of cholera and heatwave variables were not 

significant in wet days as well as in dry days (Table S4).
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When the models were stratified by rainfall and sparse tree cover, the risk of cholera had a 

positive association with heatwaves after a 2-day lag for households with either a high 

percentage or a low percentage of sparse tree cover in wet days. In dry days, the risk of 

cholera had no significant associations with heatwaves for households with a high 

percentage of sparse tree cover. The risk of cholera also had no significant positive 

associations with heatwaves but had a negative association with heatwaves after a 4-day lag 

for households with a low percentage of sparse tree cover (Figure 4).

4. Discussion

By analyzing the cholera data over a 27-year period, we found that heatwaves after a 2-day 

lag had a significant positive association with the occurrence of cholera in wet days. The 

significant positive association held for households with a lower percentage of medium-

dense tree cover canopy nearby but not for households with a large percentage of medium-

dense tree cover canopy around. Our results suggest that rainfall and tree cover play 

contrasting roles in the relationship between heatwave and cholera. In our study, rainfall 

promoted the effect of heatwaves on the risk of cholera, while medium-dense tree cover 

mitigated the effect of heatwave on the risk of cholera. Since heatwave is a major 

consequence of climate change (IPCC 2014), the findings of our study provide useful 

information for understanding the potential impact of climate change on cholera outbreaks. 

Our study also provides evidence that the neighborhood tree cover canopy can effectively 

mitigate heat-related health effects although the mechanisms behind this pattern need to be 

investigated.

Our case-crossover study results indicate that the risk of cholera increased (OR=1.53, 95% 

CI: 1.07 – 2.19) during a heatwave on wet days and was even higher in households with less 

medium-dense tree cover. This suggests that rainfall may exacerbate the effect of heatwaves 

on cholera occurrence. There are potential mechanisms that underlie this pattern. Under 

higher temperatures, the growth and multiplication of V. cholerae might be promoted 

(Hashizume et al., 2010), potentially increasing food and water contamination. Rainfall can 

also spread pathogens and affect sanitary conditions, increasing human exposure to cholera 

(Hashizume et al., 2008). In addition, low rainfall might change water supply and affect 

personal hygiene behaviors, thus influencing the occurrence of cholera (Hashizume et al., 

2008). We also observed that the effect of a heatwave event after a 2-day lag was significant 

when there was rainfall, but other lag periods were not significant. This is reasonable 

because cholera is an acute disease and symptoms are more likely to appear within 2 days of 

exposure. Another possible contributing factor for increased cholera during heatwaves is that 

they might induce immune disorders (Dittmar et al., 2014). We did not observe that cholera 

had significant associations directly with rainfall and its lag variables, which was roughly 

consistent with a previous study in the same area (Ali et al., 2013). However, our result from 

the stratified analysis clearly showed that rainfall was an effect modifier in cholera-heatwave 

associations.

Interestingly, the positive association between heatwaves and risk of cholera during wet days 

was significant for households with less medium-dense tree cover but not for households 

with more medium-dense tree cover, suggesting that tree cover canopy can buffer the effects 

Wu et al. Page 8

Environ Int. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of heatwaves. It is known that trees can lower surface and air temperatures by providing 

shade and through evapotranspiration (McPherson et al., 2005). Evidence also shows that 

trees and other vegetation can cool cities and reduce heat island effects, providing human 

health benefits (Bowler et al., 2010). Neighborhood tree cover is also shown to significantly 

reduce heat-related ambulance calls during extreme heat events (Graham et al., 2016). Our 

study results suggest that increasing neighborhood tree cover could potentially mitigate 

climate-related cholera outbreaks. Besides reducing surface and air temperature, trees also 

reduce water runoff, and improve water quality by absorbing and filtering rainwater. 

However, we do not rule out the possibility that households with more medium-dense tree 

cover may have better socioeconomic status (SES), which is inversely associated with 

cholera incidence in that area because households with better SES may have access to safer 

drinking water and better sanitary facilities (Emch et al., 2010). Therefore, whether the 

observed beneficial effect of tree cover is a confounding effect of SES on the cholera risk 

needs further investigation. We also examined the associations between cholera and 

heatwaves by gender and age groups. No significant positive associations were observed in 

different sub-groups. However, significant negative associations between cholera and 

heatwave in a 4-day lag were observed in the female group and the group at the age <18. 

These results look odd, which might be a feature called short-term displacement commonly 

in models with lag variables, a phenomenon showing a raised risk at short-term lags 

followed by a reduced risk at longer lags (Bhaskaran et al., 2013).

A strength of our study is the use of a long-term cholera dataset allowing us to examine the 

effects of heatwaves, which are abnormal weather conditions. Second, our use of individual 

level data makes it possible to detect complex exposure-outcome relationships and avoid 

ecological bias. Furthermore, the case-crossover study design can control for some 

confounding factors that likely do not change over short time periods, such as 

socioeconomic status and hygienic practices.

A limitation of our study is that our definition of heatwave is arbitrary due to the 

nonexistence of a universally accepted definition. Changes in definition may change 

heatwave frequency, leading to uncertainty in understanding health-related effects (Wu et al., 

2014). To test the influence of heatwave definition on model results, we used an alternative 

definition, which defined a heatwave as two or more consecutive days with temperatures 

above 90% of the distribution of the 30-year daily mean temperature data, and examined the 

association between cholera risk and heatwaves. The results obtained based on two heatwave 

definition are consistent (Figure S5). Our rainfall data were collected from two sources, 

which might have discrepancies as the correlation coefficient was not very high. We divided 

the datasets into two time periods (1983–2001 vs. 2002– 2009) based on rainfall data 

sources and examined the associations between heatwaves and cholera (Table S5 and S6). 

The positive association between heatwave in a 2-day lag and cholera risk still remained 

during 1983-2001(Table S5). Our use of 250 m circular buffer for capturing household tree 

coverage may not reflect accurate exposure. Further studies on the exposure to tree cover are 

needed. Another limitation of our study is that tree cover datasets prior to 2000 were 

unavailable and it is likely that the land cover changed during the 1980s and 1990s. 

However, we compared the tree cover surrounding households in 2000, 2005 and 2010, and 

found that tree cover changed slightly and the percentage of each tree cover type was highly 
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correlated across the three periods. For example, the percentage of medium-dense tree cover 

surrounding each household in 2000 was significantly correlated with those in 2005 and 

2010, respectively (Table S7 and S8). Therefore, tree cover change is unlikely to influence 

our results significantly.

5. Conclusion

We found that heatwaves were positively associated with the occurrence of cholera in the 

rural endemic area of Bangladesh, and rainfall and tree cover modified this relationship. 

Major mechanisms underlying the positive association between heatwaves and cholera as 

well as the beneficial effects of tree cover need to be farther investigated.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Relationship between heatwave and cholera was examined at the individual 

level

• Heatwave after a 2-day lag was positively associated with cholera risk in wet 

days

• Tree cover could mitigate the adverse effect of heatwave on cholera

• Further studies are needed to explore mechanisms of the effect of heatwaves
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Figure 1. 
The study area of Matlab, Bangladesh
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Figure 2. 
Time series data of cholera cases and heatwave days from January 1983 to April 2009.
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Figure 3. 
The association between the risk of cholera and heatwave stratified by rainfall and medium-

dense tree cover examined using multivariable logistic regression models. Each model has 

four exploratory variables: temperature, heatwave, heatwave in a 2-day lag and heatwave in 

a 4-day lag.
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Figure 4. 
The association between the risk of cholera and heatwave stratified by rainfall and sparse 

tree cover examined using multivariable logistic regression models. Each model has four 

exploratory variables: temperature, heatwave, heatwave in a 2-day lag and heatwave in a 4-

day lag.
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Table 1.

Percentage of tree cover around 250 m in each household in Matlab, Bangladesh

Tree cover Mean Standard Deviation Minimum Maximum Lower Quartile Upper Quartile

No 6.10 12.35 0.00 87.46 0.00 4.28

Sparse 74.40 15.01 12.08 100.00 64.97 86.40

Medium 17.55 10.33 0.00 66.41 9.41 23.80

Dense 1.95 2.87 0.00 26.21 0.11 2.73
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Table 2.

The association between the risk of cholera and heatwave stratified by rainfall, sex and age examined using 

multivariable logistic regression models. Each model has four exploratory variables: temperature, heatwave, 

heatwave in a 2-day lag and heatwave in a 4-day lag.

Stratification Exploratory variables OR 95% CI p – value

No

Temperature 0.99 0.98 – 1.01 0.286

Heatwave 1.03 0.87 – 1.22 0.768

Heatwave in a 2-day lag 1.06 0.90 – 1.26 0.478

Heatwave in a 4-day lag 0.88 0.75 – 1.04 0.128

Day type

Dry (Rainfall=0)

Temperature 0.98 0.97 – 1.00 0.082

Heatwave 0.99 0.79 – 1.25 0.938

Heatwave in a 2-day lag 0.95 0.73 – 1.24 0.710

Heatwave in a 4-day lag 0.80 0.63 – 1.01 0.065

Wet (Rainfall>0)

Temperature 1.00 0.98 – 1.02 1.000

Heatwave 1.19 0.69 – 2.06 0.524

Heatwave in a 2-day lag 1.53 1.07 – 2.19 0.019

Heatwave in a 4-day lag 0.85 0.62 – 1.17 0.307

Sex

Male

Temperature 0.99 0.98 – 1.01 0.257

Heatwave 0.94 0.73 – 1.20 0.596

Heatwave in a 2-day lag 1.16 0.91 – 1.48 0.221

Heatwave in a 4-day lag 0.75 0.60 – 0.95 0.017

Female

Temperature 1.00 0.98 – 1.01 0.702

Heatwave 1.12 0.89 – 1.41 0.346

Heatwave in a 2-day lag 0.96 0.76 – 1.23 0.770

Heatwave in a 4-day lag 1.03 0.82 – 1.29 0.801

Age

<18 years

Temperature 0.99 0.97 – 1.00 0.094

Heatwave 0.92 0.74 – 1.16 0.498

Heatwave in a 2-day lag 1.11 0.88 – 1.40 0.387

Heatwave in a 4-day lag 0.79 0.64 – 0.99 0.036

18 – 64 years

Temperature 1.00 0.98 – 1.01 0.657

Heatwave 1.20 0.92 – 1.57 0.169

Heatwave in a 2-day lag 0.94 0.72 – 1.24 0.675

Heatwave in a 4-day lag 1.04 0.81 – 1.33 0.762

65 years and older

Temperature 1.05 1.00 – 1.11 0.059

Heatwave 0.97 0.39 – 2.44 0.952

Heatwave in a 2-day lag 1.73 0.79 – 3.81 0.171

Heatwave in a 4-day lag 0.81 0.33 – 1.97 0.640
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