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Abstract

Exposure to fine particulate matter (PM2.5) remains a worldwide public health issue. However, 

epidemiological studies on the chronic health impacts of PM2.5 in the developing countries are 

hindered by the lack of monitoring data. Despite the recent development of using satellite remote 

sensing to predict ground-level PM2.5 concentrations in China, methods for generating reliable 

historical PM2.5 exposure, especially prior to the construction of PM2.5 monitoring network in 

2013, are still very rare. In this study, a high- performance machine-learning model was developed 

directly at monthly level to estimate PM2.5 levels in North China Plain. We developed a random 

forest model using the latest Multi-angle implementation of atmospheric correction (MAIAC) 

aerosol optical depth (AOD), meteorological parameters, land cover and ground PM2.5 

measurements from 2013 to 2015. A multiple imputation method was applied to fill the missing 

values of AOD. We used 10-fold cross-validation (CV) to evaluate model performance and a 

separate time period, January 2016 to December 2016, was used to validate our model’s capability 

of predicting historical PM2.5 concentrations. The overall model CV R2 and relative prediction 

error (RPE) were 0.88 and 18.7%, respectively. Validation results beyond the modeling period 

(2013 to 2015) shown that this model can accurately predict historical PM2.5 concentrations at the 

monthly (R2 = 0.74, RPE = 27.6%), seasonal (R2 = 0.78, RPE = 21.2%) and annual (R2 = 0.76, 

RPE = 16.9%) level. The annual mean predicted PM2.5 concentrations from 2013 to 2016 in our 
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study domain was 67.7 µg/m3 and Southern Hebei, Western Shandong and Northern Henan were 

the most polluted areas. Using this computationally efficient, monthly and high-resolution model, 

we can provide reliable historical PM2.5 concentrations for epidemiological studies on PM2.5 

health effects in China.

Graphical abstract

Capsule:

Random forest model developed at monthly level using satellite data can be applied to estimate 

long-term PM2.5 concentrations in North China Plain.
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1 Introduction

Numerous epidemiological studies have found that long-term exposure to fine particulate 

matter (PM2.5) was associated with higher risk of cardiovascular diseases and respiratory 

diseases, which were mainly conducted in western countries(Di et al., 2017; Miller et al., 

2007). Compared with cross-sectional or time-series studies, epidemiological cohort studies 

can clearly identify the temporal sequence between exposure and outcome, and provide 

more stable results after long-term follow-up surveys, thus allow more accurate health effect 

estimates(Di et al., 2017; Pope et al., 2002). With the rapid industrialization and economic 

development, severe PM2.5 pollution episodes frequently occurred in China and the annual 

PM2.5 concentrations were much higher than the WHO standards (10 µg/m3). However, 

epidemiological studies of PM2.5 health impacts were very rare in China, because they 

required long-term, accurate PM2.5 exposure data, which was not available until the 

establishment of ground monitoring network in 2013.

With a high spatiotemporal coverage, satellite-derived aerosol optical depth (AOD) has been 

increasingly used to predict PM2.5 concentrations and can supplement ground PM2.5 

monitors for health studies. Several large-scale epidemiological cohort studies of PM2.5 
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health effects have used the satellite AOD-PM2.5 prediction models to assess the exposure 

levels, such as the Global Burden of Diseases study (GBD), US Medicare study and 

Canadian National-level Cohort study(Cohen et al., 2017; Crouse et al., 2012; Di et al., 

2017).

There were two major approaches which have been used to estimate ground PM2.5 

concentrations using satellite AOD: the scaling approach and the statistical models(Liu et 

al., 2009; van Donkelaar et al., 2010). The scaling approach obtained the ratios of 

PM2.5/AOD from the chemical transport model (CTM), then applied this ratio to predict 

ground PM2.5(van Donkelaar et al., 2010). This method didn’t require ground PM2.5 

measurements and thus can provide PM2.5 estimations for areas or time periods without 

ground monitoring data. However, the accuracy of the scaling approach is limited by the 

emission inventory, and the uncertainties in the model parameterization(Xiao et al., 2017). 

For the statistical model approach, numerous regression models have been developed to 

define the association between PM2.5 and AOD. These models have become increasingly 

complicated, from simple linear regression to much complex models, including linear mixed 

effects models (LME), generalized additive models (GAM), geographically weighted 

regression (GWR), hierarchical models and Bayesian models(Ma et al., 2014; Ma et al., 

2016; Wang, 2003; Xie et al., 2015; Yu et al., 2017). However, the statistical model approach 

required large amount of ground PM2.5 monitoring data to develop and validate the models, 

therefore studies of developing AOD-PM2.5 models were limited in China before 2013.

Benefiting from recently established ground monitoring networks, several advanced 

statistical models between AOD and PM2.5 have been established in China at the regional or 

at national levels(Ma et al., 2016; Xiao et al., 2017; Xie et al., 2015). For example, Ma et al., 

(2016) built a two-stage statistical model including LME and GAM models to build the 

relations between PM2.5 and AOD in China. He and Huang, (2018) developed a 

geographically and temporally weighted regression model (GTWR) to estimate PM2.5 

exposure in China. However, the coarse spatial resolution (10 km or 3 km) in those studies 

cannot be used to support urban-scale or smaller area exposure assessment for 

epidemiological studies(Hu et al., 2014a). The resolution of AOD data was the main reason 

for the coarse spatial resolution. For instance, AOD products from Multiangle Imaging 

SpectroRadiometer (MISR), Moderate Resolution Imaging Spectroradiometer (MODIS) 

Collection 5 (C5), and MODIS C6 have a spatial resolution of 17.6 km, 10 km, and 3 km, 

respectively(Hu et al.,2014a). Recently, a new Multi-Angle Implementation of Atmospheric 

Correction (MAIAC) algorithm was developed for MODIS AOD at 1 km resolution. 

MAIAC AOD has been shown to be highly correlated with PM2.5 levels and been 

increasingly used to predict PM2.5 concentrations in North America(Di et al., 2016; Hu et 

al., 2014a; Kloog et al., 2014). However, similar studies were rare in China because the 

MAIAC data was still not publicly available.

Another limitation of previous studies was the non-random missingness of AOD, which was 

mainly caused by cloud cover, bright surfaces and extremely high aerosol loadings which 

were incorrectly regarded as cloud(Xiao et al., 2017). Without considering the non- random 

missingness of AOD, previous satellite AOD-PM2.5 prediction models cannot be directly 

used to provide exposure assessment for epidemiological studies. Otherwise, it may lead to 

Huang et al. Page 3

Environ Pollut. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



exposure bias when estimating long-term concentrations of PM2.5 in epidemiological 

studies. For instance, Zheng et al., (2016) reported that missing AOD values introduce 

negative biases in predicting annual PM2.5 levels in Beijing-Tianjin-Hebei region (BTH), 

while lead to positive biases in Pearl River Delta region (PRD), probably due to distinct 

mechanisms of missing AOD in these two region. These findings were supported by those of 

Xie et al., (2015), who also reported an underestimate of long-term PM2.5 concentrations 

due to missing AOD in Beijing.

To investigate the health effects caused by PM2.5 in China, it was crucial to develop PM2.5 

prediction models with capabilities of predicting historical PM2.5 concentrations prior to 

establishment of ground monitoring network in 2013. However, many previous studies had a 

strong model assumption that the daily PM2.5-AOD relationship remained constant for the 

same day of year across different years, thus leading to low prediction accuracy when used 

to predict PM2.5 concentrations beyond their modeling period(Liang et al., 2018; Ma et al., 

2016; Xiao et al., 2017).

Furthermore, most studies developed their statistical models at the daily level, then averaged 

to corresponding longer time scales to study the chronic PM2.5 health effects(e.g. previous 3 

months, previous year)(Cohen et al., 2017; Crouse et al., 2012; Di et al., 2017), which would 

require a high computational cost and take a very long time to calculate when developing 

daily statistical models at high spatial resolution (1 km) over a large area for a long time 

period. Except for the traditional statistical models, recent studies have also attempted to use 

the machine learning algorithm models to make PM2.5 estimations(Di et al., 2016; Hu et al., 

2017; Zhan et al., 2017). With the capabilities of handling nonlinear relations and interaction 

effects between variables, the machine learning methods generally shown comparable or 

superior performance to traditional statistical models. For example, Hu et al., (2017) used 

the random forest algorithm to predict daily ground PM 2.5 levels at 10 km resolution in the 

United States, with a cross validation (CV) R2 of 0.80. Di et al., (2016) developed a neural 

network-based model to estimate daily PM2.5 in the United States at 1 km resolution, 

achieving a R2 of 0.84. In China, a geographically weighted gradient boosting machine 

(GW-GBM) was developed to estimate PM2.5 levels at 50 km resolution(Zhan et al., 2017). 

To our knowledge, no other machine learning methods used for estimating PM2.5 

concentrations have been reported in China.

In the current study, we aimed to develop a random forest model to provide historical, high-

resolution and unbiased monthly PM2.5 concentrations for epidemiological studies. We first 

adopted the multiple imputation method to fill the missing MAIAC AOD values considering 

the cloud cover, meteorological data and spatial-temporal autocorrelation of AOD. Then we 

developed a random forest model directly at the monthly level incorporating 1-km MAIAC 

AOD, land use information, meteorological variables, and demographics as predictors, to 

estimate the monthly PM2.5 concentrations from 2013 to 2015. We used 10-fold overall CV 

and spatial CV to evaluate the model’s prediction accuracy. Additionally, a separate time 

period, January 2016 to December 2016, was used to assess our model’s capability of 

predicting historical PM2.5 concentrations.
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2 Materials and methods

2.1 Study area

Figure 1 shows the North China study area, including seven provinces or municipalities 

(Beijing, Tianjin, Hebei Province, Shanxi Province, Shaanxi Province, Shandong Province, 

and Henan Province). The study region has an area of 1.1 million km2 with a total 

population over 367 million in 2010. It is characterized by the heavy industries in this area, 

including the coal-fired power plant, cement factories and iron and steel factories, which are 

the main sources of PM2.5 emissions. In addition, heating by fossil fuels burning in winter 

and a rapidly increasing vehicle fleet further aggravate the air pollution in this area. We build 

a 50-km buffer to obtain the PM2.5 predictions near the boundary with similar accuracy to 

those from the remained locations in our study area.

2.2 Data

2.2.1 Ground measurements—Ground PM2.5 measurements were collected from 

China National Environmental Monitoring Center (http://www.cnemc.cn/) and monitoring 

stations controlled by local governments in our study region. In total, daily average PM2.5 

monitoring data from 704 air quality monitors in this area from January 2013 to December 

2016 were collected for this study (Figure 1). After excluding those months with less than 

10 days of PM2.5 measurements, we calculated the monthly average PM2.5 concentrations.

With a high accuracy, Aerosol Robotic Network (AERONET) AOD has been used for 

satellite AOD validation and calibration in several studies. In this study, we downloaded 

AERONET Level 1.5 data from 11 sites in the study region ranging from 2013 to 2016 

(https://aeronet.gsfc.nasa.gov/new_web/aerosols.html) and used it to calibrate the MAIAC 

AOD data. AERONET AOD at 550 nm was interpolated from the AOD at 440 and 675 nm 

using the Angstrom Exponent.

Land based visibility data from 2013 to 2016 was downloaded from the National Centers for 

Environmental Information (NCEI, ftp://ftp.ncdc.noaa.gov/pub/data/noaa/). There were 113 

stations measuring visibility in our study domain.

2.2.2 Satellite data—In the current study, we used the MAIAC AOD for PM2.5 

modeling. MAIAC is an algorithm used to retrieve AOD from Aqua (cross at 1:30 pm local 

time) and Terra (cross at 10:30 local time) at 1 km resolution(Lyapustin et al., 2011). We got 

the AOD data from the MAIAC team covering the year of 2013 to 2016. We used the 

MAIAC 1-km grid for data integration. Within each grid, we conducted a simple linear 

regression between MAIAC AOD and AERONET AOD within the hour of satellite 

crossover time for each season. Then we used the established relations to calibrate the 

MAIAC AOD. To increase the MAIAC coverage, we performed simple linear regression 

between Aqua and Terra AOD for each day and used the relations to predict missing AOD 

values when there is only one of them present. Then we used the average of Aqua and Terra 

AOD for PM2.5 modeling.

MODIS Aqua and Terra daily cloud fraction data (MYD06_L2 and MOD06_L2, 5-km 

resolution) and monthly Normalized Difference Vegetation Index (NDVI) data (MOD13A3, 
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1-km resolution) was downloaded from the NASA website (https://

ladsweb.modaps.eosdis.nasa.gov/). In addition, we downloaded the MODIS fire data from 

NASA fire information for resource management system (https://earthdata.nasa.gov/earth-

observation-data/near-real-time/firms). We obtained the urban cover, forest cover and crop 

land cover at 300 m resolution from the European Space Agency (ESA) GlobalCover Portal 

(http://due.esrin.esa.int/page_globcover.php).

2.2.3 Assimilated dataset—Meteorological data were obtained from the European 

Center for Medium-Range Weather Forecast (ECMWF) Re-analysis Interim (ERA-Interim)

(Dee et al., 2011). The spatial resolution of this dataset is 0.125 degree and the temporal 

resolution is per 3 or 6 hours. All meteorological measurements for the period from 8:00 am 

to 2:00 pm local time were extracted and averaged to represent the weather conditions at the 

Aqua and Terra overpass time. The Modern-Era Retrospective analysis for Research and 

Applications, Version 2 (MERRA-2) is the latest atmospheric reanalysis dataset produced by 

NASA, at a spatial resolution of 0.5°×0.625°(Gelaro et al., 20 17). Three-hourly AOD data 

were downloaded from MERRA-2 website (https://disc.gsfc.nasa.gov/daac-bin/

FTPSubset2.pl) and averages of AOD values from 8:00 am to 2:00 pm local time were 

calculated to represent MERRA-2 AOD at the satellite overpass time. In addition, 

MERRA-2 simulates five PM2.5 species (black carbon, organic carbon, sea salt, dust, 

sulfate) based on the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) 

aerosol model. We calculated the daily MERRA-2 PM2.5 concentrations based on above 

PM2.5 species, according to the method used in previous studies(Provençal et al., 2017),

2.2.4 Other datasets—The Global Multi-resolution Terrain Elevation Data 2010 

(GMTED2010) at 1 km resolution was used to obtain the elevation. The population density 

data in 2010 (1 km resolution) was downloaded from LandScan (http://

wms.cartographic.com/LandScan2010/). The road network information in 2014 was 

obtained from Beijing NavInfo Technology Company.

2.3 Data integration

The MAIAC 1-km grid was used to integrate all the aforementioned datasets. Ground PM2.5 

data were averaged within each grid, if there were multiple monitors in this grid. The 

monthly means of ECMWF meteorological parameters and visibility were interpolated to 

the MAIAC grid using the inverse distance weighting (IDW) method. We used the nearest 

neighbor approach to match daily cloud fraction to each MAIAC grid. The major road 

length (road length multiple by lane number) and the nearest distance to major roads, 

population density, elevation and NDVI were calculated for each MAIAC grid. MERRA-2 

AOD and MERRA-2 PM2.5 were matched to each MAIAC grid if this MAIAC grid fell into 

a given MERRA-2 grid. Monthly counts of fire spots for each MAIAC grid within 20- km, 

30-km, 50-km and 75-km radius buffer were calculated, respectively. The exploratory 

analysis suggested that counts of fire spots within 75-km buffer contributed more to the 

model prediction accuracy than other buffer lengths, thus we selected fire counts within 75- 

km buffer in the final model(Hu et al., 2014b).
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2.4 Methods

2.4.1 MAIAC AOD gap filling by multiple imputation—We used the AOD gap 

filling method proposed recently by Xiao, et al(Xiao et al., 2017). The detailed procedure of 

our AOD gap filling was articulated in the supplemental material. In brief, the missing 

MAIAC AOD was filled by an additive imputation model. This model included cloud 

fraction, elevation, MERRA-2 AOD, meteorological parameters and spatial- temporal trends 

of AOD as predictors (Xiao et al., 2017). After the inclusion of meteorological variables and 

cloud fraction data, our imputation method considered the aerosol-cloud interaction effect on 

AOD. Within each rolling 5-day period, we imputed the missing AOD values on the 3rd day 

by including AOD measurements on two days prior to and two days after that day.

2.4.2 Random forest model development and validation—Random forest is a 

machine learning method for classification and regression which uses an ensemble of 

decision trees(Hu et al., 2017). Each tree is grown by a bootstrap sample, and a random 

subset of predictors is selected at each split. Predictions are obtained by averaging results of 

different trees. Instead of being a black box like other machine learning methods, the 

random forest model can provide variable importance measures which make our model 

results more interpretable. Our random forest model incorporated MAIAC AOD, 

meteorological parameters, elevation, land use information, population and MERRA-2 

PM2.5 to estimate monthly ground PM2.5 concentrations. The detailed predictors were 

shown in online supplemental Table S1.

We conducted an overall 10-fold CV to evaluate the model performance. The entire model-

fitting dataset was randomly split into 10 groups, with each group containing about 10% of 

the data. In each time of cross validation, nine groups of the data were selected to fit the 

model, which was then used to make predictions on the remaining group. This process was 

repeated 10 times until every group was predicted. In addition, to validate the prediction 

accuracy of PM2.5 in unmonitored locations, we performed a spatial CV, in which the 

training 1-km grid cells were randomly split into 10 groups first, with each group containing 

10% of the grid cells. In each time of cross validation, we select nine groups of the grid 

cells, then all the data from these grid cells were used to fit the model and make predictions 

on the remaining group. This process was repeated 10 times until every group was predicted. 

Furthermore, a separate time period, January 2016 to December 2016, was used to evaluate 

the model’s accuracy of predicting historical PM2.5 levels. Coefficient of determination (R2), 

root mean squared prediction error (RMSE) and relative prediction error (RPE) between 

model predictions and observations were calculated to evaluate the model performance.

3 Results

3.1 Descriptive analysis

Finally, there were 12,279 observations included in the 2013–2015 model fitting dataset. The 

descriptive statistics for all parameters were shown in Table S2. Overall, the average of 

ground PM2.5 was 81 µg/m3, and the mean gap filled AOD value wa s 0.85. These estimates 

were more than 6 times higher than those reported in the continental United States(Hu et al., 

2017; Liu et al., 2009).
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3.2 Multiple imputation

The percentage of missing MAIAC AOD was 45.5%, 49.8%, 52.6% for year 2013–2015, 

respectively. After multiple imputation, the coverage of AOD increased to 100%. The 

average fitting R2 of our daily multiple imputation model was 0.79, ranging from 0.52 to 

0.94. The annual mean AOD distribution without versus with imputation for each year was 

shown in Figure S1. The spatial contrast of AOD after imputation was consistent with that 

before imputation: the highest AOD values occurred at Southern Hebei, Western Shandong 

and Northern Henan Province. Nevertheless, the annual mean AOD values increased by 0.23 

after imputation compared with that of observed AOD. Temporally, the annual AOD values 

decreased gradually from 0.79 in 2013 to 0.74 in 2015 (Table S3).

3.3 Results of model validation

The overall CV and spatial CV analysis results were shown in Figure 2. Our random forest 

model achieved a high prediction accuracy with an overall 10-fold CV R2 of 0.88. In 

addition, the RPE and RMSE for monthly PM2.5 predictions were 18.7% and 14.89 µg/m3, 

respectively, implying a relatively good agreement between model predictions and ground 

measurements in North China area. The imputation procedure usually causes extra 

variability because of the random error(Xiao et al., 2017). However, the overall CV R2 from 

models using original MAIAC AOD was 0.88 as well, indicating that our multiple 

imputation method did not decrease the model’s accuracy. The 10-fold spatial CV validation 

obtained a similar R2 of 0.88, while RMSE slightly increased to 15.06 µg/m3.

3.4 Evaluation of historical PM2.5 predictions

A separate time period was applied to assess if our random forest model can predict 

historical PM2.5 accurately. The random forest model fitted by data of 2013 to 2015 was 

used to predict PM2.5 concentrations in 2016 at monthly, seasonal and annual level (Figure 

3). Results shown that our model can predict historical PM2.5 concentrations with high 

accuracy at the monthly level (R2=0.74, RMSE=17.80 µg/m 3 and RPE=27.6%), seasonal 

level (R2=0.78, RMSE=13.75 μg/m3 and RPE=21.2%) and annual level (R2=0.76, 

RMSE=11.35 μg/m3 and RPE=16.9%). The current model underestimated PM2.5 

concentrations at higher concentrations (>180 µg/m3 ). This could be because more than 

96% of the monthly PM2.5 measurements were below the 180µg/m 3 in the modeling 

dataset. After we removed the monthly PM2.5 observations greater than 180 µg/m3, the 

model performance improved with slope much closer to one than before (Figure 3).

3.5 Variable importance

Figure 4 illustrated the variable importance metrics for predictors in our random forest 

model. It demonstrated that the MERRA-2 PM2.5 measurements, 10-meter wind speed, 

visibility, surface albedo and MAIAC AOD are the five most important predictors for 

monthly PM2.5 concentrations.

3.6 Spatial and temporal distributions of PM2.5

The spatial distributions of annual mean PM2.5 concentrations from 2013 to 2016 in the 

study area were shown in Figure S2. The annul mean predicted PM2.5 concentrations from 
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2013 to 2016 was 67.7 µg/m3 in North China area. Th e most polluted areas were in 

Southern Hebei, Northern Henan and Western Shandong areas. In terms of temporal trend, 

the PM2.5 concentrations decreased by 10.4 µg/m3 from 2013 t o 2016. In addition, our high 

resolution prediction model successfully displayed the local PM2.5 gradients in our study 

area. For instance, Figure 5 showed that urbanized regions, such as Tai’ an, Laiwu and 

Xintai city, had higher PM2.5 concentrations, while regions covered by forest (red polygon) 

around these three cities had lower PM2.5 concentrations.

4 Discussion

The current study developed a random forest model to estimate the monthly PM2.5 

concentrations at 1 km resolution and achieved a high prediction accuracy (cross validation 

R2 is 0.88), which was better than existing models(Liang et al., 2018; Xiao et al., 2017; 

Yanosky et al., 2014; Yanosky et al., 2009). To the best of our knowledge, this is the first 

study in China to develop a prediction model of PM2.5 concentrations directly at the monthly 

level covering a large area (more than 1.1 million km2). As discussed below, our high 

resolution, monthly and computationally efficient model will help epidemiologists assess the 

long term exposure of PM2.5 concentrations with better accuracy and thus be beneficial to 

epidemiological studies of health effects caused by PM2.5.

Our models have several strengths. First, we developed our random forest model directly at 

the monthly level, which not only took much less time to compute but also achieved a high 

prediction accuracy. With a high spatial and temporal coverage of satellite data, several 

PM2.5-AOD statistical models have been developed and ultimately applied to the 

epidemiological studies(Cohen et al., 2017; Di et al., 2017). But most previous studies 

developed their PM2.5 prediction models at the daily level, then averaged to corresponding 

longer time scales to study chronic health effects(e.g., previous 3 months, previous year)

(Cohen et al., 2017; Crouse et al., 2012; Di et al., 2017). It would take a long time to run a 

complex model at daily level, if conducted over a large area at a high spatial resolution 

covering a long time period. The only study we found which also built PM2.5 prediction 

models at the monthly level was from the Nurses’ Health Study, a large-scale prospective 

cohort study in the United States(Yanosky et al., 2014; Yanosky et al., 2009). They 

developed two separate generalized additive mixed models to predict monthly PM2.5 

concentrations for 1988–1998 and 1999–2007, respectively and both obtained a high 

predictive accuracy (CV R2=0.77), and ultimately used this monthly model in cohort 

studies(Zhang et al., 2016). It indicated the feasibility of developing PM2.5 prediction 

models at monthly level for long-term epidemiological studies. However, for the time period 

before 1998 when there were few PM2.5 monitoring stations in the United States, they used 

the ratio of PM2.5 to PM10 predicted from other time period to predict PM2.5 levels(Yanosky 

et al., 2014). Thus the model accuracy before 1998 was unknown and they didn’t report the 

validation accuracy beyond their modeling period. In the current study, we selected a 

separate time period to assess the models’ capability of predicting historical PM2.5 

concentrations, and achieved a relatively high accuracy (Figure 3).

Second, our model can provide reliable historical PM2.5 exposure data when there was no 

ground monitoring data. Several satellite-driven statistical models based on MODIS AOD 
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have been developed at daily level in China, and they showed the ability of generating 

accurate PM2.5 estimations(Guo et al., 2017; Liang et al., 2018; Ma et al., 2016; Xie et al., 

2015). For example, Guo et al., (2017) developed a satellite-based GTWR model based on 

3-km MODIS AOD to estimate daily ground PM2.5 in Beijing and achieved a CV R2 of 

0.58. Similarly, Xie et al., (2015) developed a mixed effects model at 3 km resolution in 

Beijing and obtained a CV R2 of 0.79. However, most previous studies focused on 

developing association between PM2.5 and AOD within their modeling periods and ignored 

the model’s capability of predicting historical PM 2.5 concentrations. It is crucial to develop 

PM2.5-AOD prediction models which can provide accurate historical PM2.5 estimations for 

epidemiological studies in China, owing to the lack of PM2.5 monitoring data before 2013. 

Only a few studies have adopted a separate time period to validate their model’s 

performance of estimating historical PM2.5 concentrations. Liang et al., (2018) developed a 

three-stage statistical model (LME + Generalized additive mixed model + Kriging model) to 

predict daily PM2.5 in Beijing using the 1-km MAIAC AOD, and obtained a CV R2 of 0.79 

to 0.82. However, the model’s accuracy decreased (R2 of 0.42 to 0.55), when it was used to 

predict historical PM2.5 concentrations at monthly level(Liang et al., 2018). In the current 

study, we built our model directly at the monthly level, and still obtained a relatively good 

performance when used to predict historical PM2.5 data at the monthly level (R2 = 0.74).

Third, we improved the satellite AOD coverage to 100% by multiple imputation methods. 

The non-random AOD missing values might introduce exposure misclassification in 

epidemiological studies(Lv et al., 2016; Xiao et al., 2017). For instance, during the first 

quarter of 2015 (January to March), without AOD gap-filling, our model would 

underestimate the PM2.5 concentrations in our study domain (Figure S3). The degree of the 

differences in predicted PM2.5 concentrations were generally consistent with the spatial 

distributions of missing rate of AOD. Lower AOD coverage rates were associated with 

higher differences of PM2.5 concentrations. In Southern Shaanxi and Southern Henan 

province with less than 30% AOD coverage, the PM2.5 concentrations were underestimated 

by 5% to 10%. In addition, although the AOD coverage was about 60% in southern Hebei 

Province, it still underestimated PM2.5 concentrations by 4% to 5%. Severe particulate 

matter pollution episodes frequently occurred in winter in Southern Hebei (Wang et al., 

2014). Extremely high aerosol loadings might be incorrectly classified as clouds, which in 

turn leads to considerable AOD missingness(Zheng et al., 2016). Therefore, AOD 

missingness in areas with severe particulate matter air pollution tend to underestimate the 

PM2.5 concentrations as well. Our results were consistent with previous studies conducted in 

North China areas(Lv et al., 2016; Xie et al., 2015; Zheng et al., 2016). Moreover, to 

increase the coverage of predicted PM2.5 estimations, several gap-filling approaches have 

been proposed(Kloog et al., 2014; Lv et al., 2016). For instance, Lv et al., (2016) developed 

a two-step method to predict the missing AOD (first used season-specific AOD-PM2.5 

relation to fill missing AOD, then used ordinary Kriging to interpolate rest missing AOD). 

Kloog et al., (2014) considered the non-random missingness of AOD in the model fitting 

process using inverse probability weighting method, and filled the missing PM2.5 predictions 

with spatial smoothing using values from surrounding grids. However, the major limitation 

of previous methods was that they depend on ground PM2.5 data. Thus, they were not 

applicable to China in predicting historical PM2.5 concentrations, because there were no 
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ground monitoring data before 2013. Without depending on the ground measurements, our 

gap-filling method considered the cloud fraction, meteorological information and land use 

type, thus can be used to improve the prediction coverage when there were no or sparse 

PM2.5 measurements.

Finally, the random forest model provided the variable importance measures, which made 

our results more interpretable and provided information for future studies to improve the 

prediction accuracy of PM2.5. In the current study, the five most important variables were 

MERRA-2 PM2.5, wind speed at 10 meters, visibility, surface albedo and MAIAC AOD. 

Using the GOCART model, MERRA-2 simulates the concentrations of the five PM2.5 

species. Several studies have evaluated the components of MERRA simulations in different 

regions of the world and they found that the concentrations of PM2.5, PM10 were generally 

well simulated in both the U.S and Europe(Provençal et al., 2017). However, few studies 

have applied the MERRA-2 components in developing PM2.5 prediction models in China. 

Our study found that MERRA-2 PM 2.5 was among the most important predictors for 

monthly PM2.5 concentrations in North China. More research is needed to evaluate the 

contributions of MERRA-2 components to the performance of PM2.5 prediction models. It is 

noteworthy that the local land cover and road length did not contributed too much to the 

model performance, which was different from a previous study conducted in the continental 

United States(Hu et al., 2017). Hu et al., (2017) reported that convolutional layer of PM2.5 

measurements, MODIS AOD, population density, local land cover and roads were important 

predictors for PM2.5 estimations in the continental United States. It may result from the 

differences in the source profile of PM2.5 between North China and the United States. Air 

quality in North China is highly influenced by strong point sources from heavy industries, 

including coal-fired power plant, cement factories and iron and steel factories(Lv et al., 

2016). Several PM2.5 source apportionment studies reported that residential, industrial and 

agricultural emissions were the most important contributors to primary and secondary PM2.5 

in North China(Li et al., 2017; Zhang et al., 2015). For instance, Li, et al. simultaneously 

used source apportionment and source sensitivity methods to identify the sources of PM2.5 

exposure in North China in 2013, and both methods shown that local emissions including 

industrial (42.7%), residential (36.9%), and agricultural (9.7%) emissions were the most 

important sources to PM2.5, while transportation contributed less than 10%(Li et al., 2017). 

Additionally, measures of road length may not fully reflect the PM2.5 emissions from traffic, 

and more accurate indicators, such as the traffic volume, should be used to develop PM2.5 

prediction models in future studies. In contrast, for the United States with much lower levels 

of PM2.5 concentrations, local population activity and traffic were more important factors to 

nearby PM2.5 concentrations than emissions from factories located a long distance away.

Except for the above strengths, our study found a decreasing trend of PM2.5 levels from 

2013 to 2016 in North China. The decreasing trend was consistent with observations from 

ground PM2.5 monitors. In addition, previous studies also found a downward trend in PM2.5 

levels since 2013 in North China(He and Huang, 2018; Ma et al., 2016). This decline may be 

due to the stricter policies for energy conservation and emissions reductions from the 

Chinese government. For example, the State Council issued the ‘China National Action Plan 

on Air Pollution Prevention and Control 2013–2017’ in 2013(Jin et al., 2016). This action 

plan for the first time set quantitative air quality improvement goals with a clear time table 
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and proposed ten key strategies to control the air pollution in China(Jin et al., 2016). 

Moreover, in 2016, as the first year of 13th Five-Year Plan, the new revised Air Pollution 

Control Law was implemented in China. Further, the regional coordination and integrated 

regional environmental management were well implemented in 2016 in Beijing-Tianjin- 

Hebei region and its surrounding areas.

5 Conclusions

In the current study, a random forest model was developed to estimate monthly PM2.5 

concentrations in North China including gap filled AOD, MERRA-2 simulations, 

meteorological parameters and land cover as predictors. Using this computationally efficient 

model, we can provide high resolution (1 km), historical monthly PM2.5 concentrations with 

high accuracy covering the whole North China area (1.1 million km2). The AOD gap-filling 

method used in this study can substantially increase the coverage of PM2.5 predictions and 

reduce exposure assessment bias for epidemiological studies. Our prediction model will 

provide data support for epidemiological studies on PM2.5 health effects. In the future, we 

will try to extrapolate our monthly models to other areas for PM2.5 estimations and apply 

our predicted PM2.5 estimations in epidemiological studies.
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Highlights:

1. MAIAC AOD at 1-km resolution was used to predict PM2.5 levels in North 

China Plain

2. A high performance machine learning model was developed directly at 

monthly level

3. This model can predict historical PM2.5 with high accuracy at monthly, 

seasonal and annual level

4. The multiple imputation method substantially increased PM2.5 coverage to 

100%
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Figure 1. 
Study area with a 50-km buffer, showing locations of ground PM2.5 monitoring stations.
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Figure 2. 
10-fold cross validation. (A) Overall cross validation; (B) Spatial cross validation.
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Figure 3. 
Results of predicting PM2.5 concentrations in 2016 at monthly, seasonal and annual level 

with models fitted from data of year 2013 to 2015. Upper panel: for the entire dataset; Lower 

panel: for dataset removing monthly PM2.5 concentrations greater than 180 µg/m3.
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Figure 4. 
Variable importance plot for the random forest model predicting the monthly PM2.5 

concentrations in North China.
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Figure 5. 
PM2.5 gradients under high resolution. A: annual PM2.5 predictions in 2013; B: zoom in map 

of annual PM2.5 predictions in Tai’an, Laiwu and Xintai City; C: satellite photo of Tai’an, 

Laiwu and Xintai City. Map data: Google Earth. Red polygon represented the forest cover.
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