Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Jul 2;75(Pt 8):1090–1095. doi: 10.1107/S2056989019008892

Crystal structure of two N′-(1-phenyl­benzyl­idene)-2-(thio­phen-3-yl)acetohydrazides

Trung Vu Quoc a,*, Linh Nguyen Ngoc a, Duong Tran Thi Thuy a,b, Manh Vu Quoc c, Thien Vuong Nguyen d,e, Yen Oanh Doan Thi f, Luc Van Meervelt g,*
PMCID: PMC6690450  PMID: 31417771

Two N′-(1-(phenyl­ethyl­idene)-2-(thio­phen-3-yl)acetohydrazides containing –OH and –OCH3 at the para-position of the phenyl ring have been synthesized and their mol­ecular and crystal structures are reported.

Keywords: crystal structure, acetohydrazides, thio­phene, Hirshfeld analysis

Abstract

The synthesis, spectroscopic data, crystal and mol­ecular structures of two N′-(1-phenyl­benzyl­idene)-2-(thio­phen-3-yl)acetohydrazides, namely N′-[1-(4-hy­droxy­phen­yl)benzyl­idene]-2-(thio­phen-3-yl)acetohydrazide, C13H10N2O2S, (3a), and N′-[1-(4-meth­oxy­phen­yl)benzyl­idene]-2-(thio­phen-3-yl)acetohydrazide, C14H14N2O2S, (3b), are described. Both compounds differ in the substituent at the para position of the phenyl ring: –OH for (3a) and –OCH3 for (3b). In (3a), the thio­phene ring is disordered over two orientations with occupancies of 0.762 (3) and 0.238 (3). The configuration about the C=N bond is E. The thio­phene and phenyl rings are inclined by 84.0 (3) and 87.0 (9)° for the major- and minor-occupancy disorder components in (3a), and by 85.89 (12)° in (3b). Although these dihedral angles are similar, the conformation of the linker between the two rings is different [the C—C—C—N torsion angle is −ac for (3a) and −sc for (3b), while the C6—C7—N9—N10 torsion angle is +ap for (3a) and −sp for (3b)]. A common feature in the crystal packing of (3a) and (3b) is the presence of N—H⋯O hydrogen bonds, resulting in the formation of chains of mol­ecules running along the b-axis direction in the case of (3a), or inversion dimers for (3b). The most prominent contributions to the surface contacts are those in which H atoms are involved, as confirmed by an analysis of the Hirshfeld surface.

Chemical context  

Acetohydrazides are considered to be good candidates for different pharmaceutical applications, including their use as anti­bacterial, anti­fugal, anti­microbial and anti­convulsant agents (Yadav et al., 2015; Bharti et al., 2010; Loncle et al., 2004; Papakonstanti­nou-Garoufalias et al., 2002). Moreover, many of them have shown analgesic and anti­platelet properties (Wardakhan et al., 2013). Combinations of acetohydrazide with other heterocyclic rings have also been investigated, such as the hydrazide-based 2-oxonicotino­nitrile derivatives that are considered to be potential anti­microbial agents (El-Sayed et al., 2018).

As a continuation of our research (Nguyen et al., 2016; Vu et al., 2016, 2017) on the chemical and physical properties of novel polythio­phenes, a new thio­phene monomer-containing acetohydrazide has been prepared. We have synthesized two N′-(1-(phenyl­benzyl­idene)-2-(thio­phen-3-yl)acetohydrazides and present here the spectroscopic data and crystal structures of the title compounds, together with the Hirshfeld surface analysis.graphic file with name e-75-01090-scheme1.jpg

Structural commentary  

The hy­droxy derivative (3a) crystallizes in the ortho­rhom­bic space group Pbca. The thio­phene ring is disordered over two sites (the major and minor components are labelled with the suffixes A and B, respectively), corresponding to a rotation about the C3—C6 bond of approximately 180° with population parameters 0.762 (3) for S1A/C1A–C5A and 0.238 (3) for S1B/C1B–C5B (Fig. 1). The configuration of the C11=N10 bond can be described as E [the N9—N10—C11—C12 torsion angle is 174.82 (16)°]. The torsion angle C7—N9—N10—C11 of 177.10 (18)° indicates that the conformation around the N9—N10 bond is +ap. The mol­ecule is twisted about the C6—C7 bond with a dihedral angle of 84.0 (3)° between the thio­phene and benzene rings [87.0 (9)° for S1B/C1B–C5B] .

Figure 1.

Figure 1

A view of the mol­ecular structure of (3a), with atom labels and displacement ellipsoids drawn at the 50% probability level. The minor-disorder component is shown in light green.

The meth­oxy derivative (3b) (Fig. 2) crystallizes in the triclinic space group P Inline graphic. Compared to (3a), the central part of (3b) displays a similar +ap conformation around the N9—N10 bond and an E configuration of the C11=N10 bond, as illustrated by the torsion angles C7—N9—N10—C11 [177.8 (2)°] and N9—N10—C11—C12 [179.26 (19)°]. However, the conformation about the two other bonds, C6—C7 and especially C7—N9, in the linker between both rings is different. The torsion angle C3—C6—C7—N9 is −101.8 (2)° (or -ac) for (3a) and −85.4 (3)° (or -sc) for (3b). As a consequence, in (3b) a short C6—H6⋯N10 inter­action occurs (Table 2). In (3a) we observe an +ap conformation [torsion angle C6—C7—N9—N10 is 167.45 (16)°], while this is -sp in (3b) [torsion angle C6—C7—N9—N10 is −5.8 (3)°]. The dihedral angle between the thio­phene and phenyl rings is 85.89 (12)°, in the same order as for (3a).

Figure 2.

Figure 2

The mol­ecular structure of (3b) with atom labels and 50% probability displacement ellipsoids.

Table 2. Hydrogen-bond geometry (Å, °) for (3b) .

Cg1 is the centroid of the S1/C1–C5 thio­phene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O8i 0.86 2.08 2.935 (3) 179
C6—H6A⋯N10 0.97 2.44 2.782 (3) 100
C13—H13⋯Cg1ii 0.93 2.68 3.611 (2) 179

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Supra­molecular features  

In the crystal, mol­ecules of (3a) are connected by N9—H9⋯O8i [symmetry code: (i) −x + Inline graphic, y + Inline graphic, z] hydrogen bonds, resulting in the formation of chains in the b-axis direction with a Inline graphic(4) graph-set motif (Fig. 3, Table 1). In addition, chains with a Inline graphic(11) graph-set motif running along the a-axis direction are formed by O18—H18⋯O8ii [symmetry code: (ii) x − Inline graphic, y, −z + Inline graphic] hydrogen bonds (Fig. 4, Table 1). Two weaker inter­actions are present in the packing: a C—H⋯O and C—H⋯π(phen­yl) inter­action (for details see Table 1).

Figure 3.

Figure 3

Part of the crystal structure of (3a), showing the chain formation through N—H⋯O inter­actions (red dashed lines) along the b-axis direction. The minor disorder component is not shown. Symmetry codes: (i) −x + Inline graphic, y + Inline graphic, z; (v) −x + Inline graphic, y − Inline graphic, z.

Table 1. Hydrogen-bond geometry (Å, °) for (3a) .

Cg3 is the centroid of the C12–C17 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O8i 0.86 2.12 2.953 (2) 162
O18—H18⋯O8ii 0.82 1.97 2.782 (2) 169
C2A—H2A⋯O8iii 0.93 2.57 3.439 (7) 155
C13—H13⋯Cg3iv 0.93 2.89 3.818 (3) 176

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 4.

Figure 4

Part of the crystal structure of (3a), illustrating the chain formation through O—H⋯O inter­actions (red dashed lines) along the a-axis direction. The minor disorder component is not shown. Symmetry codes: (i) x + Inline graphic, y, −z + Inline graphic ; (ii) x − Inline graphic, y, −z + Inline graphic.

Replacing the –OH group in (3a) by an –OMe group in (3b) changes the hydrogen-bonding pattern. The crystal packing of (3b) is now characterized by the presence of two different inversion dimers. The first type, with an Inline graphic(8) graph-set motif, is formed by N9—H9⋯O8i [symmetry code: (i) −x, −y + 2, −z + 1] hydrogen bonds (Fig. 5, Table 2). The second one involves C13—H13⋯π(thio­phene) inter­actions (Fig. 6, Table 2).

Figure 5.

Figure 5

A partial packing diagram of (3b), showing dimer formation through N—H⋯O inter­actions (red dashed lines). Symmetry code: (i) −x, −y + 2, −z + 1.

Figure 6.

Figure 6

A partial packing diagram of (3b), illustrating the dimer formation through C—H⋯π inter­actions (gray dashed lines). Cg1 is the centroid of the S1/C2–C5 thio­phene ring. Symmetry code: (ii) −x + 1, −y + 2, −z + 1.

No voids or π–π stackings are observed in the crystal packing of (3a) and (3b).

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.40, update of May 2019; Groom et al., 2016) for the central linker between the two rings in the title compound, C—CH2—C(=O)—NH—N=CH—C (Fig. 7 a), resulted in 137 hits. Histograms of the distribution of the four torsion angles τ1 τ4 along the linker backbone are shown in Fig. 7 be [the red and green lines depict the torsion angles for title compounds (3a) and (3b), respectively]. The histogram of τ1 reflects a wide spread with a preference for the −ap/+ap conformation, followed by the −sc/+sc conformation and only a few entries in the remaining regions. In the case of torsion angle τ2, two regions are preferred: −ap/+ap [for the majority of the entries and similar to (3a)] and −sp/+sp [similar to (3b)]. Torsion angles τ3 and τ4 show both a narrow spread in the region −ap/+ap.

Figure 7.

Figure 7

(a) Fragment used for a search in the CSD. (b)–(e) Histograms of torsion angles τ1, τ2, τ3 and τ4, respectively. The vertical red and green lines show the torsion angles observed in title compounds (3a) and (3b), respectively.

Hirshfeld surface analysis  

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed using CrystalExplorer (Turner et al., 2017). The Hirshfeld surfaces of compounds (3a) and (3b) mapped over d norm are given in Fig. 8.

Figure 8.

Figure 8

The Hirshfeld surface mapped over d norm for (a) compound (3a) in the range −0.6166 to 1.1782 a.u., and (b) compound (3b) in the range −0.5274 to 1.2642 a.u.

The bright-red spots in Fig. 8 a near atoms O8 and N9 illustrate the N9—H9⋯O8 hydrogen bond, and near atoms O8 and O18 the O18—H18⋯O8 hydrogen bond. The faint-red spots near atoms O8 and H2A, and C11 and H17 refer to short contacts in the crystal packing of (3a). The most significant contributions to the Hirshfeld surface are from H⋯H (30.5%), C⋯H/H⋯C (26.1%), O⋯H/H⋯O (18.6%) and S⋯H/H⋯S (10.7%) contacts.

For compound (3b), the N9—H9⋯O8 dimer formation is viewed as the bright-red spots near atoms O8 and N9 in Fig. 8 b. The faint-red spots near atoms H19C and H13 are indicative for a short H19C⋯H19C contact and the C13—H13⋯π(thio­phene) inter­action. The most significant contributions to the Hirshfeld surface are from H⋯H (40.6%), C⋯H/H⋯C (22.2%), O⋯H/H⋯O (15.1%) and S⋯H/H⋯S (12.5%) contacts.

Synthesis and crystallization  

The reaction scheme to synthesize the title compounds, (3a) and (3b), is given in Fig. 9.

Figure 9.

Figure 9

Reaction scheme for the title compounds (3a) and (3b).

Methyl 2-(thio­phen-3-yl)acetate (1) and 2-(thio­phen-3-yl)acetohydrazide (2) were synthesized according to our previous research (Vu et al., 2017).

Synthesis of N -[1-(4-hy­droxy­phen­yl)benzyl­idene]-2-(thio­phen-3-yl)acetohydrazide:

Compound (2) (3 mmol) and the appropriate benzaldehyde derivatives (6 mmol) with acetic acid (1.5 mL) in ethanol (20 mL) were refluxed for 5 h. The reaction mixture was cooled down and the solid product was separated by filtration and purified by recrystallization in ethanol to give the compounds (3a) and (3b).

Data for N -[1-(4-hy­droxy­phen­yl)benzyl­idene]-2-(thio­phen-3-yl)acetohydrazide (3a):

White crystals; m.p. 443 K; yield 63%. IR (KBr, cm−1): 3289, 3207 (NH), 3050, 2874 (C—H), 1621 (C=O), 1606 (CH=N), 1511 (C=C). 1H NMR [Bruker XL-500, 500 MHz, d 6-CDCl3, δ (ppm), J (Hz)]: 7.19 (m, 1H, H2), 7.11 (d, 1H, 5 J = 5.0, H4), 7.25 (dd, 1H, 2 J = 3.0, 4 J = 5.0, H5), 4.07 (s, 2H, H6), 9.17 (s, 1H, H8), 7.79 (s, 1H, H9), 7.52 (d, 2H, J = 8.5 H11, H15), 6.87 (d, 2H, J = 8.5 H12, H14), 10.10/10.04 (s, 1H, H16). 13C NMR [Bruker XL-500, 125 MHz, d 6-CDCl3, δ (ppm)]: 122.3/122.4 (C2), 135.3/135.4 (C3), 128.7/128.8 (C4), 125.4/125.8 (C5), 33.6/35.9 (C6), 165.7/171.4 (C7), 146.7 (C9), 143.5 (C10), 128.3/128.6 (C11, C15), 115.6/116.6 (C12,C14), 159.6/159.2 (C13). Calculation for C13H12N2O2S: M [+H] = 260.9 au.

Data for N -[1-(4-meth­oxy­phen­yl)benzyl­idene]-2-(thio­phen-3-yl)acetohydrazide (3b):

White crystals, m.p. 431 K, yield 53%. IR (KBr, cm−1): 3442, 3112 (NH), 3014, 2950 (C—H), 1706 (C=O), 1617 (CH=N), 1558, 1503 (C=C). 1H NMR [Bruker XL-500, 500 MHz, d 6-CDCl3, δ (ppm), J (Hz)]: 7.22 (m, 1H, H2); 7.12 (m, 1H, H4); 7.26 (dd, 1H, 2 J = 3.0, 5 J = 5.0, H5); 4.11 (s, 2H, H6); 8.97 (s, 1H, H8); 7.69 (s, 1H, H9); 7.61 (d, 2H, J = 8.5, H11, H15); 6.94 (d, 2H, J = 8.5, H12, H14); 3.85 (m, 3H, H16). 13C NMR [Bruker XL-500, 125 MHz, d 6-CDCl3, δ (ppm)]: 122.8 (C2), 134.4 (C3), 129.3 (C4), 125.4 (C5), 34.3 (C6), 172.9 (C7), 143.6 (C9), 126.4 (C10), 128.8 (C11, C15), 114.3 (C12, C14), 161.3 (C13), 55.4 (C16). Calculation for C14H14N2O2S: M [+H] = 274.9 au.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were placed in idealized positions and refined in riding mode, with U iso(H) values assigned as 1.2U eq of the parent atoms (1.5 times for methyl groups), with C—H distances of 0.93 (aromatic), 0.96 (CH3) and 0.97 Å (CH2), N—H distances of 0.86 Å and O—H distances of 0.82 Å (rotating OH). In (3a), the thio­phene ring is disordered over two positions [population parameters 0.762 (3) and 0.238 (3)] and was refined with restraints for the bond lengths and angles in the ring. The anisotropic temperature factors for atoms S1, C2, C4 and C5 in both orientations were constrained to be equal. In the final cycles of refinement, four and two outliers were omitted for (3a) and (3b), respectively.

Table 3. Experimental details.

  (3a) (3b)
Crystal data
Chemical formula C13H12N2O2S C14H14N2O2S
M r 260.31 274.33
Crystal system, space group Orthorhombic, P b c a Triclinic, P Inline graphic
Temperature (K) 293 293
a, b, c (Å) 13.0820 (8), 8.0287 (4), 24.0442 (12) 6.5185 (2), 9.7447 (5), 10.9291 (6)
α, β, γ (°) 90, 90, 90 78.327 (4), 83.070 (4), 87.013 (4)
V3) 2525.4 (2) 674.63 (6)
Z 8 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.25 0.24
Crystal size (mm) 0.35 × 0.2 × 0.05 0.5 × 0.15 × 0.05
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018) Multi-scan (CrysAlis PRO; Rigaku OD, 2018)
T min, T max 0.453, 1.000 0.687, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 13596, 2571, 1759 13795, 2752, 2238
R int 0.039 0.027
(sin θ/λ)max−1) 0.625 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.046, 0.109, 1.07 0.051, 0.145, 1.06
No. of reflections 2571 2752
No. of parameters 178 173
No. of restraints 80 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.18 0.33, −0.38

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015 a ), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) 3a, 3b. DOI: 10.1107/S2056989019008892/rz5260sup1.cif

e-75-01090-sup1.cif (719.4KB, cif)

Structure factors: contains datablock(s) 3a. DOI: 10.1107/S2056989019008892/rz52603asup2.hkl

e-75-01090-3asup2.hkl (141.4KB, hkl)

Structure factors: contains datablock(s) 3b. DOI: 10.1107/S2056989019008892/rz52603bsup3.hkl

e-75-01090-3bsup3.hkl (151.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019008892/rz52603asup4.cml

Supporting information file. DOI: 10.1107/S2056989019008892/rz52603bsup5.cml

CCDC references: 1935593, 1935592

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/ 0035.

supplementary crystallographic information

N'-[1-(4-Hydroxyphenyl)benzylidene]-2-(thiophen-3-yl)acetohydrazide (3a) . Crystal data

C13H12N2O2S Dx = 1.369 Mg m3
Mr = 260.31 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 3446 reflections
a = 13.0820 (8) Å θ = 3.1–23.7°
b = 8.0287 (4) Å µ = 0.25 mm1
c = 24.0442 (12) Å T = 293 K
V = 2525.4 (2) Å3 Plate, white
Z = 8 0.35 × 0.2 × 0.05 mm
F(000) = 1088

N'-[1-(4-Hydroxyphenyl)benzylidene]-2-(thiophen-3-yl)acetohydrazide (3a) . Data collection

Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos diffractometer 2571 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source 1759 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.039
Detector resolution: 15.9631 pixels mm-1 θmax = 26.4°, θmin = 3.1°
ω scans h = −16→15
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) k = −9→10
Tmin = 0.453, Tmax = 1.000 l = −28→30
13596 measured reflections

N'-[1-(4-Hydroxyphenyl)benzylidene]-2-(thiophen-3-yl)acetohydrazide (3a) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0334P)2 + 0.6755P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109 (Δ/σ)max < 0.001
S = 1.07 Δρmax = 0.19 e Å3
2571 reflections Δρmin = −0.18 e Å3
178 parameters Extinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
80 restraints Extinction coefficient: 0.0022 (6)

N'-[1-(4-Hydroxyphenyl)benzylidene]-2-(thiophen-3-yl)acetohydrazide (3a) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

N'-[1-(4-Hydroxyphenyl)benzylidene]-2-(thiophen-3-yl)acetohydrazide (3a) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1A 0.67164 (8) 0.8283 (2) 0.43607 (8) 0.0718 (4) 0.762 (3)
S1B 0.6152 (4) 0.9867 (10) 0.3990 (3) 0.0718 (4) 0.238 (3)
C2A 0.5667 (3) 0.7484 (7) 0.4673 (3) 0.0542 (12) 0.762 (3)
H2A 0.568185 0.659897 0.492216 0.065* 0.762 (3)
C2B 0.4941 (11) 0.970 (3) 0.4213 (16) 0.0542 (12) 0.238 (3)
H2B 0.443026 1.047111 0.413833 0.065* 0.238 (3)
C3 0.47998 (16) 0.8287 (2) 0.45167 (8) 0.0449 (5)
C4A 0.5018 (5) 0.9582 (10) 0.4141 (5) 0.062 (2) 0.762 (3)
H4A 0.451169 1.026238 0.399205 0.074* 0.762 (3)
C4B 0.5719 (9) 0.741 (3) 0.4587 (11) 0.062 (2) 0.238 (3)
H4B 0.575924 0.640913 0.478166 0.074* 0.238 (3)
C5A 0.6056 (6) 0.9770 (11) 0.4008 (4) 0.100 (3) 0.762 (3)
H5A 0.633233 1.056338 0.376954 0.120* 0.762 (3)
C5B 0.6580 (10) 0.818 (2) 0.4337 (11) 0.100 (3) 0.238 (3)
H5B 0.725438 0.781636 0.435909 0.120* 0.238 (3)
C6 0.37396 (16) 0.7786 (3) 0.47035 (8) 0.0506 (6)
H6A 0.377254 0.726825 0.506761 0.061*
H6B 0.330528 0.876200 0.472922 0.061*
C7 0.33041 (15) 0.6577 (3) 0.42864 (8) 0.0419 (5)
O8 0.36037 (11) 0.51138 (17) 0.42613 (5) 0.0476 (4)
N9 0.26256 (13) 0.7198 (2) 0.39247 (6) 0.0455 (4)
H9 0.236595 0.816955 0.397669 0.055*
N10 0.23452 (13) 0.6255 (2) 0.34641 (6) 0.0441 (4)
C11 0.16622 (15) 0.6908 (2) 0.31536 (8) 0.0444 (5)
H11 0.135667 0.790093 0.326364 0.053*
C12 0.13478 (16) 0.6139 (2) 0.26302 (8) 0.0428 (5)
C13 0.04946 (18) 0.6712 (3) 0.23499 (9) 0.0553 (6)
H13 0.012178 0.759047 0.249952 0.066*
C14 0.01803 (18) 0.6010 (3) 0.18517 (9) 0.0561 (6)
H14 −0.040209 0.640454 0.167331 0.067*
C15 0.07373 (17) 0.4720 (2) 0.16220 (8) 0.0462 (5)
C16 0.16018 (17) 0.4149 (3) 0.18911 (9) 0.0562 (6)
H16 0.198233 0.328679 0.173641 0.067*
C17 0.19021 (17) 0.4850 (3) 0.23870 (9) 0.0538 (6)
H17 0.248657 0.445441 0.256329 0.065*
O18 0.04708 (13) 0.39577 (19) 0.11361 (6) 0.0620 (5)
H18 −0.003809 0.441085 0.100663 0.093*

N'-[1-(4-Hydroxyphenyl)benzylidene]-2-(thiophen-3-yl)acetohydrazide (3a) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0493 (6) 0.0807 (8) 0.0853 (7) 0.0003 (5) −0.0078 (5) −0.0050 (6)
S1B 0.0493 (6) 0.0807 (8) 0.0853 (7) 0.0003 (5) −0.0078 (5) −0.0050 (6)
C2A 0.065 (2) 0.051 (2) 0.047 (3) 0.0092 (16) −0.0120 (16) 0.0016 (17)
C2B 0.065 (2) 0.051 (2) 0.047 (3) 0.0092 (16) −0.0120 (16) 0.0016 (17)
C3 0.0513 (14) 0.0403 (11) 0.0430 (11) −0.0013 (10) −0.0106 (10) −0.0057 (9)
C4A 0.060 (3) 0.053 (3) 0.072 (6) −0.0011 (18) −0.008 (2) 0.015 (3)
C4B 0.060 (3) 0.053 (3) 0.072 (6) −0.0011 (18) −0.008 (2) 0.015 (3)
C5A 0.132 (6) 0.063 (3) 0.103 (4) −0.025 (3) −0.011 (3) 0.021 (2)
C5B 0.132 (6) 0.063 (3) 0.103 (4) −0.025 (3) −0.011 (3) 0.021 (2)
C6 0.0551 (15) 0.0539 (13) 0.0427 (11) 0.0014 (11) −0.0020 (10) −0.0088 (10)
C7 0.0408 (13) 0.0444 (12) 0.0405 (11) −0.0017 (9) 0.0056 (9) −0.0002 (9)
O8 0.0533 (10) 0.0400 (8) 0.0495 (8) 0.0012 (7) −0.0023 (7) 0.0005 (6)
N9 0.0489 (11) 0.0370 (9) 0.0506 (10) 0.0033 (8) −0.0043 (8) −0.0084 (8)
N10 0.0471 (11) 0.0408 (10) 0.0444 (9) −0.0029 (8) −0.0030 (8) −0.0029 (8)
C11 0.0451 (13) 0.0420 (11) 0.0461 (11) 0.0020 (9) 0.0006 (10) 0.0014 (9)
C12 0.0458 (13) 0.0404 (11) 0.0424 (11) −0.0007 (9) −0.0002 (9) 0.0024 (9)
C13 0.0611 (16) 0.0527 (14) 0.0520 (13) 0.0196 (11) −0.0082 (11) −0.0087 (10)
C14 0.0600 (15) 0.0569 (14) 0.0515 (13) 0.0146 (11) −0.0136 (11) −0.0038 (11)
C15 0.0553 (14) 0.0429 (12) 0.0405 (11) 0.0003 (10) −0.0008 (10) 0.0007 (9)
C16 0.0616 (16) 0.0536 (13) 0.0535 (13) 0.0137 (11) −0.0009 (12) −0.0088 (11)
C17 0.0516 (15) 0.0545 (13) 0.0553 (13) 0.0117 (11) −0.0082 (11) −0.0018 (11)
O18 0.0748 (13) 0.0574 (10) 0.0539 (9) 0.0122 (8) −0.0116 (8) −0.0129 (8)

N'-[1-(4-Hydroxyphenyl)benzylidene]-2-(thiophen-3-yl)acetohydrazide (3a) . Geometric parameters (Å, º)

S1A—C2A 1.691 (4) C7—O8 1.240 (2)
C2A—H2A 0.9300 C7—N9 1.339 (2)
S1B—C2B 1.677 (9) N9—H9 0.8600
C2B—H2B 0.9300 N9—N10 1.391 (2)
C2A—C3 1.357 (4) N10—C11 1.277 (2)
C2B—C3 1.360 (9) C11—H11 0.9300
C4A—H4A 0.9300 C11—C12 1.461 (3)
C4B—H4B 0.9300 C12—C13 1.382 (3)
S1A—C5A 1.700 (7) C12—C17 1.393 (3)
C4A—C5A 1.404 (6) C13—H13 0.9300
C5A—H5A 0.9300 C13—C14 1.386 (3)
S1B—C5B 1.688 (9) C14—H14 0.9300
C4B—C5B 1.419 (9) C14—C15 1.381 (3)
C5B—H5B 0.9300 C15—C16 1.381 (3)
C3—C4A 1.407 (4) C15—O18 1.364 (2)
C3—C4B 1.404 (9) C16—H16 0.9300
C3—C6 1.512 (3) C16—C17 1.376 (3)
C6—H6A 0.9700 C17—H17 0.9300
C6—H6B 0.9700 O18—H18 0.8200
C6—C7 1.508 (3)
C4A—C5A—S1A 107.6 (5) C3—C4B—C5B 114.2 (9)
C4B—C5B—S1B 107.2 (8) O8—C7—C6 121.54 (19)
S1A—C2A—H2A 124.0 O8—C7—N9 122.07 (18)
S1B—C2B—H2B 124.2 N9—C7—C6 116.27 (18)
C5A—C4A—C3 115.0 (5) C7—N9—H9 120.4
C5A—C4A—H4A 122.5 C7—N9—N10 119.29 (16)
C5B—C4B—H4B 122.9 N10—N9—H9 120.4
C2A—S1A—C5A 94.3 (3) C11—N10—N9 115.25 (17)
S1A—C5A—H5A 126.2 N10—C11—H11 119.1
C4A—C5A—H5A 126.2 N10—C11—C12 121.81 (19)
C2B—S1B—C5B 95.2 (6) C12—C11—H11 119.1
S1B—C5B—H5B 126.4 C13—C12—C11 120.45 (18)
C4B—C5B—H5B 126.4 C13—C12—C17 117.57 (19)
C2A—C3—C4A 111.1 (3) C17—C12—C11 121.95 (19)
C2B—C3—C4B 111.5 (7) C12—C13—H13 119.1
C4A—C3—C6 125.0 (3) C12—C13—C14 121.7 (2)
C2A—C3—C6 123.9 (3) C14—C13—H13 119.1
C4B—C3—C6 128.0 (6) C13—C14—H14 120.2
C2B—C3—C6 120.4 (5) C15—C14—C13 119.6 (2)
C3—C6—H6A 110.0 C15—C14—H14 120.2
C3—C2A—S1A 112.1 (3) C14—C15—C16 119.6 (2)
C3—C2B—S1B 111.6 (7) O18—C15—C14 123.0 (2)
C3—C6—H6B 110.0 O18—C15—C16 117.47 (19)
H6A—C6—H6B 108.3 C15—C16—H16 119.9
C3—C2A—H2A 124.0 C17—C16—C15 120.3 (2)
C3—C2B—H2B 124.2 C17—C16—H16 119.9
C7—C6—C3 108.68 (16) C12—C17—H17 119.4
C7—C6—H6A 110.0 C16—C17—C12 121.3 (2)
C3—C4A—H4A 122.5 C16—C17—H17 119.4
C3—C4B—H4B 122.9 C15—O18—H18 109.5
C7—C6—H6B 110.0
C2A—S1A—C5A—C4A −0.7 (11) C6—C3—C4B—C5B 176.8 (17)
C2B—S1B—C5B—C4B 5 (3) C6—C3—C4A—C5A −177.0 (8)
C5B—S1B—C2B—C3 −5 (3) C6—C7—N9—N10 167.45 (16)
C5A—S1A—C2A—C3 0.8 (7) C7—N9—N10—C11 177.10 (18)
S1B—C2B—C3—C4B 3 (3) O8—C7—N9—N10 −8.6 (3)
S1A—C2A—C3—C4A −0.7 (5) N9—N10—C11—C12 174.82 (16)
S1A—C2A—C3—C6 176.5 (3) N10—C11—C12—C13 169.1 (2)
S1B—C2B—C3—C6 −173.1 (14) N10—C11—C12—C17 −12.8 (3)
C2B—C3—C6—C7 95 (2) C11—C12—C13—C14 179.8 (2)
C2A—C3—C6—C7 −91.1 (5) C11—C12—C17—C16 −179.4 (2)
C4A—C3—C6—C7 85.7 (7) C12—C13—C14—C15 −0.9 (4)
C4B—C3—C6—C7 −81.0 (17) C13—C12—C17—C16 −1.2 (3)
C2A—C3—C4A—C5A 0.1 (11) C13—C14—C15—C16 −0.1 (3)
C2B—C3—C4B—C5B 1 (3) C13—C14—C15—O18 179.4 (2)
C3—C4A—C5A—S1A 0.5 (14) C14—C15—C16—C17 0.5 (3)
C3—C4B—C5B—S1B −4 (3) C15—C16—C17—C12 0.1 (3)
C3—C6—C7—O8 74.2 (2) C17—C12—C13—C14 1.6 (3)
C3—C6—C7—N9 −101.8 (2) O18—C15—C16—C17 −179.0 (2)

N'-[1-(4-Hydroxyphenyl)benzylidene]-2-(thiophen-3-yl)acetohydrazide (3a) . Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the C12–C17 phenyl ring.

D—H···A D—H H···A D···A D—H···A
N9—H9···O8i 0.86 2.12 2.953 (2) 162
O18—H18···O8ii 0.82 1.97 2.782 (2) 169
C2A—H2A···O8iii 0.93 2.57 3.439 (7) 155
C13—H13···Cg3iv 0.93 2.89 3.818 (3) 176

Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) x−1/2, y, −z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x, y+1/2, −z+1/2.

N'-[1-(4-Methoxyphenyl)benzylidene]-2-(thiophen-3-yl)acetohydrazide (3b) . Crystal data

C14H14N2O2S Z = 2
Mr = 274.33 F(000) = 288
Triclinic, P1 Dx = 1.350 Mg m3
a = 6.5185 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.7447 (5) Å Cell parameters from 5534 reflections
c = 10.9291 (6) Å θ = 3.1–27.2°
α = 78.327 (4)° µ = 0.24 mm1
β = 83.070 (4)° T = 293 K
γ = 87.013 (4)° Needle, white
V = 674.63 (6) Å3 0.5 × 0.15 × 0.05 mm

N'-[1-(4-Methoxyphenyl)benzylidene]-2-(thiophen-3-yl)acetohydrazide (3b) . Data collection

Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos diffractometer 2752 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source 2238 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.027
Detector resolution: 15.9631 pixels mm-1 θmax = 26.4°, θmin = 2.6°
ω scans h = −8→8
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) k = −12→12
Tmin = 0.687, Tmax = 1.000 l = −13→13
13795 measured reflections

N'-[1-(4-Methoxyphenyl)benzylidene]-2-(thiophen-3-yl)acetohydrazide (3b) . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051 H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.5294P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
2752 reflections Δρmax = 0.33 e Å3
173 parameters Δρmin = −0.38 e Å3

N'-[1-(4-Methoxyphenyl)benzylidene]-2-(thiophen-3-yl)acetohydrazide (3b) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

N'-[1-(4-Methoxyphenyl)benzylidene]-2-(thiophen-3-yl)acetohydrazide (3b) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.68895 (12) 0.78924 (10) 0.16957 (9) 0.0734 (3)
C2 0.5595 (4) 0.7356 (3) 0.3147 (3) 0.0534 (6)
H2 0.619153 0.726965 0.389168 0.064*
C3 0.3579 (4) 0.7066 (2) 0.3100 (2) 0.0436 (5)
C4 0.3123 (4) 0.7275 (3) 0.1841 (2) 0.0512 (6)
H4 0.182310 0.712513 0.163071 0.061*
C5 0.4790 (4) 0.7727 (3) 0.0935 (2) 0.0497 (6)
H5 0.476097 0.790729 0.006852 0.060*
C6 0.2002 (4) 0.6708 (3) 0.4234 (2) 0.0479 (6)
H6A 0.265853 0.615910 0.493142 0.057*
H6B 0.093072 0.615347 0.404620 0.057*
C7 0.1056 (3) 0.8042 (3) 0.4589 (2) 0.0418 (5)
O8 −0.0513 (2) 0.86009 (19) 0.41630 (16) 0.0508 (4)
N9 0.2051 (3) 0.8658 (2) 0.53376 (18) 0.0417 (5)
H9 0.160089 0.945717 0.549350 0.050*
N10 0.3778 (3) 0.8031 (2) 0.58594 (17) 0.0412 (5)
C11 0.4621 (3) 0.8739 (2) 0.6517 (2) 0.0411 (5)
H11 0.406000 0.961642 0.660165 0.049*
C12 0.6438 (3) 0.8207 (2) 0.7139 (2) 0.0372 (5)
C13 0.7354 (4) 0.9057 (2) 0.7794 (2) 0.0423 (5)
H13 0.679005 0.994741 0.782354 0.051*
C14 0.9070 (4) 0.8605 (2) 0.8396 (2) 0.0444 (5)
H14 0.966061 0.919004 0.882266 0.053*
C15 0.9921 (3) 0.7276 (2) 0.8368 (2) 0.0409 (5)
C16 0.9037 (4) 0.6415 (2) 0.7722 (2) 0.0442 (5)
H16 0.960075 0.552276 0.769944 0.053*
C17 0.7322 (4) 0.6880 (2) 0.7113 (2) 0.0435 (5)
H17 0.674636 0.629647 0.667808 0.052*
O18 1.1602 (3) 0.69079 (19) 0.90073 (17) 0.0565 (5)
C19 1.2603 (4) 0.5592 (3) 0.8926 (3) 0.0634 (8)
H19A 1.307244 0.557208 0.806228 0.095*
H19B 1.164788 0.485433 0.925510 0.095*
H19C 1.376398 0.546115 0.940466 0.095*

N'-[1-(4-Methoxyphenyl)benzylidene]-2-(thiophen-3-yl)acetohydrazide (3b) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0554 (5) 0.0848 (6) 0.0861 (6) −0.0076 (4) 0.0084 (4) −0.0394 (5)
C2 0.0441 (13) 0.0592 (16) 0.0640 (16) 0.0019 (11) −0.0103 (12) −0.0270 (13)
C3 0.0445 (13) 0.0376 (12) 0.0529 (14) −0.0006 (9) −0.0085 (10) −0.0175 (10)
C4 0.0541 (15) 0.0493 (14) 0.0568 (15) −0.0023 (11) −0.0156 (12) −0.0207 (12)
C5 0.0528 (14) 0.0505 (14) 0.0506 (14) −0.0044 (11) 0.0003 (11) −0.0238 (11)
C6 0.0503 (14) 0.0436 (13) 0.0526 (14) −0.0098 (10) −0.0110 (11) −0.0108 (11)
C7 0.0368 (12) 0.0511 (13) 0.0368 (11) −0.0088 (10) −0.0037 (9) −0.0056 (10)
O8 0.0366 (9) 0.0680 (12) 0.0511 (10) −0.0008 (8) −0.0129 (7) −0.0152 (8)
N9 0.0364 (10) 0.0489 (11) 0.0424 (10) 0.0032 (8) −0.0114 (8) −0.0121 (8)
N10 0.0381 (10) 0.0472 (11) 0.0386 (10) 0.0011 (8) −0.0096 (8) −0.0069 (8)
C11 0.0421 (12) 0.0422 (12) 0.0396 (12) 0.0021 (9) −0.0073 (9) −0.0087 (9)
C12 0.0370 (11) 0.0399 (12) 0.0343 (11) −0.0020 (9) −0.0055 (9) −0.0052 (9)
C13 0.0485 (13) 0.0361 (12) 0.0436 (12) 0.0034 (10) −0.0101 (10) −0.0098 (9)
C14 0.0498 (13) 0.0439 (13) 0.0444 (13) −0.0029 (10) −0.0149 (10) −0.0143 (10)
C15 0.0393 (12) 0.0467 (13) 0.0356 (11) −0.0006 (10) −0.0088 (9) −0.0034 (9)
C16 0.0482 (13) 0.0365 (12) 0.0491 (13) 0.0036 (10) −0.0117 (11) −0.0094 (10)
C17 0.0470 (13) 0.0408 (12) 0.0465 (13) −0.0032 (10) −0.0113 (10) −0.0135 (10)
O18 0.0538 (10) 0.0595 (11) 0.0613 (11) 0.0109 (8) −0.0284 (9) −0.0142 (9)
C19 0.0560 (16) 0.0645 (18) 0.0690 (18) 0.0175 (13) −0.0214 (14) −0.0085 (14)

N'-[1-(4-Methoxyphenyl)benzylidene]-2-(thiophen-3-yl)acetohydrazide (3b) . Geometric parameters (Å, º)

S1—C2 1.700 (3) C11—H11 0.9300
S1—C5 1.715 (3) C11—C12 1.456 (3)
C2—H2 0.9300 C12—C13 1.396 (3)
C2—C3 1.368 (3) C12—C17 1.393 (3)
C3—C4 1.415 (3) C13—H13 0.9300
C3—C6 1.507 (3) C13—C14 1.374 (3)
C4—H4 0.9300 C14—H14 0.9300
C4—C5 1.403 (4) C14—C15 1.387 (3)
C5—H5 0.9300 C15—C16 1.387 (3)
C6—H6A 0.9700 C15—O18 1.363 (3)
C6—H6B 0.9700 C16—H16 0.9300
C6—C7 1.511 (3) C16—C17 1.379 (3)
C7—O8 1.230 (3) C17—H17 0.9300
C7—N9 1.348 (3) O18—C19 1.422 (3)
N9—H9 0.8600 C19—H19A 0.9600
N9—N10 1.382 (2) C19—H19B 0.9600
N10—C11 1.277 (3) C19—H19C 0.9600
C2—S1—C5 93.48 (13) N10—C11—C12 121.7 (2)
S1—C2—H2 123.7 C12—C11—H11 119.2
C3—C2—S1 112.5 (2) C13—C12—C11 119.1 (2)
C3—C2—H2 123.7 C17—C12—C11 123.1 (2)
C2—C3—C4 111.0 (2) C17—C12—C13 117.8 (2)
C2—C3—C6 124.5 (2) C12—C13—H13 119.3
C4—C3—C6 124.3 (2) C14—C13—C12 121.4 (2)
C3—C4—H4 122.7 C14—C13—H13 119.3
C5—C4—C3 114.5 (2) C13—C14—H14 120.0
C5—C4—H4 122.7 C13—C14—C15 120.0 (2)
S1—C5—H5 125.7 C15—C14—H14 120.0
C4—C5—S1 108.50 (19) C14—C15—C16 119.5 (2)
C4—C5—H5 125.7 O18—C15—C14 116.0 (2)
C3—C6—H6A 109.8 O18—C15—C16 124.5 (2)
C3—C6—H6B 109.8 C15—C16—H16 119.9
C3—C6—C7 109.57 (19) C17—C16—C15 120.1 (2)
H6A—C6—H6B 108.2 C17—C16—H16 119.9
C7—C6—H6A 109.8 C12—C17—H17 119.4
C7—C6—H6B 109.8 C16—C17—C12 121.2 (2)
O8—C7—C6 121.7 (2) C16—C17—H17 119.4
O8—C7—N9 120.2 (2) C15—O18—C19 117.5 (2)
N9—C7—C6 117.9 (2) O18—C19—H19A 109.5
C7—N9—H9 119.3 O18—C19—H19B 109.5
C7—N9—N10 121.3 (2) O18—C19—H19C 109.5
N10—N9—H9 119.3 H19A—C19—H19B 109.5
C11—N10—N9 115.4 (2) H19A—C19—H19C 109.5
N10—C11—H11 119.2 H19B—C19—H19C 109.5
S1—C2—C3—C4 0.8 (3) N10—C11—C12—C13 176.9 (2)
S1—C2—C3—C6 −173.66 (19) N10—C11—C12—C17 −3.1 (4)
C2—S1—C5—C4 0.8 (2) C11—C12—C13—C14 180.0 (2)
C2—C3—C4—C5 −0.2 (3) C11—C12—C17—C16 −179.6 (2)
C2—C3—C6—C7 84.9 (3) C12—C13—C14—C15 −0.4 (4)
C3—C4—C5—S1 −0.5 (3) C13—C12—C17—C16 0.4 (3)
C3—C6—C7—O8 90.8 (3) C13—C14—C15—C16 0.4 (4)
C3—C6—C7—N9 −85.4 (3) C13—C14—C15—O18 −179.0 (2)
C4—C3—C6—C7 −88.8 (3) C14—C15—C16—C17 0.0 (4)
C5—S1—C2—C3 −1.0 (2) C14—C15—O18—C19 −175.7 (2)
C6—C3—C4—C5 174.3 (2) C15—C16—C17—C12 −0.4 (4)
C6—C7—N9—N10 −5.8 (3) C16—C15—O18—C19 4.9 (4)
C7—N9—N10—C11 177.8 (2) C17—C12—C13—C14 0.0 (3)
O8—C7—N9—N10 177.97 (19) O18—C15—C16—C17 179.4 (2)
N9—N10—C11—C12 179.26 (19)

N'-[1-(4-Methoxyphenyl)benzylidene]-2-(thiophen-3-yl)acetohydrazide (3b) . Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the S1/C1–C5 thiophene ring.

D—H···A D—H H···A D···A D—H···A
N9—H9···O8i 0.86 2.08 2.935 (3) 179
C6—H6A···N10 0.97 2.44 2.782 (3) 100
C13—H13···Cg1ii 0.93 2.68 3.611 (2) 179

Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+1, −y+2, −z+1.

References

  1. Bharti, S. K., Nath, G., Tilak, R. & Singh, S. K. (2010). Eur. J. Med. Chem. 45, 651–660. [DOI] [PubMed]
  2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  3. El-Sayed, H. A., Moustafa, A. H., El-Moneim, M. A., Awad, H. M. & Esmat, A. (2018). J. Pharm. Appl. Chem. 4, 125–131.
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067–1071. [DOI] [PubMed]
  6. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  7. Nguyen, N. L., Tran, T. D., Nguyen, T. C., Duong, K. L., Pfleger, J. & Vu, Q. T. (2016). Vietnam. J. Chem. 54, 259–263.
  8. Papakonstantinou-Garoufalias, S., Pouli, N., Marakos, P. & Chytyroglou-Ladas, A. (2002). Farmaco, 57, 973–977. [DOI] [PubMed]
  9. Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  10. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  11. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  12. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  13. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17. University of Western Australia. http://hirshfeldsurface.net
  14. Vu, Q. T., Nguyen, N. L., Duong, K. L. & Pfleger, J. (2016). Vietnam. J. Chem. 54, 730–735.
  15. Vu Quoc, T., Nguyen Ngoc, L., Nguyen Tien, C., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 901–904. [DOI] [PMC free article] [PubMed]
  16. Wardakhan, W. W., Eid, E.-S. N. N & Mohareb, R. M. (2013). Acta Pharm. 63, 45–57. [DOI] [PubMed]
  17. Yadav, M., Sinha, R. R., Kumar, S., Bahadur, I. & Ebenso, E. E. (2015). J. Mol. Liq. 208, 322–332.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 3a, 3b. DOI: 10.1107/S2056989019008892/rz5260sup1.cif

e-75-01090-sup1.cif (719.4KB, cif)

Structure factors: contains datablock(s) 3a. DOI: 10.1107/S2056989019008892/rz52603asup2.hkl

e-75-01090-3asup2.hkl (141.4KB, hkl)

Structure factors: contains datablock(s) 3b. DOI: 10.1107/S2056989019008892/rz52603bsup3.hkl

e-75-01090-3bsup3.hkl (151.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019008892/rz52603asup4.cml

Supporting information file. DOI: 10.1107/S2056989019008892/rz52603bsup5.cml

CCDC references: 1935593, 1935592

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES