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Abstract

Around the world, infectious disease epidemics continue to threaten people’s health. When 

epidemics strike, we often respond by changing our behaviors to reduce our risk of infection. This 

response is sometimes called “social distancing”. Since behavior changes can be costly, we would 

like to know the optimal social distancing behavior. But the benefits of changes in behavior 

depend on the course of the epidemic, which itself depends on our behaviors. Differential 

population game theory provides a method for resolving this circular dependence. Here, I present 

the analysis of a special case of the differential SIR epidemic population game with social 

distancing when the relative infection rate is linear but bounded below by zero. Equilibrium 

solutions are constructed in closed-form for an open-ended epidemic. Constructions are also 

provided for epidemics that are stopped by the deployment of a vaccination that becomes available 

a fixed-time after the start of the epidemic. This can be used to anticipate a window of opportunity 

during which mass vaccination can significantly reduce the cost of an epidemic.

1. Introduction

The prevention and treatment of infectious diseases is an important component of public 

health programs around the world. Patterns of infectious disease spread can be complicated, 

and a large body of theoretical and mathematical results have been developed to help us 

understand these patterns and make better use of our management resources. One area where 

there has been notable recent interest is the identification of games influencing disease 

transmission.

Social distancing is one method people can use to protect themselves from the dangers of an 

infectious disease epidemic. The term “social distancing” is used to indicate changes in 

behavior that reduce the risk of infection, as opposed to medical interventions such as 

vaccination or prophylactic antivirals. The importance of social distancing during an 

epidemic can be studied using population game theory with time-dependent actions. Reluga 

(2010) provides a detailed derivation of a differential population game based on the methods 

presented by Reluga and Galvani (2011), and explores equilibria of this game by numerical 

methods. A related discrete-time epidemic game has also been studied by Auld (2003).
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We now provide a brief review. Suppose an epidemic infectious disease is transmitted by 

direct contact in a large strongly-mixed population, has no incubation period, and has an 

exponentially distributed infectious period. Further, suppose that all other population 

processes like demographic turnover are slow enough relative to the epidemic dynamics to 

be neglected. Then the epidemic dynamics can be modeled by the simple SIR equations of 

Kermack and McKendrick (1927), with S representing the size of the subpopulation of 

susceptible people, and I representing the subpopulation of infected people. Dimensional 

analysis reveals the convenience of measuring time in units of the average generation-time 

for infections and measuring population size in units of the basic reproduction number, such 

that

Ṡ = − SI, İ = SI − I . (1.1)

To make use of game theory to understand how individuals can social-distance to their best 

advantage, a third variable was introduced to account for costs and benefits. Let VS be the 

expected value of being in the susceptible state at a given time. This value is defined relative 

to the costs of being resistant (0) and the cost of being infected (−1), so we should always 

have – 1 ≤ VS ≤ 0. Biologically, this expected value is always negative because illness 

always imposes a cost on the individual relative to the healthy state. The is choice of a lower 

bound of −1 can be justified by dimensional analysis. The control-variable for the problem 

will be people’s investment rate in social distancing c. Investment in social distancing 

reduces each individual’s relative exposure rate σ(c): individuals invest in social distancing 

at rate c to reduce their risk of infection by a fraction 1 − σ(c) of their background risk. To 

avoid complications introduced by dynamically altering contact patterns, we assume that 

social distancing behaviors do not alter contact rates, only the risk of infection per contact. 

Without loss of generality, we take σ(0) = 1. While it is natural to think of the investment 

rate c as a function of time (c(t)) for any particular epidemic problem, our analysis will make 

primary use of the feedback form c(VS, I) which specifies investment rates as a function of 

the state variables.

The game we now study is how individuals can invest in social distancing to minimize the 

personal costs of the epidemic, the course of which depends on the choices of the other 

players. One very useful solution concept, and the one we will focus on here, is that of the 

subgame-perfect Nash equilibrium (Fudenberg and Tirole, 1991). A strategy is a Nash 

equilibrium of a population game if no player has a positive incentive to use a different 

strategy when all the players are playing identical strategies (Sandholm, 2011; Reluga and 

Galvani, 2011). A Nash equilibrium is subgame-perfect if it is also a Nash equilibrium of 

every possible subgame of the given game.

By formulating the differential population game combining a Markov decision process 

balancing infection risk against prevention cost and an SIR model of infection risk, and then 

using calculus or Hamiltonian theory to derive a first-order necessary condition for optimal 

game play, Reluga (2010) determined that the investment strategy c*(VS, I) is a subgame-

perfect Nash equilibrium of the SIR epidemic game if and only if
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c* VS, I ∈ argmax 
c ≥ 0

− σ(c)I 1 + VS − c, (1.2)

where

−
dVS
dt = − σ c* I 1 + VS − c*, (1.3a)

dS
dt = − σ c* IS, (1.3b)

dI
dt = σ c* IS − I, (1.3c)

and the initial conditions S(0) and I(0) are given. The negative sign on the left hand side of 

(1.3a) is preserved to remind the reader that this equation is evaluated backward in time. 

Two different types of terminal conditions were investigated (Reluga, 2010). In situations 

where there is no external intervention, the epidemic must burn itself out. Linearizing around 

the terminal steady-state when there is no more risk of infection and I = 0, we can show that 

the infinite horizon problem should have terminal condition

VS(∞) = 0, and
∂VS
∂I (S, I = 0) = −1

1 − S . (1.4)

In situations where a perfect vaccine or another completely effective systemic intervention 

becomes universally available at a fixed-time T after the initiation of the epidemic, the 

epidemic may stop prematurely, leading to a finite horizon problem with terminal condition

VS(T) = 0. (1.5)

Some instances of this SIR epidemic game have been solved numerically for specific 

choices of σ(c) which were smooth, convex, and decreasing (Reluga, 2010).

In this paper, I will explore the explicit construction of equilibria in the special case of 

continuous piecewise linear relative exposure rate function with a lower bound of 0, given as

σ(c): = max 0, 1 − mc . (1.6)
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Here, m represents the efficiency with which investments are converted in to reductions in 

exposure risk. We will always have m > 0, and the larger m, the more efficient investment is. 

Our selected relative exposure rate σ(c) is convex but only weakly convex. The weak 

convexity in σ(c) will lead to singularities in the equilibria. These singularities appear 

closely related to the numerical difficulties observed previously for some smooth strictly-

convex functions.

Our main result is the direct construction of subgame-perfect equilibria of the infinite-

horizon game, establishing how to calculate this equilibrium for all possible initial 

conditions, and showing that only one such construction is possible for each initial 

condition. A number of results are also provided for the finite-horizon game, including 

calculation conditions and qualitative characteristics. From these results, we are able to 

calculate upper bounds on the cost of an epidemic under equilibrium play as a function of 

the time until vaccine becomes available. The methods used in this paper are inspired by 

Bressan and Piccoli (2007); Isaacs (1965); Arrow and Kurz (1970); Clark (1976); Lenhart 

and Workman (2007). Following Isaacs, the presentation will be conversational rather than 

formal. Our results are summarized by two conjectures, formal proofs of which are left as 

open problems for future research.

2. Best responses

Based on Eq. (1.2), elementary methods show that the best-responses under Eq. (1.6) will 

exhibit a piece-wise response (see Figure 1). The equilibrium investment rate

c* ∈ argmax 
c ≥ 0

− σ(c)I 1 + VS − c =

0  if Ψ I, VS < 1/m,

0, 1
m  if Ψ I, VS = 1/m,

1/m  if Ψ I, VS > 1/m,

(2.1a)

where

Ψ I, VS : = I 1 + VS . (2.1b)

The surface

Ψ I, VS = 1/m (2.2)

where c* changes is called the switching surface. Applying Eq. (2.1a) to Eq. (1.2) and (1.3) 

leads to a condition that equilibria must satisfy. Note that the equilibrium investment rate for 

an individual at a given state is not always uniquely specified. The time derivative of an 

equilibrium trajectory must fall in a one-dimensional set of feasible directions when Ψ = 

1/m. We can interpret Condition (2.1) as the specification of a differential inclusion that our 

subgame-perfect Nash equilibrium must satisfy. A differential inclusion ẋ ∈ F(t, x) is like an 
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ordinary differential equation, but instead of attaching a single vector to each point in phase 

space, a differential inclusion can attach a set of vectors to each point (Bressan and Piccoli, 

2007). F (t, x) is often called a multifunction or a correspondence. A continuous trajectory 

x(t) is an equilibrium of a differential inclusion specified by F (t, x) if the tangents of x(t) are 

elements of F (t, x) at each point (with an appropriate generalization of the concept of 

tangency being applied at corner points).

We will now use this differential inclusion to identify a unique subgame-perfect Nash 

equilibrium of the infinite-horizon problem for arbitrary initial conditions. We will first 

identify equilibria in the special case when S = 0, and then consider the cases where S > 0. 

We will then analyze the finite-time problem.

3. Equilibria when none are susceptible (S = 0)

To start, we consider the “28 Days Later” scenario where S(0) = 0 and explicitly construct 

the infinite-horizon equilibrium trajectory for outlasting the epidemic. It seems rather silly to 

assume there are no susceptible people in an epidemic, but this is a good approximation for 

very large epidemics and will reveal itself as a mathematically useful first step.

When S = 0, System (1.3) reduces to

dS
dt = 0, (3.1a)

dI
dt = − I, (3.1b)

dVS
dt = σ c* I 1 + VS + c*, (3.1c)

From Eq. (3.1a), we see S(t) = 0 for all t, which allows us to restrict our attention to the VS × 

I phase plane (see Figure 2). Eq. 3.1b is easily integrated by itself. When constructing 

solutions, we specify an arbitrary point (τ, S(τ), I(τ), VS(τ)) on the solution to identify 

constants of integration. The integrated form of solutions to Eq. 3.1c depends on the value of 

c*. If Ψ(I, VS) > 1/m, then c* = 1/m, dVS/dt = 1/m, we can calculate the system solution

I(t) = I(τ)e−(t − τ),  VS(t) = VS(τ) + (t − τ)
m , (3.2a)

and when put in phase space form,
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I(t) = I(τ)e
−m VS(t) − VS(τ)

. (3.2b)

If Ψ(I, VS) < 1/m, then c* = 0, dVS/dt = (1 + VS)I, and

I(t) = I(τ)e−(t − τ),  VS(t) = VS(τ) + 1 eI(τ) − I(t) − 1. (3.3)

If Ψ(I, VS) = 1/m, we must consider the third possibility of singular trajectories along the 

switching surface. A singular equilibrium trajectory exists locally at a point if and only if the 

tangent space of the switching surface intersects the cone of feasible directions derived from 

the optimality conditions. Direct substitution of the switching condition into Eq. (3.1c) 

shows that when Ψ(I, VS) = 1/m, we must have 
dVS
dt = 1

m , independent of c*. The vector 

field is tangent to the switching surface only at the isolated point (VS, I) = (1/m − 1, 1). So if 

S = 0, there are no singular trajectories. For any point on the switching surface where I < 1, 

solutions are entering the region where c* = 0 as time goes forward. For any point on the 

switching surface where I > 1, solutions are leaving this region and entering the c* = 1/m 
region.

To construct a complete solution of the infinite-horizon problem when S = 0, we need to find 

orbits solving the differential inclusion with terminal condition VS(∞) = I(∞) = 0 (see 

Figure 2). Clearly, Eq. (3.3) applies at this terminal time. Taking VS(τ) = I(τ) = 0, the 

terminal condition is matched by the orbit I(t) = − ln(VS(t) + 1). Running time backwards, 

the solution must flow along this orbit until it (possibly) intersects the switching surface. 

Whether or not it intersects the switching surface depends on whether there is a value of VS 

∈ (−1, 0) that solves

−ln VS + 1 = 1
m VS + 1 . (3.4)

We find that if m < e, there is no intersection – the game equilibrium strategy makes no use 

of social distancing and c*(t) = 0 for all t (see Figure 2, left). In this case, Eq. (3.3) fully 

specifies the solution. If m > e1, we can define two times t1 and t3 with t1 > t3 such that the 

first transition occurs at I(t1) which is the smallest solution of mIe−I = 1 (we will introduce t2 

later in this paper). A second transition then occurs at I(t3), where I(t3) > I(t1) and

1
I t1

+ lnI t1 = 1
I t3

+ lnI t3 . (3.5)

Explicit expressions for the switch-points can be obtained in terms of the principle branch 

Wp(x) of Lambert’s W function (Corless et al., 1996):
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I t1 = ln −mW p( − 1/m) , (3.6)

I t3 = −1

W p − e
−1/I t1

I t1

, (3.7)

t1 − t3 = lnI t1 − lnI t3 . (3.8)

Between t1 and t3, the solutions are given by Eq. (3.2). No further patching occurs, as Ψ(I(t), 
VS(I(t))) < 1/m for all t < t3 (see Fig. 2, right). So the infinite-horizon equilibrium trajectory 

is completely determined.

Interestingly, since the epidemic dynamics are independent of behavior in this scenario, the 

game theory equilibrium must also correspond to the optimal control maximizing the well 

being of all individuals who are not infected.

4. Equilibria when some are susceptible (S > 0)

We now consider the infinite horizon problem when S > 0. Our governing system is again 

Eq. (1.3) with switching conditions given by Eq. (2.1a). If (c*, σ(c*)) = (1/m, 0), the 

trajectories satisfy Eq. (3.1) and are given by Eq. (3.2), with S(t) constant. On the other 

hand, if (c*, σ(c*)) = (0, 1),

−
dVS
dt = − I 1 + VS , (4.1a)

dS
dt = − IS, (4.1b)

dI
dt = IS − I, (4.1c)

4.1. A necessary conditions for c* > 0.

If m < e, then c* = 0 along every equilibrium of the infinite-horizon problem. We know this 

because when c*(0, 0) = 0,
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dI
dVS

= İ
V̇S

= IS − I
1 + VS I

= S − 1
1 + VS

. (4.2)

The right hand side is monotone strictly increasing in S. When we integrate backward in 

time from any terminal condition with 0 ≤ S(∞) < 1, we find that no trajectory – when 

collapsed from the S × I × VS phase space into the VS × I phase space – can cross the S = 0 

equilibrium trajectory from Section 3. Since m < e implies the S = 0 trajectory takes c* = 0 

everywhere, and larger values of S only make dI/dVS more positive, all equilibrium 

trajectories with S ≥ 0 must also do so. c* = 0 is the unique solution, because the strict 

monotonicity ensures Eq. (1.2) is always single-valued.

4.2. Equilibria not employing singular trajectories.

When m > e, equilibrium trajectories terminating in the neighborhood of S(∞) = 0 may 

intersect the switching surface, and we have to integrate explicitly to determine when the 

equilibrium trajectories include positive investments. The trajectories can be constructed in 

an implicit closed-form. Treating S as the independent variable,

dVS
dS =

V̇S
Ṡ

=
1 + VS

−S , (4.3a)

dI
dS = İ

Ṡ
= S − 1

−S (4.3b)

Integrating through an arbitrary point (S(τ), I(τ), VS(τ)) and parameterizing the solution in 

terms of S(t),

I(t) = I(τ) + S(τ) − lnS(τ) − S(t) + lnS(t) (4.4a)

VS(t) =
VS(τ) + 1 S(τ)

S(t) − 1 (4.4b)

t − τ = ∫
S(t)

S(τ) dx
x(I(τ) + S(τ) − lnS(τ) − x + lnx) (4.4c)

Alternatively, the solution may be parameterized in terms of V (t) by transforming Eq. (4.4b) 

to
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S(t) =
VS(τ) + 1 S(τ)

VS(t) + 1 (4.5)

and substituting as needed. There is no unique parameterization in terms of I(t), because Eq. 

4.4a does not have a unique solution for S(t) in terms of I(t).

We now patch together solutions just as we did in Section 3. Tracing solutions backward in 

time from t = ∞, c* = 0 and the trajectory is given by System (4.4) until it hits the switching 

surface. At this point, c* = 1/m, and trajectories are given by System (3.2), with S constant. 

Over this region, Eq. (3.2b) holds.

Once they hit the switching surface a second time, which must occur for I > 1, we return to 

c* = 0, and trajectories are again given by System (4.4). There are never more than two 

discrete intersections between the equilibrium trajectory and the switching surface. When c* 

= 0, Eq. 4.2 implies that dI/dVS is monotone increasing in S, and hence bounded below by 

the S = 0 case:

−1
1 + VS

≤ dI
dVS

(4.6)

The switching curve’s slope

dI
dVS

= −I
1 + VS

, (4.7)

which is more negative for any I > 1. Thus, as we integrate backward in time from any point 

on the switching curves with I > 1, the equilibrium trajectory can not re-intersect the 

switching curve.

We can stop any place along the way, if the desired initial condition is reached. Figure 3 

shows the trajectory orbits, as we can now construct them. We see that the solutions we have 

constructed can reach many initial conditions (S(0), I(0)), but there is a large gap, where 

certain initial conditions are not reached. However, we have not yet considered the 

possibility of singular trajectories when S > 0.

4.3. A regional decomposition and singular trajectory construction.

To fill this gap and ensure that there is a unique equilibrium trajectory for every initial 

condition in the infinite-horizon problem, it will be useful to decompose S × I state-space 

into closed regions, as in Figure 4, where the boundaries can be identified by the 

intersections of neighboring regions. Inside each of these regions, c is constant, so the 

Hamilton–Jacobi equation is linear and unique solutions exist, provided there are appropriate 

initial and boundary conditions. Consequently, the analysis will focus on the boundaries of 
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the regions. To avoid notational confusion with our state variables, we start the region 

numbering at roman-numeral II.

First, let us define the closure of the set of all initial conditions (S(0), I(0)) for which c*(S(t), 
I(t)) = 0 for all times t > 0 and t < 0 as region II. The equilibria in II are constructed by 

solving System (4.4) for the given initial condition. When m < e, region II covers the whole 

non-negative quadrant. Region II is never empty, since for finite m we can always choose 

S(∞) close enough to 1 that I never becomes large enough to intersect the switching surface.

When m > e, the S = 0 solution in Section 3 shows that there is at least one region where c* 

is positive for intermediate times. Let us define region VI as the closure of the set of all 

initial conditions (S(0), I(0)) for which c*(S(t), I(t)) = 0 for all future times t > 0 but not 

already in region II. This means that for each initial condition in region VI, there is some t < 

0 such that c*(S(t), I(t)) > 0. Let region VII be the set of all initial conditions starting with 

c*(S(0), I(0)) = 1/m and flowing into region VI, and let region VIII be the set of all initial 

conditions starting with c*(S(0), I(0)) = 0 and flowing into region VII. As long as m > e, we 

know that {0} × [0, I(t1)] ⊂ VI, {0} × [I(t1), I(t3)] ⊂ VII, and {0} × [I(t3), ∞) ⊂ VIII. We 

can also show by direct calculation that ([0, 1] × [0, 1/m])\II ⊂ VI

The boundary between regions II and VI, specified as II ∩ VI, is itself an orbit, and we 

would like to calculate this orbit. Let S#(m) := S(∞) for this specific orbit. The orbit must be 

tangent to the switching surface any place the two intersect. Let us re-interpret Ψ(S, I, VS) = 

I(VS + 1) as a potential, and observe that for any given m, the switching surface of our game 

is a level set of Ψ. Thus, the tangent space of the switching surface at any state can be 

represented as the space orthogonal to the gradient of Ψ. In particular, a trajectory moving 

tangent to the switching surface must satisfy

IV̇S + VS + 1 İ = 0. (4.8)

Substituting System (4.3) into (4.8),

I
1 + VS

−S Ṡ + VS + 1 1 − S
S Ṡ = 0 (4.9)

which implies that tangency to the switching surface can only occur along

1 = S(t) + I(t) . (4.10)

On the other hand, applying System (4.4) with terminal conditions I(∞) = 0, VS(∞) = 0, but 

S(∞) = S♯ free, equilibrium trajectories of the infinite-horizon problem have
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I(t) = S♯ − lnS♯ − S(t) + lnS(t), VS(t) = S♯

S(t) − 1. (4.11)

Intersecting these 3 surfaces together with Eq. (2.2), we find that the tangent point must be 

given by

S(t) = S♯e1 − S♯
, I(t) = 1 − S♯e1 − S♯

, VS(t) = eS♯ − 1 − 1. (4.12)

where S♯ satisfies

eS♯ − 1 − S♯ = 1
m with 0 ≤ S♯ ≤ 1. (4.13)

Eq. (4.13) has a unique positive solution S♯(m) for all m > e, and no solutions meeting our 

inequality conditions when m < e (see Figure 6). Based on the monotonicity results at the 

beginning of this section, if the terminal condition S(∞) > S♯(m), then the trajectory never 

reaches the switching surface and c* = 0 everywhere, while if S(∞) < S♯(m), then the 

trajectory passes through the switching surface and c* = 1/m for an interval. Thus, S♯(m) is 

the terminal condition of the orbit representing II ∩ VI.

For initial conditions in VI∪VII∪VIII, equilibria solutions always exist (by construction). 

They are also unique. The uniqueness of solutions depends on the shape of the boundary 

between VII and VIII. Suppose X1 and X2 are equilibria phase space trajectories for initial 

conditions in region VIII with X1.S(∞) < X2.S(∞)†. We see from the S × I phase portrait in 

Figure 3 that (X1 ∩ VI ∩ VII).S < (X2 ∩ VI ∩ VII).S and (X1 ∩ VI ∩ VII).I < (X2 ∩ VI ∩ 
VII).I. From the VS × I phase portrait in Figure 3, (X1 ∩ VI ∩ VII).I < (X2 ∩ VI ∩ VII).I 
implies (X1 ∩ VII ∩ VIII).I > (X2 ∩ VII ∩ VIII).I while (X1 ∩ VII ∩ VIII).S < (X2 ∩ VII ∩ 
VIII).S. These conditions ensure that X1 and X2 remain separate in region VIII as well as 

VII and VI.

When establishing connectivity of our regions, it will be very useful to make use of the 

“projection” of various sets by a vector field. Given a differential equation ẋ = F(x) and two 

subsets A and T of a state space, we define the projection of A forward onto T under F as the 

intersection of T and the union of all positive-time half-orbits of ẋ = F(x) with initial 

conditions in A. The backward projection of A onto T is defined analogously, but using the 

negative-time half-orbits.

To show that region VIII is simply connected and includes all but a compact subset of the S 
× I phase plane, we resort to continuity of solutions of differential equations in terms of the 

†Here X.S is used to indicate the S component of a position vector X. This notation is the same as that used commonly in object 
oriented computer languages and will make our analysis more readable than the use of arbitrary vector indices.

RELUGA Page 11

Bull Math Biol. Author manuscript; available in PMC 2019 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



terminal conditions under projection. Both the S = 0 boundary of VI and VI ∩ II are 

equilibria trajectories. If we take the I = 0 segment between S = 0 and region II, and project 

it along the equilibrium trajectories using the differential equations and the terminal 

conditions, we know VI ∩ VII is a continuous curve touching S = 0 at one end and region II 

at the other. This, in turn, implies VII ∩ VIII is also a continuous curve touching S = 0 at one 

end. And from VII ∩ VIII, we can reach all initial conditions in VIII.

We can not, however, show by this argument that region II touches region VII and VIII. In 

fact, they do not touch each other – there is a gap of initial conditions that are not reached by 

this argument, as Figure 3 shows. We must now deal with this gap.

The only possibility remaining from Eq. (2.1a) is that there are trajectories in the switching 

surface where 0 < c*< 1/m. Substituting appropriate terms from Eq. (1.3) into Eq. (4.8), we 

find an equilibrium trajectory can track the switching surface only when c solves

1 = σ(c)(S + I) + mcI . (4.14)

Using σ’s definition in Eq. (1.6), we see that this is solved by

c♭: = S + I − 1
mS . (4.15)

And since we must have c♭ ∈ [0, 1/m], this can only hold as long as I ∈ [1 − S, 1], with c = 0 

when I = 1 − S and c = 1/m when I = 1. This, combined with the earlier observation that the 

switching surface only exists when I ≥ 1/m, determines the subset of phase space where the 

differential inclusion may not be single-valued (see Figure 5).

Eq. 4.15 can be differentiated to make a Riccati equation for the dynamics of c♭,

dc♭

dt =
mc♭S 1 − mc♭ − 1 I

mS . (4.16)

Integrating the evolution equations under these conditions, singular equilibrium trajectories 

lying within the switching surface have the form

S(t) = [S(τ) + I(τ)] − ln(1 + (t − τ)I(τ)) − I(τ)
1 + (t − τ)I(τ) , (4.17a)

I(t) = I(τ)
1 + (t − τ)I(τ) , (4.17b)
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VS(t) = 1 + (t − τ)I(τ)
mI(τ) − 1, (4.17c)

where (S(τ), I(τ)) is an undetermined contact point and Ψ(I(τ), VS(τ)) = 1/m. Now, to patch 

orbits, we need to identify where these singular equilibrium trajectories intersect the 

trajectories given by System (4.4) for some terminal conditions. Looking at Eq. (1.3) when 

c*= 0, we find that the differential inclusion can only flow into the switching surface when S 
+ I ≤ 1 (independent of m). We show this by determining when c*= 0 implies the inner 

product

∇Ψ ⋅ Ṡ, İ , V̇S = VS + 1 (S + I − 1)I ≤ 0. (4.18)

On the other hand, the singular equilibrium trajectories only satisfy the optimality conditions 

when S + I ≥ 1. Thus, any patching must occur along S + I = 1. By looking for an 

intersection between the solutions of System (4.4) and S + I = 1, we find that the only 

admissible point for (S(τ), I(τ), VS(τ)) is the tangent point of the orbit with terminal 

condition S#(m). Since S# only exists for m ≥ e, there are no singular trajectories for m < e.

The singular equilibrium trajectory we have constructed inside the switching surface is 

called an afferent manifold by Isaacs (1965) (see Figure 7). For positive S, the vector field 

(differential inclusion) along the afferent manifold is not outer continuous; not all elements 

of the cone at a given location are accumulation points of each sequence converging to that 

location. But the differential inclusion along the afferent manifold is contained in the union 

of accumulation cones of all convergent sequences (inner continuity)‡. This simplifies the 

analysis because it implies we need only consider the vector field at each point along the 

afferent manifold.

4.4. Construction of equilibria using the afferent manifold.

The afferent manifold we have derived is a core from which we can fill in the gap in Figure 

3 using a weak solution in the form of a fan (Kevorkian, 1990) (see Figure 8). We will show 

that this fan may reach every initial condition within our gap, and that no initial condition is 

reached by more than one equilibrium trajectory.

Perturbing the afferent manifold to have Ψ(I, VS) > 1/m at each point, and then projecting 

the perturbed afferent manifold backward in time with c* = 1/m according to Eq. (3.1), the 

curve sweeps out regions IV and then region V where c* = 0. Since the afferent manifold 

originates at the intersection point II ∩ VI ∩ VII, region IV tightly abuts region VII, which 

in turn implies region V tightly abuts region VIII. The projection of the afferent manifold 

through IV does not re-intersect the afferent manifold because Ṡ / İ = 0 everywhere in the 

interior of region IV, while Ṡ / İ > 0 everywhere except at the terminal point of the singular 

‡Within the literature on correspondences, the terms upper semicontinuity and upper hemicontinuity are used as synonyms for outer 
continuity, while lower semicontinuity and lower hemicontinuity are used as synonyms for inner continuity. These terms have various 
draw-backs that the inner–outer dichotomy avoids.
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trajectory when I = 1. Since the afferent manifold is continuous and the differential 

equations exhibit continuous dependence on their initial conditions in each of regions IV and 

V, the afferent manifold projection backward in time to form the boundary between regions 

IV and V is also continuous.

Perturbing the afferent manifold to a curve where Ψ(I, VS) < 1/m at each point, and then 

projecting the perturbed afferent manifold backward in time with c* = 0 according to Eq. 

(4.1), sweeps out region III. The boundary between region III and region II is formed by the 

trajectory terminating at S#, and since c* is constant in region III, each initial condition is 

reached by a unique path. Nor does the projection of the afferent manifold intersect the 

switching surface again, since Eq. (4.18) implies ∇Ψ ⋅ Ṡ, İ , V̇S > 0 for all S + I > 1, I > 0, VS 

> −1. Since the terminal point of the afferent manifold at I = 1 is also in the boundary of 

region III, regions V and III must tightly abut each other.

Thus, all the regions abut each other tightly without overlap within or between regions. This 

leads us to the following conjecture.

Conjecture 1. When the relative exposure rate σ(c) is given by (1.6), then the infinite-
horizon differential population game specified by (1.2), (1.3), and (1.4) has a unique 
subgame-perfect Nash equilibrium for any initial condition S(0), I(0).

I refer to this as a conjecture, rather than a theorem, because we have not paid careful 

attention to the messy details underlying this analysis but necessary in a formal proof. We 

have not, for instance, introduced the appropriate measure-theory tools needed to specify the 

equivalence classes in strategy-space, such that “uniqueness” makes sense. For instance, 

strategies may differ from the given strategy at isolated points without having any 

measurable effect on the solution. We have also been loose in our handling of issues of 

continuity of solutions, particularly at the boundaries of our solution regions.

Never the less, our analysis does appear sufficient for the calculation of a unique solution 

numerically. One complete example is shown in Figure 8. Some examples of regions of 

positive social distancing investments at Nash equilibrium for various efficiencies m are 

highlighted in Figure 9, along with the regions where singular trajectories may appear.

5. Calculation of vaccine-deployment windows

We now consider a finite planning horizon rather than an infinite planning horizon. Suppose 

a safe, effective, and free vaccine will become available to the entire population at a fixed 

time T after the start of the epidemic. This corresponds to a variant of our game with a finite-

horizon and terminal condition VS(T) = 0. We will see that at equilibrium in this finite-

horizon problem, the sequence of behaviors always fits the timeline shown in Figure 10: do 

nothing, do everything, do something, do nothing. To determine the equilibrium, we must 

calculate the times of each transition 0 ≤ t1 ≤ t2 ≤ t3 ≤ T, along with the exact investment rate 

between times t2 and t3. An example result is shown in Figure 11.

Let us construct a full equilibrium trajectory. Define V*(S(0), I(0)) as the value of the 

equilibrium trajectory of our infinite-horizon game at initial-condition (S(0), I(0)). Starting 
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from an arbitrary initial condition (S(0), I(0), VS(0)), when I(0) ≈ 0, S(0) > 1 and 0 > VS(0) 

> V*(S(0), I(0)), we wish to determine T, where VS(T) = 0, along with any important 

intermediate times t1, t2, and t3. Our choices of a small I(0) will not cost us any generality 

because all larger values will lie along one of the equilibria we obtain. The surface formed 

by the union of all infinite-horizon equilibria trajectories forms a barrier, and trajectories 

diverge without ever reaching VS = 0 if the initial condition VS(0) < V*(S(0), I(0)).

We start by determining the time t1 of the first intersection between the trajectory and the 

switching surface. As long as I(0) < 1/m, the switching condition ensures t1 > 0 unless the 

terminal condition is reached first. The exact value of the t1 switch can be determined by 

enforcing Eq. (2.2), from which we expect

I(0) + S(0) − lnS(0) − S t1 + lnS t1 =
S t1

m VS(0) + 1 S(0) (5.1)

Using calculus, we can show that there may be no values of S(t1) that solve Eq. (5.1) when

m VS(0) + 1 eI(0) + S(0) − 1 − S(0) < 1. (5.2)

Otherwise, there are two values of S(t1) that solve Eq. (5.1), or only a single solution in the 

degenerate case of equality. When there are two solutions, we can show that S(t1) must be 

the larger of the two, S(t1) ∈ [m(VS(0) + 1)S(0)/(mS(0)(VS(0) + 1) + 1), S(0)], with

VS t1 =
VS(0) + 1 S(0)

S t1
− 1 (5.3a)

I t1 = I(0) + S(0) − lnS(0) − S t1 + lnS t1 (5.3b)

and

t1 = ∫
S(0)

S t1 dx
x(I(0) + S(0) − lnS(0) − x + lnx) . (5.3c)

However, when there are no solutions to Eq. (5.1) then the trajectory reaches the terminal 

VS(T) = 0 before reaching the switching surface (T < t1), with

S(T) = VS(0) + 1 S(0), (5.4a)
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I(T) = I(0) + S(0) − lnS(0) − S(T) + lnS(T), (5.4b)

T = ∫
S(0)

VS(0) + 1 S(0) dx
x(I(0) + S(0) − lnS(0) − x + lnx) . (5.4c)

Since V̇S is non-negative, VS can only cross the terminal condition once, and it suffices to 

test the endpoint t1. This also applies to each of the subsequent cases we are about to 

consider.

Let t2 be the time of the next transition when the trajectory again hits the switching surface. 

If I(t1) < 1, then we are already on the lower side and we can take t2 = t1. Otherwise,

S t2 = S t1 , (5.5a)

I t2 = I t1 e
t1 − t2, (5.5b)

VS t2 = VS t1 +
t2 − t1

m , (5.5c)

1 = mI t1 e
− t2 − t1 VS t1 +

t2 − t1
m + 1 . (5.5d)

This can be solved for t2 − t1 using scalar root-finding. Again, the terminal condition could 

be reached before the second switch. If VS(t2) > 0, then we have progressed too far, and 

define

T = t1 − mVS t1 = t1 − m VS(0) + 1 S(0)/S t1 − 1 . (5.6)

There are now two more possibilities – the solution may pass immediately through the 

switching surface, or may track the switching surface for some time. Define t3 as the time 

when the trajectory leaves the switching surface. If S(t2) + I(t2) ≤ 1, then t3 = t2. Otherwise, 

solutions hitting the switching surface a second time must track it until they reach S(t3) + 

I(t3) = 1 or VS = 0. If S(t3) + I(t3) = 1,
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S t2 = 1 − ln
I t3
I t2

− I t2 , (5.7a)

I t3 =
I t2

1 + t3 − t2 I t2
, (5.7b)

S t3 = 1 − I t3 , (5.7c)

VS t3 = 1
mI t3

− 1, (5.7d)

These can again be solved with scalar root-finding. If VS(t3) > 0, then we have gone too far 

and define T < t3. When VS(T) = 0, we will have I(T) = 1/m. Within the switching surface, 

İ = − I2, so I(T) = I(τ)/(1 + (t − τ)I(τ)). Substituting and solving for t3 = T,

1
m =

I t2
1 + T − t2 I t2

(5.8a)

T =
mI t2 − 1

I t2
+ t2 = m − 1

I t2
+ t2 (5.8b)

Finally, if we have left the switching surface with VS(t3) < 0, then we look for the final time 

T > t3, with V(T) = 0,

S(T) = S t3 V t3 + 1 (5.9a)

I t3 + S t3 − lnS t3 = I(T) + S(T) − lnS(T) (5.9b)
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T = t3 + ∫
S t3

VS t3 + 1 S t3 dx
x I t3 + S t3 − lnS t3 − x + lnx

(5.9c)

Having determined the states at times t1, t2, t3, and T, we can construct the full trajectories 

by quadrature (see Figure 12). From this process, we can determine a value of T for each 

initial choice of VS(0) between 0 and the infinite-horizon value V*(S(0), I(0)). Examples are 

shown in Figure 13.

The per-capita cost of the epidemic as a function of the time to mass-vaccination when 

everybody acts according to the equilibrium strategy is approximated by

V(T) ≈ max 0, T
m + ln(mI(0))

m(S(0) − 1) (5.10)

Changes in the efficiency m seem to principally affect how soon the region of active social 

distancing is reached and the amount of time spent on the switching surface. The durations 

of all other parts of the trajectory seem less sensitive to the efficiency.

We also see that the finite-horizon game can exhibit social distancing even when the 

efficiency is to low to be useful in the infinite-horizon game. Assume (S(0), I(0)) is inside 

region III, V, or VIII. If social distancing is efficient and m > m#, then for all sufficiently 

large deployment windows, t1 < t3. The infinite-horizon game equilibrium uses no social 

distancing if m < m#. But if m < m#, then there is a finite time window for T, where t1 < t3 = 

T and t1 < t < t3 implies cs(t) > 0. This only hold for some intermediate window of durations 

– if the window is to short or too long, then t1 = t3 = T.

It appears that T(VS(0)) is monotone increasing, with T(V*(S(0), I(0))) = ∞ and T(0) = 0, 

implying that for each vaccination window, there is a unique solution of our boundary-value 

problem with that duration. While we are able to construct these finite-time trajectories 

forward in time from a particular initial condition (S(0), I(0), V(0)) to a terminal condition 

V(T) = 0, thereby determining T, and then are able to use efficient numerical methods to 

determine which V(0) maps to the desired window length, we have not yet established that 

this relationship is a bijection. Instead, this is left as a conjecture whose proof will need 

some careful bookkeeping.

Conjecture 2. The finite-horizon differential population game of social distancing during an 
epidemic with σ(c) = max {0, 1 – mc} has a unique Nash equilibrium.

In lieu of a proof, this condition can be checked numerically on a case-by-case basis.

6. Discussion

In this paper, we have provided a detailed analysis of the differential population game 

equilibrium of social distancing during an SIR epidemic when the relative exposure rate is 
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linear in e ort with zero-lower-bound. We provide methods for constructing these equilibria 

in infinite-horizon and finite-horizon problems, and show that the solution of the infinite-

horizon problem is unique. In both cases, we make use of fans connected to an afferent 

manifold to fill in the full solutions for intermediate conditions. In many ways, the solution 

speaks for itself. Uniqueness of equilibria to the finite-time case is only conjectured. 

Another related general conjecture suggested strongly by comparison of Figures 2 and 3 is 

that the value of the susceptible state is always less than the value of the susceptible state 

when S = 0 – removing susceptible individuals always improves the value of the susceptible 

state, but only so-far. Our analysis was conducted in the absence of any discounting, under 

the assumption that epidemics are fast relative to economic and demographic processes. If 

we were to include discounting, it’s effect would be to diminish expected future costs 

associated with infection. This, it turn would probably diminish the amount of social 

distancing used at equilibrium, and delay the start of social distancing.

Our early assumption that social distancing alters exposure rates per contact but not the 

number of contacts is an assumption that facilitates our mathematical analysis, but is not 

necessarily universal. In many other epidemic theories, contact rates are positively correlated 

to effective population size, and social distancing through self quarantine may be viewed as 

reducing the effective population size. The simplest such example would be a standard 

incidence model (Auld, 2003), with

Ṡ = − σ(c)IS
σ(c)S + I + R , (6.1a)

İ = σ(c)IS
σ(c)S + I + R − I . (6.1b)

This model should be amenable to analysis similar to that presented above, although with 

more complicated algebra. In particular, the infection pressure remains a monotone 

decreasing function of c in this case. More general dependences of contact-rate will 

probably not be amenable to our analysis when they lack a first-integral. Numerically, there 

does not appear any reason to expect qualitative differences in the solutions for these cases 

compared to the current case. However, recent research (Chen et al., 2011; Chen, 2012) 

indicates that multiple steady-state Nash equilibria can appear under alternative hypotheses 

on contact pattern. If a contact pattern allows multiple steady-state equilibria, it seems 

unlikely that our uniqueness results will continue to hold, and there may not even exist a 

pure-strategy game equilibrium. Further analysis is needed.

The form of σ(c) we have considered here is the weakest form satisfying the conditions that 

σ be positive, monotone decreasing, and convex – each of these conditions is only weakly 

satisfied. One consequence is that the windows of opportunity calculated with this model 

provide upper bounds on the window sizes for all other positive, monotone-decreasing, 

convex σ. Figure 14 provides some example calculations of window duration. These 

windows are significantly larger than those previously calculated in Reluga (2010) when 
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σ(c) = 1/(1 + mc) for comparable values of m. This suggests that window lengths are 

sensitive to the tail-shape of σ, and that for applications we should be careful about 

determining its asymptotic properties.

The closely related optimal-control problem of determining the best social-distancing rates 

in a cooperative population (Reluga, 2010) has not yet been considered, but is expected to 

have qualitatively similar features to the results presented here, including a fan for 

intermediate initial population sizes.

The success of the analysis presented here suggests some approaches for the general 

problem. In particular, the set Σ of all non-negative, decreasing, and convex functions σ(c) 

with σ(0) = 1 is the closure of the set of all piecewise linear functions of the form

max ai − mic: i = 1..n, 0 ≤ ai ≤ 1, 0 ≤ mi, mn = 0, a1 = 1 .

So solution of a large-enough set of piecewise linear functions may lead to the general 

determination of existence and uniqueness. Among the many results possible, we can pose 

the following conjecture.

Conjecture 3. If

σ(c) = max ai − mic: i = 1..n, 0 ≤ ai ≤ 1, 0 ≤ mi, mn = 0, a1 = 1 ,

then for every initial condition S(0), I(0) and terminal condition VS(T) = 0, there is a unique 
equilibrium strategy c* to System (1.2)–(1.4).

Unfortunately, the solutions for these σ(c)’s can probably not be obtained in closed form; in 

any region where c* is constant and c* > 0 while σ(c*) > 0, the integration for VS(t) does 

not have an efficient closed-form representation. Without a closed-form representation, 

results will be less complete than those provided here. Yet this approach may still be fruitful 

in addressing the problem of uniqueness. Alternatively, approaches based on the Hamilton–

Jacobi equation

∂VS
∂I σ c* SI − I −

∂VS
∂S σ c* SI = 1 + VS σ c* I + c* . (6.2)

may also provide general results for existence and uniqueness.

The differential population game of social distancing during an SIR epidemic is perhaps the 

simplest formulation which will allow us to study the time-dependent nature of social 

distancing during an epidemic. It has many short-comings. To begin with, the SIR epidemic 

model does not accurately describe the dynamics of any particularly disease, and many 

authors have published improvements motivated by particular applications. A second issue is 

that different types of social distancing may alter the epidemic dynamics in different ways, 

and the elasticity of the transmission network in response to individuals’ behavior changes 
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can influence disease dynamics (Chen, 2012). A third issue is that there is a complete 

absence of any mechanistic representation of logistical issues like vaccine or antiviral 

allocation. These are issues to be considered as part of future research.
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Figure 1: 
These 3 plots show how the objective −σ(c)I(1 + VS) − c of our maximization in Eq. (1.2) 

depends on c for different choices of Ψ(VS, I) when m = 1. When Ψ(VS, I) < 1/m, the 

maximum occurs at c = 0. When Ψ(VS, I) > 1/m, the maximum occurs at c = 1/m.
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Figure 2: 
Phase plane for our solution orbits to the infinite-horizon problem when S = 0 under Eq. 

(1.6) for efficiencies m = 2 (left) and m = 4 (right). The thick black dashed line is the 

solution matching the terminal conditions, and is a lower bound on all solutions reaching the 

terminal value in finite time. The thick blue solid line is the switching surface where c* 

jumps from c = 0 (gray solid) to c = 1/m (cyan dot-dashed). Along the switching surface, the 

flow is not differentiable but is continuous and unique. When the efficiency is above e ≈ 
2.718 (right), the Nash equilibrium response always incorporates social distancing for 

sufficiently large I(0), independent of the terminal time. When the efficiency is below the 

threshold (left), then for every I(0) > 0, there are terminal times T sufficiently large that 

social distancing is never optimal. A log scale has been used on the I axis for illustration 

purposes.
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Figure 3: 
Regular equilibria trajectories in VS × I phase space and S × I phase space for S(∞) ∈ [0, 1], 

I(∞) = V(∞) = 0, when σ(c) = max (1 − 4c, 0). The black curve from Fig. 2 corresponding 

to S = 0 is the least upper bound on the observed orbits; larger values of I for given VS are 

unreachable. Orbits passing through the gap labelled “Fan” exist, but must be constructed 

using singular controls. The absence of intersecting trajectories in S × I space which would 

represent shocks and folds will be indicative of a unique Nash equilibrium for the infinite-

horizon initial-value problem.
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Figure 4: 
When the efficiency m > e, the S × I phase plane is dissected into eight regions that are used 

in establishing the existence and uniqueness of an infinite-horizon Nash equilibrium for all 

initial conditions. In region II, orbits are the elementary solutions of the SIR model. Region 

III is part of a fan originating from the afferent manifold. Region IV is the opposite side of 

the fan, where c* = 1/m. Region V extends region IV, with c* = 0. Region VI contains orbits 

which hit the switching surface. Region VII extends Region VI with c* = 1/m. Region VIII 

extends Region VII with c* = 0. Every initial condition S(0), I(0) lies in one of these regions 

or on their boundaries, and has a unique initial value VS(0) such that VS(∞) = 0.
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Figure 5: 
Region of state-space where the differential inclusion specified by Eq. (1.3) and (1.6) may 

be multivalued when m = 5. If (S, I) falls inside this region and I(1 + VS) = 1/m, the 

necessary condition only requires Cs* to be in the interval [0, 1/m]. Any singular equilibrium 

trajectory that tracks the switching surface must lie within the shaded region. Outside the 

shaded region, the necessary condition for Cs* is sufficient to uniquely determine integrated 

paths, even though Cs* itself is not everywhere uniquely determined. This applies for both 

infinite-horizon and finite-horizon analyses.
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Figure 6: 
Graph of the solutions S#(m) of Eq. 4.13, depending on the slope m. There is no solution 

when m < e. Though the convergence rate is slow, limm→∞ S#(m) = 1.
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Figure 7: 
Construction of curves where infinite-horizon equilibrium trajectories intersect the switching 

surface for different efficiencies m in S × I state space. For values of S(∞) < S#(m) (red), the 

equilibrium passes directly through the switching surface, while for equilibria terminating 

with S(∞) = S#(m), the equilibrium trajectory can either remain in the switching surface on 

the afferent manifold (blue) or exit on either side. The line I = 1 − S (black) is the break 

between these two behaviors. Note that while Fig. 6 shows S#(m) increases slowly, this plot 

show that the intersection points with I = 1 − S increase more quickly. Curves for m = 3, 4, 

6, 10, and 20.
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Figure 8: 
Construction of the complete set of equilibrium trajectories for the infinite horizon problem 

under Eq. (1.6) when m = 4. Green and cyan curves have c* = 0. Red and magenta curves 

have c* = ¼. the black curve at the center of the fan is the afferent manifold. The slight 

irregular spacing of the solutions is a consequence of sampling conditions chosen – a unique 

solution can be constructed to match any initial condition S(0), I(0).
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Figure 9: 
Boundaries of the regions of positive social distancing (c* > 0) for the equilibria of the 

infinite-horizon problem when σ(c) is given by Eq. (1.6) and the maximal efficiency of 

social distancing m ∈ {4, 6, 10}. The shaded region represents the portion of the state-space 

where singular controls are used to construct the equilibria.
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Figure 10: 
This is a timeline of equilibrium investment c*(t) between the start of the epidemic at time 0 

and the termination of the epidemic at time T when universal vaccination occurs. To 

determine the equilibrium, we must calculate the times of each of the transition 0 ≤ t1 ≤ t2 ≤ 

t3 ≤ T, along with the exact investment rate between times t2 and t3. In the case of S = 0, T = 

∞, we always have t2 = t3, justifying the choice of notation in Section 3.
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Figure 11: 
An example time-series plot of the equilibrium trajectory to the finite-horizon problem 

calculated with S(0) = 6, I(0) = 0.01, m = 2, and T = 2.37. Panels show the state-variables 

S(t) and I(t) (left), along with the price of susceptibility VS(t) (top right), and the relative 

contact rate σ(c*) under the equilibrium control c*(t) (bottom right). In this case, 0 < t1 < t2 

< t3 = T.
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Figure 12: 
Varieties of phase plane orbits for finite-time solutions for a range of initial expected values 

V (0) when I(0) ≈ 0. All numerical evidence indicates that final time T increases as the 

initial cost increases, which would imply uniqueness. Parameter values: S(0) = 4, m = 1 (top 

left), S(0) = 2, m = 16 (top right), S(0) = 6, m = 4 (bottom left), S(0) = 6, m = 2 (bottom 

right).
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Figure 13: 
This presents plots of the strategy change-times t1, t2, t3 and T for the finite-time problem as 

the total cost VS(0) varies when ℛ0 = 4, m = 1 (top left), ℛ0 = 2, m = 16 (top right), ℛ0 = 6, 

m = 4 (bottom left), or ℛ0 = 6, m = 2 (bottom right). Total distancing (t1 ≠ t2) is only used 

when vaccine deployment is very late. For faster deployment, Nash equilibrium makes use 

of managed distancing, where risks are perfectly balanced. For much of the range, the cost 

grows linearly with increases in delivery time. Conjecture 2 is supported by the observation 

that the T-curves appear to specify bijections between VS(0) and the terminal time.
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Figure 14: 
Windows of Opportunity for Vaccination. Plots of how the net expected loss per individual 

depends on the amount of time until mass vaccination when (left) ℛ0 = 3 and (right) ℛ0 = 6. 

The windows are much longer than those found by Reluga (2010) for similar parameter 

values but σ = 1/(1 + mc), suggesting that equilibrium behaviors are sensitive to the shape of 

the tails of σ.
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