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Abstract

The cornea is a valuable tissue for studying peripheral sensory nerve structure and regeneration 

due to its avascularity, transparency, and dense innervation. Somatosensory innervation of the 

cornea serves to identify changes in environmental stimuli at the ocular surface, thereby promoting 

barrier function to protect the eye against injury or infection. Due to regulatory demands to screen 

ocular safety of potential chemical exposure, a need remains to develop functional human tissue 

models to predict ocular damage and pain using in vitro-based systems to increase throughput and 

minimize animal use. In this review, we summarize the anatomical and functional roles of corneal 

innervation in propagation of sensory input, corneal neuropathies associated with pain, and the 

status of current in vivo and in vitro models. Emphasis is placed on tissue engineering approaches 

to study the human corneal pain response in vitro with integration of proper cell types, controlled 

microenvironment, and high-throughput readouts to predict pain induction. Further developments 

in this field will aid in defining molecular signatures to distinguish acute and chronic pain triggers 

based on the immune response and epithelial, stromal, and neuronal interactions that occur at the 

ocular surface that lead to functional outcomes in the brain depending on severity and persistence 

of the stimulus.
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1. Introduction

Pain serves a physiological role in alerting the central nervous system (CNS) that tissue 

damage may occur in the absence of further input. As the most densely innervated tissue in 

the body, the cornea contains intraepithelial nerve fibers that originate from the sub-basal 

nerves, giving rise to extreme sensitivity of the tissue (Müller et al., 2003; Marfurt et al., 

2010). These sub-basal nerves are derived from both the stroma and periphery superficial 

nerves extending through the epithelium towards the ocular surface. The means by which the 

cornea is able to retain homeostasis, transparency, structural rigidity, and regeneration 

throughout a lifetime relies on this interplay between sensory input detected within the 

peripheral nervous system, resident cells within the tissue, and efferent pathways that are 

relayed by the brain to regulate ocular surface lubrication and blinking. Injury, infection, or 

systemic diseases, among others, that affect peripheral nerve functionality, may lead to 

deleterious effects on corneal surface integrity, including persistent epithelial defects, 

scarring, and neuropathic corneal pain (NCP) (Cruzat et al., 2010; Stapleton et al., 2013; 

Cruzat et al., 2017; Dieckmann et al., 2017a).

Due to the sensitivity of the eye to chemical damage, federal regulations require assessment 

of ocular discomfort prior to selling or marketing of select pharmaceutical products in the 

U.S., thereby highlighting the need for more accurate in vitro models to verify safety prior to 

the use of current animal models. Distinguishing between chemicals that may cause ocular 

damage, such as scarring or loss of barrier function, and chemicals that may cause 

temporary ocular irritation in the absence of permanent defects requires distinct testing 

metrics that may be lacking in existing approaches (Fig. 1). Current evaluation of ocular 

irritancy of a chemical relies on macroscopic visualization of the eye by slit-lamp post-

chemical application to identify signs of inflammation, surface damage, and haze 

(Wilhelmus, 2001). Studying pain induction in animal models commonly involves 

quantifying eye blinking rates (Acosta et al., 2013), eye-wiping frequency (Farazifard et al., 

2005), and tear production (Meng and Kurose, 2013). These metrics lend to difficulty in 

accurately predicting human responses, given inter-species variability in basal rates of tear 

flow (Chrai et al., 1973), lipid composition of the tear film (Leiske et al., 2010), and corneal 

sensitivity (Wieser et al., 2013). Studies in human patients rely on brain imaging and 

subjective pain scoring (Moulton et al., 2012) with ethical considerations limiting these 

studies to innocuous pain stimulation, such as bright light exposure.

Bridging this gap between animal-based approaches and human-focused studies requires 

further developments in delineating the biology underlying peripheral pain responses that 

occur at the ocular surface and how those relay to functional actions in the brain. We posit 

that advanced tissue engineering approaches may serve as a useful means to study these 

processes in a physiologically-relevant system with the inclusion of select cell types or 

phenotypes (e.g. pathological tissue isolation, gene knockouts, or fluorescent tags) to model 

human disease and determine how cell-cell interactions are influenced by varying stimuli.

The objective of this review is to describe recent advances in the study of corneal pain that 

should be considered in the development of a functional model. To lay a foundation to 

bioengineer more advanced systems to study nociception in vitro, we focus on aspects of 
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corneal tissue biology that define the role of sensory nerves in physiological maintenance of 

the cornea and the biochemical and electrophysiological responses that are associated with 

pain. Key features of an ideal corneal tissue model to study nociception and ocular irritancy 

include:

1. Utilization of appropriate human cell types present within the cornea, including 

primary limbal epithelial and stromal stem cells, endothelium, and resident 

immune cells.

2. Inclusion of sensory nerves that show responsiveness to mechanical, chemical, or 

thermal stimuli and promote epithelial stratification.

3. Maintenance of cultures at an air-liquid interface with tear perfusion to mimic 

physiological tear flux.

4. Characterization of known chemical stimulants that evoke pain responses based 

on nociceptor activation.

5. Optimizing readouts to assess signaling responses using both biochemical, 

optical, and electrophysiological approaches.

6. Stable and sustainable in vitro tissues to accommodate studies of both acute and 

chronic conditions spanning from days to weeks and months.

7. Validation of functional responses detected in vitro, such as morphological 

changes in tissue structure, biochemical responses, and electrophysiological 

output, to pain responses observed in relevant in vivo animal models and the 

human patient population.

Thorough understanding of the structural and dynamic features involved in corneal tissue 

biology will aid in developing accurate models to screen chemicals for potential ocular 

discomfort and therapeutic application as novel analgesics to treat acute and chronic pain 

development. This review emphasizes the molecular and structural cues involved in pain 

propagation with discussion of current tissue engineering approaches to mimic these 

processes in tissue models based on current in vivo, ex vivo, and in vitro systems.

2. Anatomical and functional characteristics of corneal innervation

Neurobiology of the cornea has been extensively reviewed (Stapleton et al., 2013; Belmonte 

et al., 2017; Cruzat et al., 2017). The human cornea has the highest sensory innervation per 

unit area of any surface epidermal tissue in the body with counts of approximately 50–450 

neurons crossing the limbus originating from the ophthalmic region of the trigeminal 

ganglion (TG) (Müller et al., 2003). Factors that contribute to corneal sensitivity are heavily 

interconnected with the peripheral nervous system and the multiple cell types (epithelial, 

stromal, and immune cells) present within the epithelium and stroma that promote neuronal 

sensitization primarily via secreted factors with recent work highlighting exosomes as 

potential mediators of epithelial-stromal interactions (Han et al., 2017). The barrier 

functions of the corneal epithelial and endothelial layers mediated via tight junctional 

proteins are important for maintaining the microenvironment of the cornea serving to 

separate the corneal stroma from the outer environment, as well as from the inner aqueous 
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humor (Stiemke et al., 1991; Ban et al., 2003). Structurally, nerves enter the cornea radially 

from the periphery to form the sub-basal nerve plexus with intraepithelial nerve fibers 

extending to the epithelium. This sensory presence is prominent at the cornea-scleral rim at 

200 μm from the ocular surface with additional bundles distributed from 50–500 μm deep 

within the stroma (Marfurt et al., 2010) running preferentially in parallel to stromal collagen 

fibrils (Muller et al., 1996). The average diameter of stromal bundles are 20 μm thick 

(Marfurt et al., 2010), while corneal nerve fibers range from 2 μm-6 μm with lengths of 200 

μm-800 μm from the sub-basal nerve plexus to the mid-stroma (Oliveira-Soto and Efron, 

2001). A centripetal orientation of nerve fibers from the limbus to the central cornea gives 

rise to a whorl-like appearance (Fig. 2). Re-formation of this vortex in the adult mouse by 

day 28 following superficial trephination (Pajoohesh-Ganji et al., 2015) suggests that this 

phenomenon is independent of developmental epithelial re-growth. Conformational changes 

in the sub-basal nerve plexus are associated with pathological conditions that contribute to 

reduced sensation, such as diabetes (Utsunomiya et al., 2015) and herpes simplex keratitis 

(Hamrah et al., 2010).

Sensory nociceptor terminals, the stimulation of which results in the sensation of pain and 

discomfort, are distributed in a manner to detect and allow response to potentially damaging 

external and internal stimuli, and thereby warn of the risk of injury or long-term tissue 

damage. Further, nociceptors detect noxious, irritant, and inflammatory stimuli through the 

expression of transient receptor potential (TRP) channels. Three sensory nerve subgroups 

have been defined based on the expression of these receptors and functionality within the 

human cornea: 1) mechano-nociceptors, which comprise 20% of the total density and are 

responsible for sensing physical perturbations and mechanical distress, 2) polymodal-

nociceptors, which make up 70% of the nociceptors and serve to detect temperature flux, 

endogenous inflammatory mediators, and exogenous chemicals, and 3) thermo-receptors, 

which form the remaining 10% of nociceptors and function in detecting temperatures 

induced by tear film evaporation (De Armentia et al., 2000; Belmonte et al., 2004). 

Variances in receptor expression in the murine cornea have suggested higher distributions of 

cold-sensitive receptors (49%) and slightly lower polymodal distributions (41%) with the 

remaining 10% making up mechanical- sensitive receptors (Gonzalez-Gonzalez et al., 2017) 

suggesting species-differences in nociceptor expression that may contribute to variances in 

sensitivity to select stimuli. The broad distribution of nociceptors within the cornea allows 

for rapid monitoring of corneal surface temperature, lubrication, and injury, thus serving a 

fundamental role in preserving tissue integrity. While the predominant innervation of the 

cornea is sensory, a small proportion of neuronal input is composed of sympathetic and 

parasympathetic nerve fibers originating from the superior cervical ganglion (Marfurt, 1988; 

Marfurt et al., 1998). Notable studies in the field have identified specific features of the 

electrophysiological responses produced by sensory neurons innervating the cornea 

depending on nociceptor class and stimulus (Lopez de Armentia et al., 2000; Hirata and 

Rosenblatt, 2014; Hirata et al., 2015).

The importance of neural innervation in regulating epithelial proliferation has become 

increasingly clear in the field of Ophthalmology with a growing clinical burden linked to 

neurotrophic keratitis and diabetic polyneuropathy. As evident in these conditions, loss of 

sensory nerves may lead to development of structural defects in corneal tissue integrity, 
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resulting in scarring. Physiological conditions, such as adequate tear flow, mucin production, 

epithelial proliferation, and stromal remodeling, promote retention of transparency of each 

corneal layer enabling proper visual acuity.

2.1. Interplay between the epithelium, stroma, and nerve fibers

Secreted neurotrophic factors play a role in corneal tissue integrity by promoting nerve 

growth and survival during steady state, as well as during pathological conditions, such as 

trauma or infections. Mechanisms involved in the corneal wound-healing cascade have been 

extensively reviewed (Wilson et al., 2001; Netto et al., 2005) highlighting the multi-factorial 

biochemical and cellular response that mediates a return to homeostasis post-injury. In terms 

of neuronal contribution, structural and biochemical functions of sensory nerves within the 

cornea regulate the collective response to injury, as well as provide pro-survival signals 

during physiological maintenance of the cornea (Fig. 3).

While nerve fibers in the limbus and peripheral cornea are protected by myelin, sensory 

nerves within the central corneal stroma are thought to be supported by non-myelinating 

Schwann cells, and terminal fibers extending into the epithelium supported by corneal 

epithelial cells (Stepp et al., 2017). Likewise, the role of heparan sulfate glycosaminoglycans 

in sensory nerve guidance has been reported in the cornea with null deletions of the 

proteoglycan syndecan-1 showing a reduction in developmental growth of intraepithelial 

nerve endings and lower epithelial wound healing post-debridement in mice (Pal-Ghosh et 

al., 2017). Severity of the corneal wound has notable effects on recovery of nerve structure 

with stromal nerve injury and sub-basal debridement leading to reduced recovery up to 28 

days post-injury with associated epithelial cell death and loss of neuronal extensions 

occurring at the corneal apex independent of overt inflammation (Pajoohesh-Ganji et al., 

2015). Moreover, studies in the avian cornea have identified synaptic-like interactions 

between intraepithelial nerve endings and apical corneal epithelial cells expressing neuron-

specific class III β-tubulin (TuJ-1+) and synaptic vesicle component (SV2) (Kubilus and 

Linsenmayer, 2010a). Of interest, a number of these select TuJ-1 positive epithelial cells 

show the presence of mitotic spindles indicative of a dividing cell suggesting that at least in 

the developing cornea, apical epithelial cells may contribute to the superficial corneal layers 

in addition to basal cells. Furthermore, co-culture studies in vitro have shown increased 

sensory nerve outgrowth in the presence of corneal epithelial cells (Kowtharapu et al., 2014) 

further supporting the likely contribution of the epithelium in generating a favorable 

microenvironment to support nerve regeneration.

Stromal contributions to sensory nerve health are less understood but have been investigated 

in vitro using chick dorsal root ganglion and corneal stromal keratocytes and fibroblasts. 

Conditioned media transfer from corneal fibroblast cultures improve neurite outgrowth in a 

dorsal root ganglion model suggesting that neurotrophic factors secreted by activated 

keratocytes post-injury may contribute to nerve recovery (Yam et al., 2017).

2.2. Immune cells in the cornea

The immune system, both resident and invading leukocytes, play a fundamental role in 

influencing corneal sensitivity to pain during infection or injury. Pain sensation is heavily 
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influenced by the inflammatory responses that occur in conjunction with mechanical or 

chemical injuries. Inflammatory processes caused by wounding or infection originating at 

the corneal surface can also lead to inflammatory processes detected in the TG (Ferrari et al., 

2014; Matundan et al., 2016).

As the precise microanatomy of the cornea is crucial for vision, an overactive inflammatory 

response to injury, noxious stimuli, or the invasion of opportunistic bacterial and viral 

pathogens can result in collateral structural damage to the cornea and lead to corneal opacity 

and ultimately vision impairment. The high success rate of corneal transplantation 

(Medawar, 1948, 1961) indicated the cornea is immune privileged, an evolutionary 

adaptation enabling the protection of vital tissues, some incapable of regeneration. 

Historically, with the exception of a population of intraepithelial dendritic cells (DCs) in the 

limbal region, the cornea was considered to be a tissue devoid of bone marrow (BM)-derived 

cells (Streilein et al., 1979; Gillette et al., 1982; Streilein, 1999). Several active and passive 

mechanisms were thought to contribute to corneal immune privilege, including lack of blood 

and lymphatic vessels (Streilein et al., 2002), anti-inflammatory mediators, such as 

transforming growth factor (TGF)-β and Fas Ligand (Streilein, 1999; Streilein et al., 2002; 

Niederkorn, 2003), and the absence of major histocompatibility complex (MHC)-II antigens 

(Streilein et al., 2002). However, the discovery of resident BM-derived cells in the cornea 

(Brissette-Storkus et al., 2002; Hamrah et al., 2002; Hamrah et al., 2003c; Nakamura et al., 

2004) altered the dogma that the central cornea is devoid of immune cells and resulted in a 

paradigm shift in corneal immunology.

Distinct populations of resident BM-derived cells distributed throughout the steady state 

corneal epithelium, and between the collagen lamellae and keratocytes of the stroma, include 

antigen-presenting cells (APCs), such as conventional DCs (cDCs) and macrophages, and 

decrease in density centripetally (Hamrah and Dana, 2010). The presence of central corneal 

cDCs in the cornea was first described in 2002 (Hamrah et al., 2002). Further phenotypic 

differences between resident cDCs were then noted, showing that cDCs in the central cornea 

were immature (negative for MHCII, CD80 and CD86), whereas peripheral cDCs include 

subpopulations of both immature and mature (positive for MHCII, CD80 and CD86) 

(Hamrah et al., 2002; Hamrah et al., 2003a). The immature phenotype of central corneal 

cDCs is unique in that they are unable to sensitize T cells in draining lymph nodes (Hamrah 

and Dana, 2007). Further, Langerin-positive stromal are localized throughout the peripheral 

and central corneal and epithelial DCs only to the periphery and limbus in the naïve murine 

cornea (Hattori et al., 2011).

Further, the corneal stroma contains resident macrophages, localized in the posterior stroma 

(Brissette-Storkus et al., 2002; Hamrah et al., 2002; Nakamura et al., 2004; Chinnery et al., 

2007; Takayama et al., 2009; Gautier et al., 2012; Seyed-Razavi et al., 2014; Chinnery et al., 

2015). Interestingly, loss of either CCR2-positive or -negative macrophage subsets was 

recently seen to affect corneal wound healing post-epithelial debridement (Liu et al., 2017). 

Another recent study reported Thy-1 YFP-positive myeloid derived suppressor cells 

(MDSC) in an established neurofluorescent trangenic murine model infiltrating the cornea 

following topical benzalkonium chloride (Sarkar et al., 2012). MDSCs infiltrate the cornea 
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following annular keratectomy and are capable of secreting nerve growth factor (NGF) 

(Sarkar et al., 2013).

Another subtype of leukocyte also identified to be resident in the naïve cornea are 

plasmacytoid dendritic cells (pDCs) located in the anterior stroma (Zheng et al., 2010). 

Phenotypically distinct from cDCs (Asselin-Paturel et al., 2001; Bjorck, 2001; Nakano et al., 

2001), pDCs are known to be potent producers of type I Interferons (IFN-γ) (Lund et al., 

2006; Smit et al., 2006; Wang et al., 2006; Cervantes-Barragan et al., 2007; Reizis et al.) and 

are able to function both as regulators of T cell immunity as well as regulators of tolerance 

(Colonna, 2006; Ochando et al., 2006; Gautreau et al., 2011).

An immune response in the cornea occurs in a process similar to that in other tissues. 

Inflammatory stimulus by way of trauma or tissue injury, including damage-associated 

molecular patterns (DAMPS, endogenous danger signals released by dying cells during 

stress or tissue injury that are able to activate innate immune cells to produce a non-

infectious inflammatory response), pathogen-associated molecular patterns (PAMPs, not 

found in host cells and recognized by Toll-Like Receptors (TLRs) (Bianchi, 2007)), and 

other antigens initiate local inflammation by stimulating production and release of 

inflammatory cytokines including interleukin (IL)-1, tumor necrosis factor (TNF)-α, and 

IL-6 by epithelial cells. Inflammatory cytokines, in turn, result in the activation of resident 

immature APCs and an increase in vascular adhesion molecules within limbal vessels 

culminating in recruitment of circulating inflammatory cells including neutrophils and 

monocytes, where differentiation into macrophages and DCs occurs, contributing to host 

defense, tissue remodelling, and repair (Van Furth et al., 1973). Further, epithelial cells have 

been shown to secrete pro-inflammatory cytokines IL-1α, TNF-α, IL-6 and IL-8, whereas 

stromal keratocytes may produce IL-1α, TNF-α, IL-6 and IL-8, both of which contribute to 

the chemotaxis and activation of leukocytes in the cornea (Cumberbatch et al., 1997; 

Lambiase et al., 2011). Immune cells recruited to the ocular surface following acute 

inflammation due to epithelial injury that do not reside in the steady state cornea include 

neutrophils (Li et al., 2006) and γδ-T cells localizing at the limbal epithelium (Li et al., 

2007). A recent study has also revealed a subset of classic natural killer (NK) cells that 

migrate into the corneal limbus in response to locally-generated chemokines following 

central epithelial abrasion and limit the innate acute inflammatory reaction to corneal 

wounding through regulating neutrophil influx (Liu et al., 2012).

Chronic inflammation, as is the case with dry eye disease (DED), involves the adaptive 

immune system. The inflammatory microenvironment of DED facilitates both maturation 

and migration of resident APC populations from the cornea to the limbus/conjunctiva region 

where they are able to travel to draining lymph nodes, including the submandibular draining 

lymph node via lymphatics (afferent arm of the alloimmune response), where they present 

antigen and activate T cells towards a T helper (Th)1 effector and Th17 (autoreactive) 

subtype (Tsubota et al., 1999; Shen et al., 2007; Barabino et al., 2012; Gandhi et al., 2013; 

Pflugfelder et al., 2013; Yagci and Gurdal, 2014). CD4+ effector T cells in turn migrate to 

the limbus/conjunctiva via the vasculature (efferent arm of the alloimmune response) and 

enter the tissue through diapedesis. Further, desiccating stress-induced autoreactive T cells 

can selectively cause inflammation similar to Sjögren’s disease in the cornea, conjunctiva, 
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and lacrimal gland (Niederkorn et al., 2006). Damaged ocular surface cells and infiltrating 

lymphocytes and leukocytes continue the release of DAMPS (Matzinger, 1998), as well as 

further pro-inflammatory cytokines and chemokines, which exacerbate and perpetuate ocular 

surface inflammation. Preliminary data from a recent study of DED subjects suggests an 

increase in the ocular surface levels of a DAMP, high mobility group box-1 (HMGB-1), in 

the damaged ocular surface (Alven A., 2015). Severe DED is, therefore, caused by the 

increasing cycle of inflammation with ocular surface injury due to collateral damage 

(Johnson and Murphy, 2004; 2007; Baudouin et al., 2013).

Laser in vivo confocal microscopy (IVCM), a non-invasive high-resolution real-time 

imaging device allowing layer-by-layer analysis of the corneal ultrastructure, has been 

utilized by clinicians and researchers to assess and monitor corneal and conjunctival immune 

cells (Cruzat et al., 2010; Hamrah et al., 2010; Qazi et al., 2014; Hamrah et al., 2016; Cruzat 

et al., 2017). IVCM has also been utilized to confirm the presence of dendritiform cells at 

the basal epithelial cell and the sub-basal nerve plexus layer of the cornea (Zhivov et al., 

2005; Cruzat et al., 2011; Mayer et al., 2012). Several studies have also confirmed the 

distribution of corneal immune cells found within the murine cornea with 

immunofluorescence staining of human corneal tissues (Hamrah et al., 2003b; Yamagami et 

al., 2005; Yamagami et al., 2006; Knickelbein et al., 2014), including the identification of 

dendritiform cells localizing in the basal epithelium of the cornea to be CD11c+ DCs (Mayer 

et al., 2007; Knickelbein et al., 2014). Interestingly, IVCM investigations have revealed 

correlations between nerve density and immune cells in various types of keratitis. Analysis 

of bacterial, fungal, and Acanthamoeba keratitis IVCM images highlighted the increase in 

epithelial dendritiform cell density, compared with normal controls, to inversely correlate 

with sub-basal corneal nerve density (Cruzat et al., 2011). A similar result was noted in other 

studies where the increase in dendritiform cell density and size in the affected and 

contralateral eyes of unilateral infectious keratitis patients, including herpes simplex, herpes 

zoster, Acanthamoeba, and fungal and bacterial keratitis, was also inversely correlated with a 

bilateral decrease in the sub-basal nerve plexus (Cruzat et al., 2015; Cavalcanti et al., 2018). 

Taken together, these studies suggest an interplay between the nervous and immune systems 

(Hamrah et al., 2016).

2.3. Inflammation and neuronal sensitization

The International Association for the Study of Pain (IASP) defines neuropathic pain as pain 

caused by a lesion or disease state of the somatosensory nervous system (Jensen et al., 

2011). This definition includes direct damage to the cell body of nociceptors in the central 

nervous system, severing of the peripheral nerve terminals, and/or damage resulting from the 

local inflammatory component following the insult (von Hehn et al., 2012). Pain can be 

broadly divided into sub-categories based on the stimulus from which they are activated: 1) 

nociceptive pain, where an acute noxious agent (thermal stimulus and chemical irritants) 

stimulates nociceptors to activate the body’s protective and avoidance response, 2) 

inflammatory pain, which is driven by the inflammatory response resulting in the 

sensitization of nociceptor terminals and lower thresholds to noxious stimulation, and 3) 

neuropathic pain, which is caused by neural damage or lesions (Hucho and Levine, 2007). 

These pain responses are heavily influenced by inflammatory processes, both by tissue 
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inflammation, which is mediated via secretion of pro-inflammatory molecules and immune 

cell activation, and neurogenic inflammation, which is characterized by secretion of 

Substance P (SP) and calcitonin gene related peptide (CGRP), thereby activating resident 

and recruiting invading immune cells, respectively (Chiu et al., 2012).

Corneal nerve dysfunction is the pathophysiologic basis of many ocular surface diseases, 

such as arising from surgery (Linna et al., 2000), diabetic neuropathy (Rosenberg et al., 

2000; Efron, 2011; Chen et al., 2013; Leppin et al., 2014), DED (Benitez del Castillo et al., 

2004), contact lens wear, post-surgical (Theophanous et al., 2015a), herpetic keratitis 

(Pavan-Langston, 2008; Hamrah et al., 2010; Hamrah et al., 2013) and systemic small fiber 

polyneuropathy (Bucher et al., 2015). The release of inflammatory mediators, from the 

inflammatory component of the aforementioned cases, results in the dysfunction of corneal 

nerve terminals and modification of the normal nociceptor responses with irregular impulse 

firing–ectopic discharge, decreased nociceptor activation thresholds and increased discharge 

of impulses evoked by supra-threshold stimulation (Belmonte et al., 2015). Chronic and 

persistent ectopic activity of injured or dysfunctional corneal nerves in turn results in 

discomfort in response to innocuous stimuli (allodynia) and to enhanced discomfort to 

noxious stimuli (hyperalgesia). Nociceptor sensitization can be specifically localized to the 

periphery (Aggarwal et al., 2015; Hamrah et al., 2017), possess both a peripheral and central 

component, or be specifically centralized within second order neurons (Dieckmann et al., 

2017a).

Immune cell infiltration and local inflammation following peripheral nerve injury are critical 

for the initiation and development of neuropathic pain (Austin and Moalem-Taylor, 2010; 

Stein and Machelska, 2011). Inflammatory mediators released following local injury, 

including bradykinin, cytokines, histamine, nerve growth factor, prostaglandin E2, 5-

hydroxytryptamine (5-HT), ATP and nitric oxide (Kidd and Urban, 2001; Chiu et al., 2012), 

are capable of sensitizing nociceptors by decreasing their activation threshold and/or 

increasing suprathreshold responses through transient receptor potential vanilloid receptor-1 

(TRPV1) activation (Immke and Gavva, 2006). ATP, for example, is recognized by ligate-

gated cation channel purinergic receptors P2X3, present on both nociceptor neurons and 

immune cells (Cockayne et al., 2000; Souslova et al., 2000), while P2Y2 receptors function 

to sensitize TRP and voltage-gated sodium channels (Yousuf et al., 2011; Hockley et al., 

2016). Furthermore, inflammatory cytokines such as IL-1β and TNF-α can be directly 

sensed by nociceptors that express the cognate receptors, which in turn induce the activation 

of p38 mitogen-associated protein (MAP) kinases and leading to increased membrane 

excitability (Binshtok et al., 2008; Zhang et al., 2011). Once activated, the action potential 

that is sent centrally towards the soma, and disseminated into other terminal branches 

mediating the local release of pro-inflammatory neuropeptides (including SP and CGRP). 

The release of pro-inflammatory neuropeptides, chemokines and cytokines from activated 

nociceptors, in addition to the pro- and anti-inflammatory mediators released by infiltrating 

and resident immune cells, result in a positive feedback loop, contributing to further 

inflammation and leading to the alteration of nociceptors (Mantelli et al., 2010).

Typically, resolution of the initial inflammation, and the normalization of the ocular surface, 

may result in the reversal of peripheral sensitization (Launay et al., 2016). The prolonged 
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sensory hypersensitivity, after the original etiological cause is resolved, can progress if the 

primary disease continues to damage the nervous system (e.g. chronic tissue inflammation or 

neurogenic inflammation). Ongoing insults and chronic changes to the peripheral and central 

nervous system can lead to permanent sensitization, e.g. chronic DED. Cytokines released in 

the pro-inflammatory environment, such as in DED, by infiltrating T cells, macrophages 

including, but not limited to, IL-2, IL-6, IL-8, IL-10, IL-17, macrophage inflammatory 

protein (MIP)-1α and TNF-α (Kiguchi et al., 2010; Gandhi et al., 2013; Lee et al., 2013) are 

able to lower the activation thresholds of local nociceptors to noxious stimuli (Sommer and 

Kress, 2004; Gold and Gebhart, 2010; Ren and Dubner, 2010). Blocking pro-inflammatory 

cytokines such as IL-1β, which has been shown to act directly on sensory neurons to 

increase their susceptibility for noxious heat via an IL-1RI/TyrK/PKC-dependent 

mechanism (Obreja et al., 2002), IL-6, as well as TNF-α, leads to reduced hyperalgesia in 

animal models of painful neuropathy (Sommer et al., 1998; Wagner et al., 1998; Sommer 

and Kress, 2004). Th1 cells secrete IFN-γ that activates macrophages (Mills et al., 2000), 

while Th17 cells express IL-17 (Stockinger and Veldhoen, 2007; Weaver et al., 2007) that 

induce local production of pro-inflammatory cytokines (IL-6, IL-8, and granulocyte-colony-

stimulating factor) and matrix metalloproteinases (MMPs) (Fossiez et al., 1996; De Paiva et 

al., 2009). Furthermore, IL-17A has direct and widespread effects on neurons, but can also 

impact neuronal function via signaling to immune cells. Further, infiltrating T cells also 

contribute to neuropathic pain following peripheral and/or central sensitization (Zhang et al., 

2014). Neuro-immune signaling with microglia is critical for initiation and development of 

the central component of neuropathic pain (Tsuda et al., 2003). In this instance, nerve injury 

induces gliosis, where microglia (and astrocytes) surrounding the affected primary afferent 

terminals functionally altered towards a “pain-related enhanced response states” (McMahon 

and Malcangio, 2009), which contributes to sensitization and results in enhanced neuro-

immune communication (Clark and Malcangio, 2014).

Centrally, resident satellite glial cells have been shown to release a variety of molecules that 

modulate the excitability of TG neurons in different states, including steady state, following 

noxious stimuli, as well as following persistent activation by noxious stimuli (Goto et al., 

2016). The precise role that satellite glial cells play in modifying the excitability of TG 

neurons supplying the ocular surface is not fully known. In the dorsal horn, microglial-

neuronal communication is initiated through activation of the purinergic receptor, P2X4 

receptor, resulting in the release of brain-derived neurotrophic factor (BDNF) leading to 

activation of TrkB receptor and down-regulation of the neuronal potassium/chloride co-

transporter KCC2 (Ulmann et al., 2008; Trang et al., 2009), or activation of the low affinity 

P2X7 receptor, resulting in the release of the lysosomal protease Cathepsin S (CatS) and 

CX3CL1 (Clark et al., 2010). Similar responses, including release of microglial TNF-α 
following activation of P2X7, can also occur in the TG following peripheral nerve damage 

(Ito et al., 2013; Murasaki et al., 2013).

CX3CL1 signaling is ideally placed to mediate neuron-microglial communication, during 

both steady state and following peripheral nerve damage, and therefore is a potential 

candidate to investigate its role in the modulation of nociceptor signaling and sensitization 

(Harrison et al., 1998; Zhuang et al., 2007; Clark and Malcangio, 2014). CX3CL1, also 

known as fractalkine (humans) or neurotactin (mice), is a structurally unique chemokine 
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principally expressed by neurons that plays a role in neuropathic pain (Harrison et al., 1998; 

Verge et al., 2004). CX3CR1, the sole receptor for fractalkine, mediates both the adhesive 

(when membrane bound) and chemokine properties (soluble form) of fractalkine, and is 

expressed on several immune cell sub-types including monocytes, CD16-positive NK cells, 

T cells, DCs and microglia (Imai et al., 1997; Nishiyori et al., 1998; Papadopoulos et al., 

1999; Jung et al., 2000). Further, fractalkine signaling has been shown to mediate the 

migration of CX3CR1 bearing cells during neuronal injury (Lu et al., 2009; Gao and Ji, 

2010; Sun et al., 2013). In the cornea, the dissociation of macrophages intimately associating 

with nerves in the corneal stroma following epithelial injury has been shown to be partly 

CX3CR1 dependent (Seyed-Razavi et al., 2014), revealing another role for fractalkine in 

mediating the migration of resident immune cells in the cornea (Chinnery et al., 2007). 

Investigations in the CNS have revealed that CX3CR1 may play an important role in the 

genesis of neuropathic pain via regulating neuronal-glial interactions (Gao and Ji, 2010). 

How fractalkine is involved in NCP progression, however, is currently not known.

3. Corneal microenvironment and the pain response

The nociceptive properties of the cornea are dependent on the chemical nature and 

persistency of the stimulus. When noxious stimuli reach above a threshold, the nociceptors 

induce ion-influx via voltage-gated receptors resulting in the production of an action 

potential, which is transmitted to the TG cell bodies and eventually to higher-order neurons 

within the brain. Functional responses to painful stimuli are mandated by structural 

determinants (e.g. lid closure, tear flow), biochemical responses (e.g. expression and 

distribution of nociceptive receptors, signal propagation to the TG), and cellular responses 

(e.g. secretion of pro-inflammatory factors, influx of inflammatory cells, higher-order brain 

processes that contribute to pain registration).

3.1. Voltage-gated receptors and pain triggers

Induction of an action potential is mediated by voltage-gated receptors present on sensory 

nerve endings, which upon ligand binding promote ion flux leading to cell depolarization. 

The major receptors within the cornea are TRPV1–4, TRPM8, and TRPA1, as well as a 

number of other receptors (Table 1). Expression of these receptors is not restricted to the 

sensory neurons but has also been identified on corneal epithelium, keratocytes, 

endothelium, and resident immune cells suggesting a multifactorial response to stimuli 

involving multiple cell types (Stephan Mergler, 2011). The highly-expressed TRPV1 

receptor is dominant in the epithelium of the human likely correlating to the location of 

intraepithelial nerve fibers of innervating sensory nerves (Zhang, 2007) (Fig. 4).

Through activation of TRP receptors on nociceptors distributed throughout the cornea, two 

parallel means of detecting changes in sensation/ pain and discomfort on the ocular surface 

have been investigated: 1) irritant-induced tearing: proceeds via activation of TRPV1 and 

TRPA1 receptors, which then translates this information to an electrical signal characterized 

by Ca2+ flux and translation of activation to the trigeminal brainstem nuclear complex 

(Patapoutian et al., 2009) and 2) temperature-induced tearing: detected by nociceptors that 

promote tear production in response to cold or hyperosmolarity of the ocular surface (Parra 
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et al., 2010). These specialized thermoreceptors are present at corneal nerve endings and are 

activated by changes in tear content, temperature, and dryness (Parra et al., 2010). 

Upregulation in inflammatory mediators has also been associated with DED, including IL-1, 

−3, −6, and −13 (Solomon et al., 2001; Stern and Pflugfelder, 2004) and MMP-9 (Luo et al., 

2004; Pflugfelder et al., 2005; Acera et al., 2008; Mori et al., 2012; Schargus et al., 2015). 

These factors are classical nociceptor sensitizers increasing baseline neuronal-responses to 

environmental factors (known as hyperalgesia) that may correspond to elevated pain 

detected (Belmonte et al., 2004; Belmonte et al., 2015; Belmonte et al., 2017).

TRP channels are involved in a wide range of biology, notably pain sensation, 

vasoregulation, mineralization, embryonic development, and thermogenesis (Hwang and Oh, 

2007; Wu et al., 2010; Jin et al., 2012; Ye et al., 2012; Volkers et al., 2015; Dai, 2016). It is 

thus not surprising that dysfunction of TRP channels may lead to a broad array of pathology, 

including cardiovascular, musculoskeletal, genitourinary and nervous system ailments 

(Nilius and Szallasi, 2014). TRP channels play an indispensable role in relaying nociceptive 

stimuli for the perception of pain, from the periphery to the TG to the central nervous 

system.

Twenty-eight TRP ion channel genes are grouped in subfamilies based on sequence 

homology and are thought to work as homo- and hetero-tetramers (Moran and Szallasi, 

2017). Structural similarities between family members are limited to the six transmembrane 

segments and a loop between segments five and six that forms the ion pore (Wu et al., 2010; 

Dai, 2016) (Fig. 5). Binding of a wide range of ligands, as well as thermal and mechanical 

stimuli, render TRP channels permeable to the major cations K+, Ca2+, and Na+ present in 

the extra- and intracellular fluids. The resulting net inward current may lead to generation of 

action potentials, whereas calcium signaling may also induce activity in postsynaptic 

neurons (Stucky et al., 2009; Parnas and Parnas, 2010). Collectively, these observations laid 

the foundation for pain management approaches that aim to reduce excitation of the 

peripheral nervous system by way of targeting TRP channels in a specific and selective 

manner (Sousa-Valente et al., 2014; Mickle et al., 2016; Moran and Szallasi, 2017). Clinical 

drug programs related to pain have been most extensively pursued for TRPA1 (inflammatory 

and neuropathic pain), TRPM8 (cold allodynia) and, with mixed results, TRPV1 with 

current approaches to management of neuropathic pain including corticosteroids and 

tricyclic antidepressants among others (Dieckmann et al., 2017a). These three TRP channels 

detect and transduce noxious, nociceptive, inflammatory and neuropathic stimuli and are 

highly expressed on nociceptors (Dai, 2016; Moran and Szallasi, 2017) (Fig. 5).

The excitatory ion channel TRPA1 is expressed in dorsal root, trigeminal, nodose, geniculate 

and superior cervical ganglia and associated C and A??-fibers (Story et al., 2003; Smith et 

al., 2004; Kobayashi et al., 2005; Nagata et al., 2005; Katsura et al., 2006; Tatsumi et al., 

2015). Crosstalk may occur between calcium signaling and other pathways, such as G-

protein coupled receptors or TRPV1 (Moran and Szallasi, 2017), which is highly co-

expressed with TRPA1 in C-fibers (Story et al., 2003).

The broad distribution of TRP receptors throughout the cornea leads to increased 

responsiveness of the tissue to pain detection. Selective agonists of the major TRP receptors 
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present within the cornea have been studied (Table 2). The toxicity of these small molecules 

is dependent on receptor expression, concentration assayed, and duration of exposure. 

Moreover, effects at the sensory level are immediate with more chronic effects on nerve 

morphology and recurrent pain sensation dependent on exposure limits and may vary from 

patient-to-patient or model organism.

The TRP channels detect and respond to a broad range of exogenous chemicals (e.g. 

capsaicin, tear gases, aldehydes, cannabinoids) and endogenous signaling molecules that are 

released upon tissue damage, inflammation or oxidative or nitrative stress (e.g. 

prostaglandins, reactive oxygen and nitrogen species). Common TRPV1 agonists include the 

chili pepper constituent, capsaicin, resiniferatoxin, and endogenous fatty acid metabolites. 

Acute capsaicin application induces near immediate Ca2+-mediated depolarization (Chen et 

al., 1997) and release of neuropeptides SP and CGRP with chronic exposure leading to 

downregulation in TRPV1 receptor expression (Yang et al., 2010). Structural studies of the 

TRPV1 receptor have revealed characteristic binding motifs present that contribute to 

selective binding to potent ligands, capsaicin and resiniferatoxin (Elokely et al., 2016). 

Common chemical agonists of TRPA1 include thiosulfinate, isothiocyanate, and αβ 
unsaturated aldehyde-based irritants that are found in wasabi and mustard oils. In contrast, 

agents that lack a reactive group, such as capsaicin bind primarily via TRPV1 (Hinman et 

al., 2006; Macpherson et al., 2007). Activators of the TRPM8 channel include menthol and 

the synthetic chemical icilin, as well as pH changes during DED. Utilization of these 

stimulants in the study of pain mechanisms in tissue models may be useful to selectively 

activate TRP receptors autonomously, thereby establishing functional readouts for in vitro 
pain assessments. Additional activators of TRP receptors include hyperosmolar tears, light, 

cold-air, and select preservatives, such as benzalkonium chloride (Belmonte et al., 2017; 

Dieckmann et al., 2017a).

3.2. Propagation of sensory input to the trigeminal ganglion and brain

Lightly myelinated A??-fibers are very suitable to relay well-localized, fast pain because of 

their high conduction velocities, between 1.2 and 10 meters per second (Basbaum et al., 

2009). The typical conduction velocity of <1.2 meters per second make unmyelinated, 

small-diameter C-fibers good candidates to transmit poorly localized, slow pain (Basbaum et 

al., 2009). Within the cornea, sensory perception propagates to the TG via both Aδ- and C-

fibers (Belmonte et al., 2017). First-order neurons located in the TG receive nociceptive 

signals from the cornea from free ending termini and send projections to second-order 

neurons at two different locations of the brain stem nuclear complex: the Vi/Vc (trigeminal 

subnucleus interpolaris / caudalis transition region) and Vc/C1 (caudalis/upper cervical cord 

junction) areas of the trigeminal subnucleus caudalis region (Lazarov, 2002) (Fig. 6). First-

order synapses play an important role in the process of pain signal amplification (Dubin and 

Patapoutian, 2010). Release of glutamate from these neurons activates voltage-gated sodium 

channels in second-order neurons (Peters et al., 2010). These neurons then send axonal 

projections to third-order neurons in the thalamus via the contralateral spinothalamic tract. 

Weak nociceptive signals cause a slight membrane depolarization via activation of AMPA 

type glutamate receptors (Courtney et al., 1990; Ben-Ari et al., 1997). In contrast, strong 

signals activate N-methyl D-aspartate (NMDA) receptors and presynaptic glutamate release 
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from second-order neurons through complex signaling pathways that involve calcium influx, 

protein phosphorylation, upregulation of AMPA receptor expression and an increase in 

sodium ion conductance (Chittajallu et al., 1996; Cartmell and Schoepp, 2000). A second, 

longer lasting response is dependent on gene and protein expression, including that of TRP 

channels and release of neurotrophic factors (Hu et al., 2001). Spatial and temporal 

information related to the experienced noxious agent(s) ascend from the thalamus to the 

somatosensory cortex, the part of the brain responsible for pain perception (Fig. 6). These 

signals are further modified by input from subcortical structures associated with memory 

and emotions. Sustained, repeated, and intense nociceptive signals may elicit abnormal 

amplification of pain signals and a lowering of the threshold of activation by way of 

increasing synaptic function and membrane excitability and reduced inhibition. The net 

result is an enhancement of central excitatory activity leading to pain hypersensitivity during 

central sensitization (Almeida et al., 2004). Intricate negative feedback loops are in place to 

limit potentially uncontrolled activity of the ascending positive feed-forward loop. An 

additional safeguard is the activation of on and off interneurons in the TG and dorsal horn. 

These neurons release inhibitory glycine and GABA neurotransmitters, facilitating and 

inhibiting, respectively, second-order interneurons.

4. Corneal neuropathies associated with ocular pain

Neuropathic pain is defined by the International Association for the Study of Pain as pain 

caused by a lesion or disease of the somatosensory pathways in the peripheral and/or central 

nervous system (Jensen et al., 2011; Dworkin et al., 2013), in contrast with nociceptive pain 

produced by normal function of nociceptors (Belmonte et al., 2017). Neuropathic pain 

occurs in the eye as neuropathic ocular pain (NOP) (Galor et al., 2015a) and specifically in 

the cornea (NCP) (Rosenthal and Borsook, 2012; Aggarwal et al., 2015; Rosenthal and 

Borsook, 2016; Rosenthal et al., 2016; Dieckmann et al., 2017a; Hamrah et al., 2017) and 

can be perceived as pain or dysesthesias (unpleasant abnormal sensation), such as: 

discomfort (Theophanous et al., 2015b) (Galor et al., 2015a), photoallodynia (pain sensation 

to a non-painful stimulus; light) (Aggarwal et al., 2014; Aggarwal et al., 2015), burning 

(Galor et al., 2015b), irritation, dryness (Galor et al., 2015b) and grittiness. The diagnosis is 

clinical and requires a demonstrable damage or disease of the somatosensory nervous system 

(Jensen et al., 2011). Pain can be assessed with a variety of questionnaires, corneal nerves 

imaged with IVCM, and nerve functionality evaluated with esthesiometry or testing with 

topical anesthetics, such as proparacaine, to differentiate central from peripheral 

sensitization (Belmonte et al., 2017).

NCP can result from both peripheral nerve injury and systemic etiologies that can affect the 

somatosensory nerves and the pathway to the CNS. In addition, it has been categorized 

anatomically into peripheral and/or central, and etiologically into post-ocular surgery, ocular 

diseases and systemic diseases (Dieckmann et al., 2017a). Moreover, systemic comorbidities 

such as anxiety, depression and posttraumatic disorders have been shown to play an 

important role among NCP patients in modulating pain stimuli and transforming nociceptive 

pain into chronic pain (Galor et al., 2016) (Rosenthal and Borsook, 2012).
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The corneal somatosensory system consists of nociceptors in the corneal epithelium 

(Marfurt et al., 2010), neural pathways to higher centers, thalamus and the somatosensory 

cortex, responsible for the conscious perception of pain. During homeostasis, nociceptors 

generate physiological responses to acute pain stimuli, however the persistence of 

inflammation may lead to nerve damage and release of pro-inflammatory cytokines and 

inflammatory mediators (Opree and Kress, 2000; Yamaguchi et al., 2014) that increase the 

peripheral signaling and cause peripheral sensitization (Belmonte et al., 2015). The 

abnormal peripheral signaling generated by nerve injury represents an altered sensory 

message transmitted to higher centers to relay in the CNS. Chronic pain and central 

sensitization often begins following an initial insult to the peripheral nerves that remains at 

minimal levels of peripheral activity for a long time (Hains et al., 2004; von Hehn et al., 

2012; Baron et al., 2013). The hallmark of central sensitization is pain that is disconnected 

from ongoing peripheral signaling (Dieckmann et al., 2017a).

Diseases that lead to corneal nerve damage or injury may result in NCP and can be 

categorized into: infectious, chronic ocular surface disease, postsurgical, toxic, radiation 

keratopathy, trauma and systemic diseases. The most common clinical ocular comorbidity 

associated with NCP is DED, while the most two common associated ocular surgical 

condition for NCP are cataract and refractive surgeries (Dieckmann et al., 2017b). Systemic 

comorbidities associated with NCP include anxiety, depression and fibromyalgia, although 

diabetes and small fiber neuropathies also play a significant role (Dieckmann et al., 2017b).

Corneal nerves are part of the lacrimal functional unit (LFU), which is an integrated system 

composed of main and accessory lacrimal glands, ocular surface (cornea, conjunctiva, 

Meibomian glands) and eyelids. The integrity of LFU is essential for the maintenance of the 

tear film homeostasis and ocular surface integrity. Damage to corneal nerves due to 

inflammation leads to disruption of LFU integrity and ocular surface disease that express 

itself as DED (Cruzat et al., 2017). In DED, as part of a vicious cycle, the loss of tear film 

homeostasis as it occurs with increased tear film evaporation or decreased production of tear 

film, can lead to more inflammation and more peripheral nerve damage contributing to 

perpetuate the disease (Belmonte et al., 2017).

A multitude of etiologies can give rise to DED, including eyelid and blink abnormalities, as 

well as changes in tear film components and ocular surface. Based on the underlying 

etiology, DED can be categorized in subcategories that vary and frequently include 

complains of dysesthesias such as in NCP patients (Galor et al., 2018). Interestingly, DED 

patients without NCP and patients with NCP both demonstrate evidence of nerve injury as 

seen by IVCM. These patients may demonstrate similar symptoms, although in NCP 

patients, symptoms can be more severe. In chronic DED, persistent overt damage to 

peripheral nerves can lead to changes in the nociceptors firing abnormalities and symptoms 

like dysesthesias and pain. Indeed, the absence of clinical signs on slit-lamp examination, 

the lack of efficacy in the topical treatment with artificial tears, and the presence of 

microneuromas (disorganized mass of nerve cells that grow after nerve injury) in the IVCM 

has been shown to be present in NCP, but not among DED patients (Goyal and Hamrah, 

2016; Dieckmann et al., 2017a; Moein et al., 2017).
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There is a significant correlation between corneal nerve abnormalities (decreased corneal 

nerve density and nerve regeneration) and post-herpetic corneal sensation (Hamrah et al., 

2010; Hamrah et al., 2013; Cruzat et al., 2016; Moein et al., 2018). Post-herpetic neuralgia 

(PHN) is a chronic and refractory neuropathic pain that persists for 3 months or more after 

an outbreak of acute herpes zoster infection. The varicella zoster virus is a neurotropic virus 

that remains dormant in the dorsal root ganglion and can reactivate resulting in acute herpes 

zoster. Patients complain about multiple types of pain including acute sharp pain, burning 

sensation, hyperalgesia and allodynia. Typically, the disease is unilateral following the 

correspondent dermatome and respecting the body medium line. Similar to PHN in non-

ocular sites, the immune response triggered by the virus that propagates along the affected 

sensory nerves leads to peripheral nerve injury in the cornea. Once damaged, the peripheral 

nerve terminals (nociceptors) undergo changes that lower the threshold for nociceptive pain 

and deflagrate spontaneous ectopic pain signal. Subsequently, peripheral sensitization results 

in pain generated even in the absence of painful stimuli (Hadley et al., 2016). Continuous 

nociceptor stimulation also impairs descending pain inhibitory pathways, induces chronic 

excitability and depolarization of second-order neurons, which in turns leads to abnormal 

central processing involving activation of receptors like NMDA resulting in centralized post-

herpetic neuropathic pain (Feller et al., 2005).

Although both α-herpes viruses, herpes simplex virus type 1 (HSV-1) and varicella zoster 

virus (HZV), can remain latent in the TG, reactivation from HZV in this site is rarely 

compared to HSV-1 (Theil et al., 2003). HSV-1 typically causes infection of the oral mucosa 

and persists latent in the sensory ganglion (TG). Reactivation of the HSV-1 in the TG 

generally affects cranial nerves causing herpes labialis, facial palsy, vestibular neuritis and 

corneal keratitis (Hamrah et al., 2010). As with HZV keratitis, after HSV-1 virus 

reactivation, damage to peripheral corneal nerves lead to inflammation and changes in 

nociceptors on the cornea. Recent IVCM studies have shown that peripheral corneal nerve 

density at the sub-basal corneal layer decreased in both viral infections compared to controls 

in both eyes (affected and contra-lateral eye) (Hamrah et al., 2010; Hamrah et al., 2013). 

These findings suggest bilateral changes in a clinically unilateral disease like HZV keratitis 

and reinforce the role of the CNS in bilateral neuronal ocular regulation (Fig. 7).

Systemic diseases that affect the peripheral nervous system and lead to small fiber 

neuropathy can also cause neuropathic pain. Small fiber neuropathies refer to a group of 

neuropathies defined by a selective or predominant lesion of peripheral poor myelinated Aδ-

fibers and unmyelinated C-fibers (Fig. 8). The mechanism of injury is related to 

inflammation and axonal degeneration. The etiologies vary and include metabolic causes 

such as: diabetes, hypothyroidism, uremia, hypertriglyceridemia, vitamin B12 deficiency; 

neurotoxic exposure or vitamin intoxication such as antiretroviral agents, alcohol, 

chemotherapeutic agents; infections such as: hepatitis C virus, HIV, influenza, herpes virus; 

immunological causes such as Celiac disease and paraneoplastic syndrome, Sjögren’s 

disease, vasculitis; hereditary causes: Fabry disease, sensory and autonomic neuropathies; 

and idiopathic causes (Terkelsen et al., 2017). Interestingly, diabetes, Celiac disease, HIV 

and idiopathic small fiber neuropathies were the most common systemic diseases associated 

with NCP, after depression, anxiety, fibromyalgia and headache (Dieckmann et al., 2017b). 

Re-innervation and development of neuropathic corneal symptoms after a procedure may be 
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affected by several factors, including type of surgical procedure, level of inflammation and 

systemic comorbidities (Richter et al., 1996; Dieckmann et al., 2017a). However, refractive 

surgery (in particular, laser-assisted in situ keratomileusis (LASIK)) and cataract surgery 

have been described as an associated risk factor for NCP (Theophanous et al., 2015b; 

Dieckmann et al., 2017b).

The overlapping symptoms between neuropathic-like DED and the presence of non-ocular 

functional chronic pain have been recently showed by Galor and Crane (Galor et al., 2016; 

Crane et al., 2017). This close relationship emphasizes the idea of a systemic predisposition 

to central sensitivity through multiple mechanisms, including aberrations in signaling, glia/

neuron interactions and genetic mechanisms of vulnerability. Neuropathic pain is often 

associated with comorbidities such as anxiety and depression resulting in a low health- 

related quality of life. The exact underlining neurobiological mechanism of overlap from 

those conditions is not clear, although neuroplasticity and gene expression changes were 

recently postulated as a possible mechanism (Post, 2016). Napadow et al., using functional 

magnetic resonance imaging (fMRI) data, have shown resting brain activity with multiple 

networks associated with spontaneous pain among patients with fibromyalgia in the brain 

stem (Napadow et al., 2010). These findings reinforce the interconnection between the 

associated comorbidities and pain perception areas. The temporal relationship between NCP 

and these comorbidities is not clear and may potentially be bidirectional. It is postulated that 

these two comorbidities play an important role modulating pain perception in the CNS (van 

Hecke et al., 2013; Dieckmann et al., 2017b).

5. Current models to study corneal pain

The indirect costs associated with chronic pain result from increased absenteeism and 

decreased productivity at work and have been estimated to total $100 billion each year in the 

United States. Neuropathic pain contributes substantially to these costs (McCarberg and 

Billington, 2006). Chronic pain can have detrimental effects on one’s quality of life. Current 

models to evaluate the propensity of chemicals to cause corneal irritation have focused 

heavily on toxicological assays using cell death as a marker of probable corneal damage. To 

protect against potential ocular harm, the Globally Harmonized System of Classification and 

Labeling of Chemicals (GHS) was developed as an international treaty to define a consensus 

on chemical safety. The GHS serves to provide categorization of chemicals in terms of acute 

and chronic exposure on human and animal populations, as well environmental hazards, and 

protective measures that may need to be applied in the handling or transport of these agents 

(UN, 2009). The GHS categorization is based on animal testing and serves as a comparative 

means to evaluate the reliability of in vitro models. Due to the high-volume of chemicals 

continually in development, a shift from animal testing to more high-throughput, reliable 

cell culture methods have arisen over the years in an effort to “reduce, refine, and replace” 

the use of animals in assessing chemical safety and efficacy (Cotton, 1993).

5.1. In vivo neuropathic pain models

In vivo models to investigate neuropathic pain are commonly with rodents using surgical 

injury to a peripheral nerve. Sciatic nerve constriction is the most utilized technique in pain 
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model development, as it produces a consistent and reproducible pain behavior 

(hyperalgesia) in response to stimulus. Models range in complexity and approach, and 

include chronic constriction injury (loose ligation) and ligation (tight) (Kim et al., 1997), 

axotomy, cryoneurolysis, resection, and laser-induced (Jaggi et al., 2011). The extent of 

hypersensitivity and pain is in turn determined by measuring response to mechanical 

(pressure and Von Frey Hair), heat and cold stimulation.

Current mouse models for corneal pain involve damage to the ocular surface and rely 

heavily on induction of corneal inflammation. Whilst none are neuropathic in nature, murine 

models to study corneal pain response include ocular alkali burn (Xiang et al., 2017) and 

photokeratitis (Tashiro et al., 2010), and induction of DED (Launay et al., 2016; Nicolle et 

al., 2016). The limitation of the ocular burn model, although a very clinically relevant 

complication present in patients, is that all terminal nerve endings are destroyed following 

an acute yet severe alcohol or alkali-based damage to the entire corneal epithelium. Such 

damage to the ocular surface results in the involvement and activation of resident immune 

cells of the cornea, as well as wound healing mechanisms, both likely to interfere with the 

investigation of underlying mechanisms behind pain. Similarly, UV irradiation of the ocular 

surface will likely result in damage to corneal nerves, as well as other corneal cell types 

including epithelial, keratocyte and endothelial cells (Kennedy et al., 1997; Wollensak et al., 

2003; Thorsrud et al., 2012; Notara et al., 2015). Historically, induction of DED has 

included the use of scopolamine, and/or complete removal of the lacrimal gland, an invasive 

procedure severing the neural network involved in tear production and not necessarily 

clinically relevant. Further, DED, by definition, has inherent chronic inflammatory 

involvement, which will likely interfere with investigation of underlying mechanisms behind 

pain.

More recently, a murine NCP model whereby the ciliary branches innervating the cornea are 

ligated has been reported (Seyed-Razavi et al., 2017). This model utilizes a lateral 

conjunctival approach, previously employed to perform ciliary axotomy (Yamaguchi et al., 

2013), to gain access and implement ligation of sensory nerve fibers supplied by the 

ophthalmic division of the trigeminal nerve (V), running parallel to the optic nerve, entering 

the eye retro-orbitally, and innervating the cornea by way of long and short ciliary nerves 

(Zander and Weddell, 1951; Schimmelpfennig, 1982). The partial compression injury to the 

ciliary nerves, in part due to axonal swelling, results in altered nerve function leading to 

peripheral nerve pain hypersensitivity, as also described in other models including sciatic 

nerve suture constriction (Maves et al., 1993; Ro and Jacobs, 1993; Jaggi et al., 2011; Austin 

et al., 2012). Slit-lamp analysis of the ocular surface revealed no signs of corneal fluorescein 

staining, opacity or neovascularization following ligation. Analysis of corneal sensation 

revealed the blink reflex is maintained following ciliary ligation. Interestingly, anatomical 

and density alterations were noted in corneal nerves with nerve beading and examples of 

micro-neuromas in the central cornea. Alteration in nociceptive response was noted with the 

number of nociceptive paw wipes to the affected eye following topical application of 

hyperosmolar saline (Hammond and Ruda, 1991; Farazifard et al., 2005) significantly 

increasing following ligation (Seyed-Razavi et al., 2017). Taken together, this novel NCP 

model demonstrates altered behavior, sensation and nerve density without epithelial damage, 
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allowing investigation of underlying mechanism(s) behind NCP progression, as well as the 

study of therapeutic effect of drugs in the treatment of this debilitating disease.

5.3. In vitro tissue models

There are currently few 3D in vitro tissue models available to study corneal innervation and 

pain responses in concert with physical and structural changes in the cornea tissue. Corneal 

tissue models that more fully mimic the anatomy, mechanical properties, and cellular 

components of the human cornea would provide useful systems to study cellular 

interactions, corneal diseases, and provide options for improved drug screening.

In vitro tissue models with functional innervation have the potential to replace in vivo 
animal testing and provide sophisticated tools to study ocular nociception. Therefore, 

attention has been focused on the development of innervated, 3D human corneal tissues 

grown and maintained under physiologically relevant culture conditions to study 

nociceptive-related responses. To address limitations of monoculture approaches, several 

multicellular models have been reported (Table 3). Recent studies have used trigeminal 

ganglia from chick embryos co-cultured with embryo corneas embedded in collagen matrix 

in culture medium supplemented with NGF (Lwigale and Bronner-Fraser, 2007; Kubilus and 

Linsenmayer, 2010b). Each culture is comprised of a cornea positioned with the epithelium 

side up in the collagen and two ganglia halves placed 1 to 2 mm on opposite side of the 

cornea. This co-culture system allows for the direct contact of neurites within the cornea, 

while incorporating regulatory factors that are either secreted or anchored to the cellular 

membrane. This in vitro system has been used to study the expression of TRP channels in 

response to stimuli, showing comparable responses to in vivo settings in terms of expression 

levels and timing (Canner et al., 2014). However, in this system all neurons within the 

ganglion can potentially interact with the explanted cornea, while in vivo only a portion of 

these neurons would innervate the corneal tissues. Therefore, the lack of selective 

interactions with the corneal tissue could alter the neuronal responses in the in vitro tissue. 

Another example includes a whole corneal in vitro model that was developed and populated 

with isolated primary bovine or rabbit stromal cells and endothelial cells (Minami et al., 

1993). Furthermore, chicken DRG neurons have also been used in combination with corneal 

epithelium and stromal cells in a collagen hydrogel (Zieske et al., 1994; Suuronen et al., 

2004).

Recently, a corneal tissue model was generated to include the stroma, epithelium, and 

innervation (Wang et al., 2017). A multi-layered construct based on thin silk protein film 

served as the scaffolding to support the corneal epithelium and stromal layers (Ghezzi et al., 

2017; Gosselin et al., 2017), while a surrounding silk porous sponge has been applied to 

culture cortical neurons in a 3D environment (Tang-Schomer et al., 2014). The inclusion of 

three cell types in co-culture at an air-liquid interface provides an important advance for the 

field of in vitro corneal tissue engineering, in that it allows for the study of innervation and 

corneal tissue development, corneal disease, and tissue responses to environmental factors 

(Wang et al., 2017) (Fig. 9). Further advances in developing innervated corneal tissue 

systems in vitro include the application of a self-assembled stromal model that relies on de 
novo ECM production by corneal fibroblasts and addition of the bone-marrow derived 
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neuroblastoma cell line, SH-SY5Y, differentiated to a neuronal lineage (Priyadarsini et al., 

2017; Sharif, 2018). Collectively, application of these human-based in vitro models to study 

nerve responses to stimuli under homeostatic conditions, as well during disease states, will 

provide tremendous opportunity to discover novel biomarkers related to the onset and 

progression of chronic pain, as well as promote discovery of novel analgesics targeting the 

sensory nerve.

5.6. Challenges with current approaches to predict ocular discomfort

Developing alternative models to in vivo approaches to predict ocular discomfort remains a 

common goal to increase screening potential, reduce animal use, and focus on human-based 

approaches. A need remains for consistent models to study the pain response, as well as 

development of comprehensive diagnostic tools with the prospect of discovering alternatives 

to opioids in the treatment of chronic pain. Retrospective analyses of the predictability of in 
vivo corneal toxicity assays in multiple databases suggest that significant inter- and intra- 

assay variability influences classification of chemical severity (Adriaens et al., 2014). 

Factors that contribute to accuracy of ocular discomfort predictability include persistence of 

the chemical on the corneal surface, animal behavior post-chemical application that may 

exacerbate ocular damage, and variances in clinical scoring. Inter-species differences in 

corneal structure may also affect the response of the tissue to chemical irritation suggesting 

that the choice of animal model, whether in vivo or ex vivo, may influence severity scores 

for chemicals. Physiological differences based on species may therefore impact the 

applicability of using animal responses to predict the human response. For example, the 

presence of the nictitating membrane, an inner, translucent membrane that can extend and 

retract over the corneal surface in the rabbit, may influence the corneal response to stimuli 

(Varsamidou et al., 2014) compared to the human, which lacks this structural feature. Inter-

species variability is also exemplified by relative differences in corneal thickness with the 

bovine cornea having one of the thickest corneas (800–1000 μm) of animal models 

(Doughty, 2000). Utilization of isolated eyes from other animals, including the pig or 

chicken, may prove as useful substitutes for the cow cornea with more comparable thickness 

to the human cornea (500–700 μm).

While utilization of organotypic assays remain a common ex vivo approach to study ocular 

toxicity, nerve degeneration occurs near immediate post-cornea isolation at 1 hour that 

progresses to significant loss in sub-basal nerve fibers by 6 hours in the mouse (Stepp et al., 

2014). Rapid degeneration of nerve endings in the cadaver cornea limits long-term studies of 

ocular irritation since nociceptive functionality is lacking. Furthermore, nerve loss of the 

excised cornea post-transplantation increases difficulty in attempting to study nerve structure 

in the human, thereby primarily relying on in vivo confocal microscopy in clinical settings.

The most common approaches to in vitro corneal models are based on the use of epithelial 

cells, as they act as a protective barrier for the eye, utilizing cultured human primary 

epithelial cells (hCECs) on tissue culture plastic for toxicology testing (Tripathi and 

Tripathi, 1988; Wilson et al., 2015). Alternatively, hCECs in fibrin gels form tissue sheets 

for ocular surface reconstruction (Han et al., 2002; Ramaesh and Dhillon, 2003). 

Immortalized human corneal epidermal keratinocytes cultured at the air-liquid interface on a 
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polycarbonate membrane have been commercialized as an EpiOcular TM system (Van 

Goethem et al., 2006). Other commercially available corneal epithelium models include 

LabCyte CORNEA-MODEL (J-Tec), HCE (skinEthic) and Clonetics (Lonza) (Mohan et al., 

2003; Shafaie et al., 2016). Notably, these epithelium-based models do not mirror the 

structure and multi-cellular population of the cornea, as well as their mutual interactions. 

Therefore, these models are useful to predict corneal toxicity, but due to lack of neural 

components are unable to be applied in the study of corneal pain. Further, these models do 

not recapitulate the alignment of the stromal cells, the multi-layer features of the epithelial 

cells, the sustained cultivation for chronic studies, the inclusion of tears, the exploitation of 

air-liquid interface culture environments, ocular pressure, or the native density of nerve 

endings (Roeder et al., 2002; Becker et al., 2006; Elsheikh et al., 2007). Provided the 

prominent role that these factors play in corneal tissue homeostasis, inclusion of these 

essential components normally present in the native microenvironment may prove important 

in developing dynamic models to study corneal sensory function.

6. Considerations for ideal model development

Understanding the multifaceted nature of pain caused by chemical, mechanical, or 

pathological irritation may lead to improved methods for predicting ocular toxicity of 

untested chemicals in vitro using human-based models, thereby limiting animal-use in 

chemical safety screening. However, in order for functional models to be applicable in the 

context of fulfilling requirements mandated by federal regulations, they must exceed well-

defined metrics that show high-reproducibility, correlation to in vivo studies, and low false-

negatives based on select chemical classes demonstrating the predictability of the system for 

unknown chemicals (ICCVAM, 2010). The difficulty in developing a functional in vitro 
system lies primarily with the cost, expertise, and timeframe required to assemble models 

that dictate the biochemical and structural cues found during corneal development in vivo. 

However, promising advances in tissue engineering approaches have been successfully 

applied in the development of dynamic systems of adipogenesis (Gerlach et al., 2012; 

Abbott et al., 2015), vascular flow (Lovett et al., 2007; Moya et al., 2013), and kidney 

function (Subramanian et al., 2010; Astashkina et al., 2014) with the inclusion of air- and 

liquid-perfusion, customized scaffolds, or co-culture techniques to ensure retention of the in 
vivo cellular phenotype in an assembled organotypic system. Likewise, similar approaches 

to developing functional corneal tissue models using silk scaffolds (Ghezzi et al., 2017; 

Wang et al., 2017), self-assembled stromal models (Zieske et al., 1994; Gouveia et al., 

2017), and collagen hydrogels (Massie et al., 2014; Kureshi et al., 2015) have provided a 

basis for studying corneal tissue biology in vitro. Considerations regarding implementation 

of 2D versus 3D microenvironments, cell composition, and experimental readout are 

important in defining systems that may be useful in the study of pain mechanisms (Fig. 10).

6.1. 2D versus 3D

2D monocultures provide a relatively easy approach to study cellular interactions in vitro. 

However, 3D culture systems can provide a simplified variant of the native tissue 

architecture, where cells are embedded and surrounded within a hydrated matrix (Cummings 

et al., 2004; Yamane et al., 2005). Most of the cells, in particular those subjected to 
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mechanical stimuli, demand a 3D environment in order to organize into a physiological 

tissue-like structure under in vitro conditions (Griffith and Swartz, 2006). Cell adhesion 

molecules distributed over the entire cell surface are able to interact with the surrounding 

matrix in 3D environments, significantly expanding the spatial organization of integrin 

receptors that mediate these cell-ECM linkages, in comparison to 2D substrates, which do 

not resemble the cellular arrangement found in native tissues. Moreover, the additional 

dimension provided by 3D substrates modulates integrin ligation, cell contraction, and 

associated intracellular signalling (Roskelley et al., 1994). Therefore, the dimensionality of 

the culture environment strongly affects the extent of external mechanical stimuli transferral 

to the resident cells.

Numerous studies have highlighted the importance of 3D constructs in the context of the 

corneal stroma with substrate stiffness influencing keratocyte and fibroblast morphology 

(Lakshman et al., 2010; Petroll et al., 2012; Miron-Mendoza et al., 2017). Maintenance of 

the native cellular phenotype has been shown to be influenced by culture conditions with 

higher expression of keratocyte markers, keratocan, lumican, and aldehyde dehydrogenase, 

in 3D systems compared to 2D monocultures (Ghezzi et al., 2017). The presence of stress 

fibers indicative of fibroblast differentiation may be driven by changes in ECM content, as 

well as secretion of biochemical factors, such as TGF-β and PDGF, by the epithelium or 

stroma (Zieske et al., 2001; Jester et al., 2002). These features not only influence the wound 

healing response, but also may modulate sensory nerve sensitivity in development of 

hyperalgesia (as discussed in Section 2). Furthermore, the ECM plays a fundamental role in 

regulating growth and functionality of peripheral nerves, as reviewed in (Martini, 1994; 

Chen et al., 2015). These studies emphasize the need to implement 3D model approaches in 

conjunction with in vivo models in the study of pain mechanisms.

6.2. Cell type

Given the multicellular nature of the cornea, choice of cell type to utilize in vitro may 

depend on media requirements for sustaining co-cultures, purpose of the assay, and expected 

readouts that may require accessibility or transparency. The corneal epithelium and stromal 

keratocytes contribute to hyperalgesia through sensitization of sensory nerves mediated by 

production of pro-inflammatory factors (Wilson et al., 2001). This contribution to the pain 

response necessitates careful thought as to the appropriate cell type for developing a 

functional model to predict corneal irritation. The most common cell choice in the study of 

the corneal stroma in vitro is the human corneal fibroblast (hCF) due to the relative ease of 

isolation from corneal buttons, proliferative ability, and significant ECM production. The 

utilization of hCFs in the development of 3D models includes a stable Vitamin C derivative 

as a required co-factor for collagen production to promote significant ECM deposition (~36 

μm thick) in a relatively short period of time (4 weeks) (Guo et al., 2007). In stromal 

models, hCFs secrete and assemble a native ECM high in collagen type I and V with 

discrete proteoglycan secretion over time (Karamichos et al., 2010; Wu et al., 2014a). 

Further applications using isolated keratocytes from corneal buttons have been reported 

(Beales et al., 1999) but may prove difficult in obtaining large subcultures due to the 

maintenance of cells in low serum conditions, which limits cell migration from the corneal 

explant.
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Significant work in the application of limbal stromal stem cells isolated from the corneal-

scleral rim of corneal buttons has highlighted their potential to secrete and assemble a native 

stroma in vitro (Karamichos et al., 2014; Kureshi et al., 2014; Kureshi et al., 2015; Ghezzi et 

al., 2017). Advantages of the use of limbal stromal stem cells over commonly used corneal 

fibroblasts is linked to retention of a quiescent phenotype with high expression of the 

dominant crystallins present in the corneal stroma that promote tissue transparency, such as 

aldehyde dehydrogenase 3a, keratocan, and lumican, which is heavily reduced in the 

activated fibroblast (Wu et al., 2014a). Likewise, other stem cell-derived sources, including 

periodontal ligament stem cells, can be differentiated to keratocytes using defined culture 

conditions to promote stromal assembly high in collagen type I and V expression (Chen et 

al., 2017). In terms of predicting the stromal response to noxious stimuli, numerous studies 

have correlated increased α-SMA and collagen type III with corneal scarring both in vitro 
and in vivo mediated via TGF-β1 signalling (Zieske et al., 2001; Guo et al., 2016; Gupta et 

al., 2017). Therefore, upregulation in myofibroblast markers, α-SMA and collagen type III, 

may prove useful as potential predictors of the ability of a chemical to cause corneal scarring 

in vivo.

In developing models to study pain, the neuronal contribution is essential to detecting 

irritancy and mitigating pain signal propagation. The most heavily studied neuronal cell type 

for pain studies utilizes DRGs, due to the relative ease of isolation and high innervation into 

3D models (Wang et al., 2015). Use of DRGs has been applied in developing an innervated 

corneal tissue model (Wang et al., 2017) highlighting the potential to apply whole-tissue 

systems of the cornea to study ocular pain. Other cell types that may prove useful in 

developing innervated tissues include the use of human induced neural stem cells (hiNSCs), 

which can be differentiated to sensory neurons (Chambers et al., 2012; Cairns et al., 2016) 

and implemented in similar co-culture conditions to develop a functional sensory 

component. Utilization of stem cell sources to generate select cell types may also be applied 

to develop genetic models for select diseases that may exhibit the pathological phenotype in 
vitro. Examples of this application include development of models for neurodegenerative 

diseases or metabolic conditions associated with nerve loss.

The inclusion of inflammatory cell types or appropriate pro-inflammatory factors may also 

be needed in pain model development given the contributory role of inflammation in 

hyperalgesia and acute and chronic pain responses. This area remains relatively unexplored 

in corneal tissue models but may be important in studying ocular infection and inflammatory 

pain in vitro. Addition of resident and invading immune cells (neutrophils, macrophages, 

and dendritic cells) may be useful to study nerve-immune cell crosstalk in a system readily 

adaptable to temporal studies that may be difficult to delineate in vivo due to the rapid and 

complex responses that occur following exposure to noxious stimuli.

6.3. Perfusion and environmental control

As an external tissue, the cornea requires frequent tear washing to prevent microbial growth 

and remove debris, as well as to supply oxygen and growth factors secreted by the tear 

glands. To mimic this dynamic nature in vitro, bioreactors have been developed to enable 

controlled regimes for the delivery of multiple growth factors and mechanical stimuli to 
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direct cell growth and differentiation (Freed et al., 2006). Specifically, a bioreactor is a tissue 

culture tool to provide a mechanically active environment where physical, chemical and 

mechanical stimuli can be independently monitored and controlled. This multi-variable 

culture system has been proposed as a translational step from the traditional static culture 

environment to the in vivo animal model, to study construct maturation and integration with 

the capability to control physiological equivalent stimuli. However, the choice of the 

bioreactor regime is strongly related to the ability of the 3D substrate to respond to and 

transfer the applied stresses to the resident cells. Emphasis has been placed on a dedicated 

bioreactor for corneal tissues to recreate the intraocular pressure of the resident tissue and 

potentially extend the transplant shelf life by recreating physiological conditions (Guindolet 

et al., 2017). The importance of the tear film and its respective constituents in regulating 

cellular function in vivo has set benchmarks for functional requirements in a 

physiologically-relevant in vitro system. Most importantly, the presence of a tear film in the 

in vitro model would allow assessments of reversible damage upon irritant exposure, while 

reducing the occurrence of false positive due to the static culture environment as in mono-

culture systems. In addition, the opportunity to extend the temporal window to study acute 

and chronic responses would have a tremendous impact on the clinical relevance of such 

tissue models.

6.4. Electrophysiological readouts and high-throughput approaches

Development of high-throughput approaches to evaluate irritancy potential has focused 

primarily on TRP receptor activation in 2D monocultures. Indirect measures of 

electrophysiological responses may be applied to assess cellular depolarization via inclusion 

of intracellular fluorescent probes that detect changes in ion flux. Prolonged over-expression 

of TRP receptors gives rise to an amplified signal for detection, but has been shown to affect 

cell viability and cell membrane integrity (Caudle et al., 2003), thereby limiting usefulness 

of this approach in high-throughput screening. However, large-scale transiently transfected 

cell lines exhibit over-expression and viability for the duration of the assay (24–72 hours) or 

up to 35 weeks frozen (Chen et al., 2007). Studies using large-scale transiently transfected 

HEK293 cells have been utilized to measure effects of topical drugs on TRPA1 activation in 

a 96-well plate format with the inclusion of a fluorescent calcium sensor (Bianchi et al., 

2007). This approach may prove useful in identifying agonists of select receptors from large 

chemical libraries. Other interests have focused on opioid receptors as alternative targets to 

ameliorate persistent pain or anxiety, including κ-opioid receptor. Application of this 

approach has been shown with screening of >80,000 compounds performed on the hamster-

derived epithelial cell line, CHO-OP2 with stable expression of κ-opioid receptor, using the 

LANCE™ cAMP assay as an experimental readout for receptor activation (Wang et al., 

2014).

Significant developments in high-throughput patch clamp assays have enabled screening of 

thousands of compounds per day in a 384-well plate format using stable, over-expressing 

cell lines highlighting the potential for identifying novel therapeutics targeting select pain 

receptors (Chambers et al., 2016). However, further validation of analgesic effects must be 

performed in animal models given the limitations associated with drug degradation, tissue-

specificity, and blood-brain barrier permeability that may influence therapeutic effectiveness 
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in vivo. Dose-dependent effects of drug application and electrophysiological responses give 

promise to utilizing this approach in detecting irritancy potential of unknown chemicals. 

Further developments in applying these techniques to 3D constructs will serve as a useful 

means to study real-time responses to pain stimuli in addition to drug screening for novel 

analgesics (Frega et al., 2014).

7. Future perspectives

Growing advances in molecular imaging, electrophysiological approaches, and tissue 

engineering have led to the development of novel models to study physiological and disease 

processes related to nociception. Emphasis on potential applications is placed on novel 

approaches in tissue engineering that may enable in vivo extrapolation to predict the human 

response to an irritant depending on variations in biochemical and electrophysiological cues. 

Also compelling is the replacement of animal testing with human-equivalent options for 

development and evaluation of ocular pharmaceuticals in settings of inflammation and 

infection, as well as toxicology. Requirements for an in vitro tissue engineered cornea 

system range from cellular composition and tissue architecture, appropriate mechanics, 

long-term sustained culture conditions, and ultimately functional innervation mimicking the 

native tissue.

While the collective pain response occurs in the CNS, a novel approach to accelerate 

discovery of pain therapeutics is to establish functional in vitro systems that re-capitulate the 

milieu required for sensory perception. The overarching goal is to identify select afferent 

neuronal pathways that are involved in neuropathic pain at the level of the peripheral 

nervous system independent of physiological nociceptive processes that are required for 

tissue maintenance. This application may fill a gap in knowledge regarding sensory nerve 

biology, distinguishing acute and chronic pain mechanisms, with the prospect of developing 

alternatives to current opioid treatments by targeting select receptors present on sensory 

nerves that may contribute to morphological and biochemical changes that promote 

neuropathic pain development. Furthermore, research and development in this area may set 

the benchmark for modeling peripheral nerve signaling, distinguishing molecular differences 

between ocular itch and pain, and perhaps defining the neural networks required in higher-

order brain processes using tissue culture systems that lend to easier visual evaluation and 

malleability in conjunction with in vivo models.
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α-SMA alpha-smooth muscle actin

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
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APCs antigen-presenting cells

BCOP bovine corneal opacity and permeability assay

BDNF brain-derived neurotrophic factor

BM bone marrow

cDCs conventional dendritic cells

CGRP calcitonin gene related peptide

CNS central nervous system

CNT ciliary neurotrophic factor

DCs dendritic cells

DED dry eye disease

DRG dorsal root ganglion

ECM extracellular matrix

EGF epithelial growth factor

EPA Environmental Protections Agency

FDA Food and Drug Administration

FOX Forkhead transcription factors

GABA gamma-aminobutyric acid

GDNF glial cell-derived neurotrophic factor

GHS Globally Harmonized System of Classification and Labelling of 

Chemicals

hCECs human corneal epithelial cells

hCFs human corneal fibroblasts

hCSSCs human corneal stromal stem cells

hiNPCs human induced neuronal precursor cells

IFN-γ interferon-γ

IGF-1 insulin-related growth factor-1

IL interleukins

IVCM in vivo confocal microscopy

LASIK laser-assisted in situ keratomileusis
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LFU lacrimal function unit

LVET low-volume eye test

MAPK mitogen-activated protein kinases

MHC major histocompatibility complex

MMP matrix metalloproteinase

MDSCs myeloid derived suppressor cells

NCP neuropathic corneal pain

NGF nerve growth factor

NK natural killer

NK1 neurokinin 1

NMDA N-methyl-D-aspartate

NPY neuropeptide Y

PDCs plasmacytoid dendritic cells

PHN post-herpetic neuralgia

PKA protein kinase A

PKC protein kinase C

PLC phospholipase C

SP Substance P

TG trigeminal ganglion

TGF-β transforming growth factor-

TNF-α tumor necrosis factor-α

TRKB tropomyosin receptor kinase B

TRP transient receptor potential channel

TRPA1 transient receptor potential cation channel subfamily A member 1

TRPM8 transient receptor potential cation channel subfamily M member 8

TRPV1-4 transient receptor potential cation channel subfamily V member 1–4

VEGF vascular endothelial growth factor

5-HT 5-hydroxytrypatmine
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Highlights:

• Corneal nerves detect mechanical, chemical, and thermal stimuli

• Resident immune cells influence neuronal sensitization to noxious stimuli

• Transient receptor potential channels expressed on nerves detect sensory input

• Current corneal pain models focus on toxicity, structural, and functional 

changes

• Advances in tissue engineering potentiate the ability to study corneal pain in 
vitro
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Fig. 1. 
Current approaches for studying corneal toxicity and pain. a Albino rabbit eye following 

application of the standardized Draize test, a common toxicity assay using clinical scoring 

post-topical irritant application to appropriately label chemicals based on their propensity to 

cause corneal damage (Wilhelmus, 2001). Image reproduced from (Liu et al., 2015) with 

permission. b Bright field image of an enucleated porcine eye and isolated cornea proper 

following chemical application. c Stratified epithelium cultured on curved cellulose filters at 

an air-liquid interface to assess ocular toxicity. Image reproduced from (Postnikoff et al., 

2014) with permission. d Functional magnetic resonance imaging (MRI) image of a human 

patient exposed to bright light to induce pain sensations. The red box denotes location of 

pain activation distinct from eye blinking. Sensory homunculus depicts location of corneal 

pain in the somatosensory cortex. Images reproduced from (Moulton et al., 2012) with 

permission. Pictorials generated using Servier Medical Art based on a Creative Commons 

Attribution 3.0 Unported License available at https://creativecommons.org/licenses/by/3.0/.

McKay et al. Page 49

Prog Retin Eye Res. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by/3.0/


Fig. 2. 
Sensory nerve fibers innervating the cornea. (A) Neuronal extensions present between the 

stroma and epithelial layer in the mouse cornea (top inset: βIII-tubulin: red). z-stack of the 

corneal epithelium (bottom inset: βIII-tubulin: red, DAPI: blue) from the sub-basal nerve 

(large arrow) and extending intraepithelial nerve endings reaching into the epithelium (small 

arrows) in corneas isolated from adult C57/BL6 mice. (B) En face view of spatially 

dispersed intraepithelial nerve endings (small arrow) innervating the ocular surface. 

Modified from (Li et al., 2011) and reproduced with permission. (C) Stereofluorescent 

image of corneal nerves in the transgenic mouse cornea (YFP-labelled immune cells). Inset 

highlights limbus region containing a high density of YFP+-immune cells. Modified from 

(Sarkar et al., 2013) and reproduced with permission.
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Fig. 3. 
Interplay of the epithelium, stromal, immune cell, and sensory nerves following exposure to 

mechanical or chemical stimuli that result in a wound healing response. Images generated 

using Servier Medical Art under a Creative Commons Attribution 3.0 Unported License 

available at https://creativecommons.org/licenses/by/3.0/.
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Fig. 4. 
TRPV1 expression in the apical layer of the central and limbal corneal epithelium of the 

human cornea. (red- TRPV1, blue- DAPI). Reproduced from (Zhang, 2007) with 

permission. Scale bar = 25 μm.
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Fig. 5. 
TRP-mediated signaling in sensory nerve fiber following exposure to noxious stimuli. 

TRPV1, TRPA1, and TRPM8 voltage-gated receptors are co-expressed on C and Aδ-nerve 

fibers and are responsive to chemical, mechanical, and thermal stimulation. Bradykinin 

release from resident inflammatory cells is known to increase sensitization of TRP receptors 

on sensory nerves acting primarily via phospholipase C (PLC) and protein kinase A (PKA) 

signaling pathways. Pictorials modified from Servier Medical Art under a Creative 

Commons Attribution 3.0 Unported License available at https://creativecommons.org/

licenses/by/3.0/ .
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Fig. 6. 
Transmission of sensory perception of stimuli detected at the ocular surface to the trigeminal 

ganglion, brainstem, and ultimately to the somatosensory cortex where pain is registered. 

Images of organs modified from Servier Medical Art under a Creative Commons Attribution 

3.0 Unported License available at https://creativecommons.org/licenses/by/3.0/.
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Fig. 7. 
(A) Sub-basal nerve plexus in normal subject. (B) Patient with DED showing increased 

immune cells (arrow) and reduced nerve density. (C) Herpes simplex keratitis patient with 

increased immune cells (arrows), presence of micro-neuromas (arrow-head) and reduced 

nerve density. (D) Patient with herpes zoster ophthalmicus showing decreased nerve density 

and presence of immune cells. (E) Patient with NCP showing the presence of micro-

neuromas (arrow-head). (F) Patient with diabetes showing increased nerve tortuosity (arrow-

head), decreased nerve density, and presence of immune cells (arrow). All scale bars 

represent 100 μm (unpublished data).
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Fig. 8. 
(A) Sub-basal nerve plexus in a normal subject; (B, C, D, E) NCP patient with different 

forms of micro-neuroma presentations (arrows) and presence of immune cells (dashed 

arrows); F. Sub-basal nerve plexus in NCP patient showing the presence of beading, axonal 

nerve swelling and nerve tortuosity (arrow-heads). All scale bars represent 100 μm 

(unpublished data).
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Fig. 9. 
Tissue engineered innervated corneal model. Customized silk scaffolds containing 

appropriate cell types assembled to mimic the native cornea. The neural cell component 

(DRGs) are seeded in a silk sponge on the periphery with innervation into the stroma 

promoted using high NGF loading (50ng/mL) on the anterior film. The stromal layers are 

formed using Arg-Gly-Asp (RGD)-coated porous silk films assembled with interlaying 

collagen to develop biomimetic silk lamellae. (Abbreviations: hCECs (human corneal 

epithelial cells), hCSSCs (human corneal stromal stem cells), DRGs (dorsal root ganglion). 

Re-printed with permission (Wang et al., 2017).
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Fig. 10. 
Considerations for developing a functional corneal tissue model to study irritancy in vitro. 

A) NIH 3T3 fibroblasts grown in 3D collagen hydrogels or 2D polystyrene culture dishes. 

TRITC-conjugated phalloidin (red) and DAPI (blue). Adapted from (Bohm et al., 2017) with 

permission. B) Morphological differences between human corneal fibroblasts (hCFs) 

(elongated, expanded cytoplasm) and keratocytes (dendritic-like) depending on cell culture 

conditions maintained in vitro (Adapted from (Wilson et al., 2012) with permission). 

Immunofluorescence imaging of BIII-tubulin of DRGs grown on silicon micro-pillar 

substrates (Repic et al., 2016) and stem cell-derived nociceptors (Wainger et al., 2015) 

reproduced with permission. C) Dynamic maintenance of ex vivo tissue showing higher 

tight-junctions maintenance in the dynamic environment comparable to native lamellar 

corneas (NLC) in auto-tissue-engineered lamellar cornea (ATELC). Adapted from (Wu et 

al., 2014b) and reproduced with permission. D) Electrophysiological experiments in stem-
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cell derived nociceptors post-chemical (250 μm menthol, 100 μm mustard oil, 1 μm 

capsaicin, or 40 mM KCl) application. The number of nociceptors responding to stimuli is 

shown in a Venn diagram with capsaicin exhibiting the most robust response comparative to 

the extracellular microelectrode array recording. Adapted from (Wainger et al., 2015) and 

reproduced with permission. Potential modeling of pain responses will depend on exposure 

time and epithelial, stromal, and nerve contributions to the biochemical and 

electrophysiological responses to specific chemicals of interest (unpublished). Ideal 

validation of in vitro responses should correspond to reported in vivo responses, thereby 

establishing predictability for unknown chemicals.
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Table 1.

Ocular surface receptors implicated in pain-response mechanisms.

Family Receptor Cell type Comment References

transient receptor 
potential channels

TRPV1
epithelium, stroma, 

sensory nerves, 
macrophages

Involved in heat sensation, 
nociception, receptor for capsaicin; 
influences cytokine production in 

leukocytes

(Weil, 2005; Zhang, 2007; 
Fernandes et al., 2012)

TRPV3 epithelium, corneal 
endothelium

Involved in heat sensation and 
epithelial proliferation (Takahiro Yamada, 2010)

TRPV4 corneal endothelium Involved in heat sensation (Stephan Mergler, 2011)

TRPM2 macrophages, 
monocytes, neutrophils

Involved in cytokine production in 
response to intracellular bacterial 

infection

(Heiner et al., 2003; Yamamoto 
et al., 2008; Knowles et al., 

2011)

TRPM4 macrophages, 
neutrophils

Involved in proliferative and 
phagocytic activity of macrophages (Serafini et al., 2012)

TRPM8 epithelium, stroma, 
sensory nerves

Involved in cold sensation, 
nociception, responsive to osmolarity 

changes, menthol receptor
(Quallo et al., 2015)

TRPA1 epithelium, stroma, 
sensory nerves

Sensitive to pH changes, receptor for 
mustard oil (Okada et al., 2014)

neurotrophic factor 
receptors

TrkA
limbal epithelial cells, 

sensory nerves, 
monocytes

High-affinity receptor for NGF, 
involved in innervation during 

development, nociception, nerve 
repair, and inflammation

(Qi et al., 2008; Prencipe et al., 
2014)

p75NTR
limbal epithelial cells, 

sensory nerves, 
monocytes

Low-affinity receptor for NGF; 
influences peripheral inflammatory 

response

(Qi et al., 2008; Lee et al., 
2016)

TrkB
limbal epithelial and 

stromal cells, epithelium, 
lymphocytes

Receptor for BDNF, NT-3, and NT-4; 
promotes neuronal differentiation; 

influences lymphocyte survival

(Garcia-Suarez et al., 2002; Qi 
H, 2007)

GFRa1 limbal epithelium, 
immature T cells

Receptor for GDNF; promotes 
neuronal differentiation

(Qi H, 2007; Almeida et al., 
2012)

opioid MOR, DOR
nerve fibers, leukocytes 

(monocytes, 
macrophages)

Involved in analgesia (Zollner C, 2008; Sauer et al., 
2014; Celik et al., 2016)

opioid growth factor OGFr
epithelium, leukocytes 

(monocytes, 
macrophages)

Involved in wound healing in response 
to nociception; analgesia

(Ian Zagon, 2003; Zagon et al., 
2011; Schreiter et al., 2012; 

Sauer et al., 2014)

purinergic P2X7, P2Y2 epithelium, thymocytes, 
monocytes

Involved in corneal wound healing and 
epithelial migration following injury; 

influences differentiation patterns

(Mayo et al., 2008; Caragnano 
et al., 2012; Frascoli et al., 
2012; Martin Minns, 2016)

K+ channel
Kv1.1, 
Kv3.4

epithelium, sensory 
nerves, thymocytes 

(Kv1.1 only)

Involved in mediating stress-induced 
responses to cold-induction; 

influences thymocyte maturation

(Freedman et al., 1995; Lu, 
2006; Madrid et al., 2009)

Ca2+ channel Cav1.3
corneal endothelium, 

sensory nerves, 
lymphocytes

Induce intracellular calcium influx in 
response to stimulation; influence 

lymphocyte development

(Mergler, 2003; Jha et al., 
2015)
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Table 2.

Known agonists of the voltage-gated channel receptors present within the human cornea. Chemical structure, 

major source of isolation, and target receptor are listed.

Chemical Structure Source Target

Capsaicin Capsicum sp. (chili peppers) TRPV1

Resiniferatoxin Euphorbia resinifera (cactus) TRPV1

Anandamide endogenous fatty acid metabolism TRPV1

Arachidonic acid endogenous fatty acid metabolism TRPV1

Gingerol Z. officinale (ginger) TRPV1

Menthol L. menthe, L. salvia TRPM8

Eucalyptol E. globulus TRPM8
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Chemical Structure Source Target

Icilin Synthetic TRPM8, TRPA1

Allyl Isothiocyanate B. nigra, B. juncea, B. hirta TRPA1

Cinnamaldehyde C. cassia TRPA1

Allicin Alliaceae (garlic) TRPA1, TRPV1

2-chloro-acetophen Synthetic (CN tear gas) TRPA1
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Table 3.

Summary of current innervated 3D models to study corneal tissue biology in vitro. Based on references 

(Canner et al., 2014; Priyadarsini et al., 2017; Wang et al., 2017; Sharif, 2018).

Collagen-Based Corneal Model Silk-Based Corneal Model Self-Assembled Stromal Model

Cell types
Avian embryonic corneal buttons 
and ophthalmic division of TG 

explants

Primary human corneal epithelial 
cells, corneal stromal stem cells, and 

chick DRGs

Primary human corneal fibroblasts and 
human neuroblastoma-derived neurons

Scaffold Type 1 collagen hydrogels Functionalized silk scaffolds, rat-tail 
Collagen type 1

none; de novo ECM production by corneal 
fibroblasts generates stromal layer Stimulated 

with a stable

Culture 
conditions

Maintained for 96 hours in 
DMEM:F-12 supplemented with 

10% inactivated FBS

Maintained at an air-liquid interface 
for 4 weeks in defined media 

conditions

Vitamin C derivative to promote ECM 
secretion and assembly over 4 weeks; 
maintained on polycarbonate transwell 

membrane

Advantages

Inclusion of relevant cells types 
(epi, stroma, endo and neuronal); 
innervation into corneal tissue can 

be assessed

Inclusion of relevant cells types (epi, 
stroma, and neuronal); stable 

conditions permit chronic studies

Native ECM produced by resident stromal 
cells allows for studies involving ECM 

assembly in the context of development or 
repair
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