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Abstract

In real-world vision, humans prioritize the most relevant visual information at the expense of other 

information via attentional selection. The current study sought to understand the role of semantic 

features and image features on attentional selection during free viewing of real-world scenes. We 

compared the ability of meaning maps generated from ratings of isolated, context-free image 

patches and saliency maps generated from the Graph-Based Visual Saliency model to predict the 

spatial distribution of attention in scenes as measured by eye movements. Additionally, we 

introduce new contextualized meaning maps in which scene patches were rated based upon how 

informative or recognizable they were in the context of the scene from which they derived. We 

found that both context-free and contextualized meaning explained significantly more of the 

overall variance in the spatial distribution of attention than image salience. Furthermore, meaning 

explained early attention to a significantly greater extent than image salience, contrary to 

predictions of the ‘saliency first’ hypothesis. Finally, both context-free and contextualized 

meaning predicted attention equivalently. These results support theories in which meaning plays a 

dominant role in attentional guidance during free viewing of real-world scenes.
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During real-world scene viewing, we are constantly inundated by visual information 

competing for our attention. It is therefore important to understand how we prioritize and 

guide attention to important objects and elements within a scene. However, the exact 

mechanism by which the human brain prioritizes one aspect of a visual scene over another 

for analysis remains unclear.
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A substantial amount of research on attentional guidance in scenes has focused on image-

based guidance models in which the salience of basic image features within a scene are used 

to control attentional guidance (Borji, Parks, & Itti, 2014; Borji, Sihite, & Itti, 2013; Harel, 

Koch, & Perona, 2006; Itti & Koch, 2001; Itti, Koch, & Niebur, 1998; Koch & Ullman, 

1987; Parkhurst, Law, & Niebur, 2002). Image-based saliency models are popular because 

they are both computationally tractable and neurobiologically plausible (Henderson, 2007, 

2017). At the same time, it is also well established that attentional guidance in scenes is 

influenced by semantic content (Henderson, 2007). For example, viewers attend to 

semantically informative scene regions (Antes, 1974; Buswell, 1935; Loftus & Mackworth, 

1978; Mackworth & Morandi, 1967; Wu, Wick, & Pomplun, 2014; Yarbus, 1967), and to 

scene regions that are meaningful in the context of the current task (Castelhano, Mack, & 

Henderson, 2009; Einhäuser, Rutishauser, & Koch, 2008; Foulsham & Underwood, 2007; 

Hayhoe & Ballard, 2014; Neider & Zelinsky, 2006; Rothkopf, Ballard, & Hayhoe, 2007; 

Tatler, Hayhoe, Land, & Ballard, 2011; Torralba, Oliva, Castelhano, & Henderson, 2006; 

Turano, Geruschat, & Baker, 2003; Yarbus, 1967). We note that although there have been 

relevant attempts to integrate higher-level features into saliency maps (Chen & Zelinsky, 

2019, Navalpakkam & Itti, 2005; Torralba, Oliva, Castelhano, & Henderson, 2006), these 

types of models continue to place much of the explanatory weight on the concept of 

salience, with cognitive representations serving only to modulate the influence of salience 

on attention.

It has been difficult to directly compare the influences of image salience and meaning on 

attentional guidance in scenes, because saliency maps represent the spatial distribution of 

salience across a scene in a way that has been challenging to reproduce for scene semantics. 

Given this challenge, studies of meaning-based guidance have typically focused on 

manipulations of one or at most a small number of specific scene regions or objects that do 

not allow a direct comparison of image salience and semantic informativeness across the 

entire scene (Brockmole & Henderson, 2008; De Graef, Christiaens, & d’Ydewalle, 1990; 

Henderson, Weeks, & Hollingworth, 1999; Loftus & Mackworth, 1978; Vo & Henderson, 

2009).

To address this challenge, Henderson and Hayes (2017) introduced meaning maps as a 

semantic analog of saliency maps. Specifically, meaning maps were designed to capture the 

spatial distribution of semantic features in a scene in the same format that saliency maps use 

to capture the spatial distribution of image features. The key idea of a meaning map is that it 

represents the spatial distribution of semantic informativeness over a scene in the same 

format as a saliency map represents the spatial distribution of image salience. Inspired by 

two classic scene viewing studies (Antes, 1974; Mackworth & Morandi, 1967), meaning 

maps are created using crowd-sourced ratings given by large numbers of naive subjects. 

These subjects rate the meaningfulness of individual scene patches taken from dense arrays 

of objectively defined circular overlapping patches at two spatial scales (Figure 1). Meaning 

maps are then constructed for each scene by averaging these ratings and smoothing the 

results (Figure 2). Meaning maps represent the spatial distribution of meaning across the 

scene, providing a means for directly comparing meaning and image salience and their 

relationships with attentional guidance. Research based on meaning maps has shown that 

meaning is a better predictor of attentional guidance than image salience across several 

Peacock et al. Page 2

Acta Psychol (Amst). Author manuscript; available in PMC 2020 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



active viewing tasks including scene memorization, aesthetic judgment (Henderson & 

Hayes, 2017, 2018), and scene description (Henderson, Hayes, Rehrig, & Ferreira, 2018).

Because previous viewing tasks (i.e., memorization, aesthetic judgment, scene description) 

comparing saliency maps and meaning maps may have drawn on semantic analysis, it is 

possible that they biased viewers to attend to meaning over image salience. In contrast, in 

many studies that have investigated image salience, the focus has been on the free viewing of 

scenes in which no specific task is imposed on viewers (Itti, Koch, & Niebur, 1998; 

Parkhurst et al., 2002). Furthermore, saliency models are typically benchmarked using free 

viewing (Bylinskii, Judd, Borji, Itti, Durand, Oliva, & Torralba, 2015; Itti et al., 1998; 

Parkhurst et al., 2002). One major goal of the current study was therefore to extend the 

investigation of meaning maps and saliency maps to free viewing in order to compare the 

influences of meaning and saliency on attention under benchmark viewing conditions. 

Specifically, we used a free viewing task in which participants freely viewed scenes with no 

experimenter-defined task. We hypothesized that if our past studies biased attention toward 

meaning by their viewing tasks, and if free viewing is by comparison meaning-neutral 

because it introduces no top-down task biases (Einhäuser, Rutishauser, & Koch, 2008; 

Parkhurst et al., 2002), then we should observe an advantage of saliency over meaning in the 

free viewing task. On the other hand, if the meaning advantage we have observed in prior 

studies is a general phenomenon, then we should continue to see it in the free viewing task.

The present study also provided us the opportunity to investigate a secondary question. In 

meaning map research to date, meaning maps were generated based on informativeness and 

recognizability ratings of isolated scene patches and thus were context-free (Henderson & 

Hayes, 2017, 2018). However, the meaning of an object or local element is often influenced 

by the scene context in which that element appears (Henderson, Weeks, & Hollingworth, 

1999; Loftus & Mackworth, 1978; Spotorno, Tatler, & Faure, 2013; Võ & Henderson, 

2009). Therefore, it could be that meaning in the context of the scene (which we will refer to 

as contextualized meaning) is more related than context-free meaning to the distribution of 

attention in a scene. To examine this hypothesis, in the current study we generated new 

contextualized meaning maps and directly compared the relationships of our previous 

context-free meaning maps and the new contextualized meaning maps with the spatial 

distribution of attention during real-world scene viewing.

In summary, the current work sought to replicate and extend our prior research in two ways. 

First, we used a free viewing task in which participants viewed real-world scenes as they 

naturally would in their daily lives. The free viewing task does not introduce any particular 

requirement to attend to semantic features, and so provides an unbiased test of meaning 

versus image salience. Second, we introduced the concept of contextualized meaning maps 

in which scene patches were rated in the context of the scenes from which they came. 

Contextualized meaning maps were compared to the original context-free meaning maps to 

investigate whether contextualized meaning provides any additional advantage over context-

free meaning in predicting attentional guidance.
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Method

Eye-tracking

Participants.—Thirty-two University of California, Davis, undergraduate students with 

normal to corrected-to-normal vision participated in the experiment (24 females, average age 

= 20.91). All participants were naive to the purpose of the study and provided verbal 

consent. The eye movement data were inspected for excessive artifacts due to blinks or loss 

of calibration. Following Henderson and Hayes (2017), we averaged the percent signal 

([number of good samples / total number of samples] × 100) for each trial and participant 

using custom MATLAB code. The percent signal for each trial was then averaged for each 

participant and compared to an a priori 75% criterion for signal. Outlier removal was then 

conducted by trial and participant. If a trial had less than 75% signal, it was excluded from 

analysis. Furthermore, if a participant’s average percent signal was less than 75%, that entire 

participant was excluded from analysis. In total, no individual trials were excluded based on 

these criteria. Because two participants had lower than 75% signal, their data were excluded 

from analyses, resulting in a total of 30 participants/datasets analyzed. The number of 

participants used in the current study (N = 30) was derived from previous meaning map 

studies using 30 participants (Henderson et al., 2018; Peacock et al., 2019).

Apparatus.—Eye movements were recorded using an EyeLink 1000+ tower mount 

eyetracker (spatial resolution 0.01° rms) sampling at 1000 Hz (SR Research, 2010b). 

Participants sat 85 cm away from a 21” monitor, so that scenes subtended approximately 

26.5° × 20° of visual angle at 1024×768 pixels. Head movements were minimized by using a 

chin and forehead rest. Although viewing was binocular, eye movements were recorded 

from the right eye. The experiment was controlled with SR Research Experiment Builder 

software (SR Research, 2010a). Fixations and saccades were segmented with EyeLink’s 

standard algorithm using velocity and acceleration thresholds (30°/s and 9500°/s2; SR 

Research, 2010b). Eye movement data were imported offline into Matlab using the 

EDFConverter tool. The first fixation, always located at the center of the display as a result 

of the pretrial fixation marker, was eliminated from analysis. Additionally, fixations that 

landed off the screen, and any fixations that were less than 50ms and greater than 1500ms 

were eliminated as outliers. Occasionally, saccade amplitudes are not segmented correctly 

by EyeLink’s standard algorithm, resulting in large values. Given this, saccade amplitudes > 

25° were also excluded. Fixations corresponding to these saccades were included as long as 

they met the other exclusion criteria. This outlier removal process resulted in loss of 5.84% 

of the data across all subjects.

Stimuli.—Stimuli consisted of 20 digitized photographs (1024×768 pixels) of indoor and 

outdoor real-world scenes. Scenes were luminance matched across the scene set by 

converting the RGB image of the scene to LAB space and scaling the luminance channel of 

all scenes from 0 to 1. Luminance matching was done to ensure that there were no overly 

bright or dark scenes in the experiment and does not change the relative ranking of salience 

within a scene. All instruction, calibration, and response screens were luminance matched to 

the average luminance (M = 0.45) of the scenes.
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Procedure.—Before starting the experiment, participants completed two practice trials in 

which they were familiarized with the task. Here, participants were instructed that a real-

world scene would appear on the screen for 8 seconds. During this time, they were 

instructed to view each scene, naturally, as they would in their daily lives. Given the free 

viewing nature of this task, we did not require participants to provide any responses.

After the practice trials, a 13-point calibration procedure was performed to map eye position 

to screen coordinates. Successful calibration required an average error of less than 0.49° and 

a maximum error of less than 0.99°. Presentation of each scene was preceded by a drift 

correction procedure, and the eyetracker was recalibrated when the calibration was not 

accurate.

Each participant viewed all 20 scene stimuli during the task. Scenes were presented in a 

randomized order for each participant.

Map Creation

Context-free meaning maps.—For this study we used a subset of the meaning maps 

created by Henderson and Hayes (2017). To create those maps, scene-patch ratings were 

performed by 84 participants on Amazon Mechanical Turk. Participants were recruited from 

the United States, had a hit approval rate of 99% and 500 hits approved, and were allowed to 

participate in the study only once. Participants were paid $0.50 per assignment, and all 

participants provided informed consent. Rating stimuli were 20 digitized (1,024 × 768 

pixels) photographs of real-world scenes depicting a variety of indoor and outdoor 

environments used in the eyetracking portion of the experiment. Each scene was 

decomposed into a series of partially overlapping (tiled) circular patches at two spatial scales 

(Figure 1). The full patch stimulus set consisted of 6,000 unique fine patches (87-pixel 

diameter) and 2,160 unique coarse patches (205-pixel diameter), for a total of 8,160 scene 

patches.

Each participant rated 300 random patches extracted from 20 scenes. Participants were 

instructed to assess the meaningfulness of each patch based on how informative or 

recognizable it was. They were first given examples of two low-meaning and two high-

meaning scene patches, to make sure they understood the rating task, and then they rated the 

meaningfulness of scene patches on a 6-point Likert scale (very low, low, somewhat low, 

somewhat high, high, very high). Patches were presented in random order and without scene 

context, so ratings were based on context-free judgments. Each unique patch was rated three 

times by three independent raters for a total of 19,480 ratings. However, due to the high 

degree of overlap across patches, each patch contained rating information from 27 

independent raters for each fine patch and 63 independent raters for each coarse patch. 

Meaning maps were generated from the ratings by averaging, smoothing, and then 

combining fine and coarse maps from the corresponding patch ratings. The ratings for each 

pixel at each scale in each scene were averaged, producing an average fine and coarse rating 

map for each scene. The average rating maps were then smoothed using thin-plate spline 

interpolation (fit using the thinplateinterp method in MATLAB; MathWorks, Natick, MA). 

Finally, the smoothed maps were combined using a simple average. This procedure was used 

to create a meaning map for each scene.

Peacock et al. Page 5

Acta Psychol (Amst). Author manuscript; available in PMC 2020 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We previously estimated the optimal meaning-map grid density for each patch size by 

simulating the recovery of known image properties (i.e., luminance, edge density, and 

entropy as reported in Henderson and Hayes 2018). Here we briefly summarize this 

procedure with respect to luminance; application to other scene properties and procedural 

details can be found in the original report. The first step in the recovery simulation was to 

generate the ground-truth luminance image for each scene for a given patch size, which sets 

an upper limit on the luminance resolution that can be recovered. Then the patch-density 

grid (simulating patch ratings) was systematically varied from 50 to 1,000 patches (fine 

patches) and 40 to 200 (coarse patches), and recovery of the ground truth was performed for 

each potential grid. Using this method, simulated recovery of known scene properties 

suggested that the underlying known property could be recovered well (98% of the variance 

explained) using the fine and coarse spatial scales with patch overlap adopted for rating.

Finally, we added a center bias to the meaning maps. The tendency to fixate centrally is a 

behavioral phenomenon that occurs during scene viewing, and modeling this center bias is 

necessary to understand visual behavior (Clarke & Tatler, 2014). Given center bias in 

viewing, most saliency models contain center bias in their maps to enhance prediction 

accuracy, including the Graph-based Visual Saliency (GBVS) model used in this study 

(Harel et al., 2006). Since meaning maps do not naturally include a center bias, we added the 

GBVS center bias so that the centers of the saliency and meaning maps were equally 

weighted. Note that alternatively we could delete the center bias from GBVS maps, but 

removing center bias from GBVS changes the assumptions of that model. To create meaning 

maps with center-bias, we applied a multiplicative center bias operation to the meaning 

maps using the center bias present in the GBVS saliency maps. To do so, we inverted the 

‘invCenterBias.mat’ (i.e., inverted the inverse) included in the GBVS package as an estimate 

of center bias. From here, we multiplied the resulting center bias and the raw meaning maps 

to create meaning maps with center bias.

Contextualized meaning maps.—Contextualized meaning maps were generated using 

the identical method as the context-free meaning maps (Henderson and Hayes, 2017) with 

the following exceptions. For contextualized maps, we instructed participants to rate how 

‘meaningful’ a patch was based on how informative or recognizable it was in the context of 

the larger scene (Figure 1). Additionally, for each rating, the patch was circled in green in 

the context scene. Other than these changes, the rating methods were identical. Importantly, 

the patches were identical to those used for context-free mapping, allowing direct 

comparison of the meaning mapping methods. In their raw form without center bias added, 

the resulting contextualized maps were significantly correlated with the context free maps, 

(M = 0.67, SD = 0.09): t(19) = 34.69, p < 0.001, 95% CI= [0.63, 0.71]. This correlation 

increased with center bias applied (M = 0.88, SD = 0.05): t(19) = 76.59, p < 0.001, 95% CI 

= [0.85, 0.90].

Saliency maps.—Saliency maps for each scene were generated using the Graph-Based 

Visual Saliency (GBVS) toolbox with default settings (Harel et al., 2006). GBVS is a 

prominent saliency model that combines maps of low-level image features to create saliency 

maps (Figure 2).
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Fixation density maps.—Fixation density maps were generated from the eye movement 

data as described in Henderson and Hayes (2017). A fixation frequency matrix based on the 

locations (x,y coordinates) of all fixations was generated across participants for each scene. 

A Gaussian low-pass filter with a circular boundary and a cutoff frequency of −6dB (a 

window size of approximately 2° of visual angle) was applied to each matrix to account for 

foveal acuity and eyetracker error. The Gaussian low-pass function is from the MIT Saliency 

Benchmark code (https://github.com/cvzoya/saliency/blob/master/code_forMetrics/

antonioGaussian.m).

Histogram matching.—Following Henderson and Hayes (2017), meaning and saliency 

maps were normalized to a common scale using image histogram matching with the fixation 

density map for each scene serving as the reference image for the corresponding meaning 

and saliency maps. Image histogram matching is desirable because it normalizes an input 

image to a reference image, ensuring that the distribution of “power” in the two images is 

similar. In this study, we normalized both the saliency and meaning maps to the ground-truth 

fixation density maps so we could directly compare the meaning and saliency maps. Image 

histogram matching was accomplished by using the Matlab function ‘imhistmatch’ from the 

Image Processing Toolbox.

Results

Whole Scene Analyses

We used linear (i.e., Pearson) correlation (Bylinskii, Judd, Oliva, Torralba, & Durand, 2019) 

to test the degree to which the two prediction maps (meaning and saliency) accounted for the 

variance in the fixation density maps. There are many ways in which the prediction maps 

can be compared to the fixation density maps, and no method is perfect (Bylinskii et al., 

2019). We chose linear correlation because it is sensitive to small differences in predictors, 

makes relatively few assumptions, is intuitive, can be visualized, generally balances the 

various positives and negatives of different analysis approaches, and allows us to tease apart 

variance due to salience and meaning (Bylinskii et al., 2019). It also provides a basis for 

comparing against our prior meaning map results.

To calculate the Pearson correlation, we used the CC.m function from the MIT saliency 

benchmark code set (https://github.com/cvzoya/saliency/blob/master/code_forMetrics/

CC.m). The CC.m function has been used to evaluate the various metrics included in the 

MIT saliency benchmark (Bylinskii et al., 2019). The function works by first normalizing 

the to-be-correlated maps. It then converts the two-dimensional map arrays to one-

dimensional vectors and correlates these vectors. The output of the function is then squared 

to calculate the shared variance explained by meaning and saliency. We used two-tailed, 

paired t-tests to statistically test the relative ability of the prediction maps (saliency, context-

free meaning, and contextualized meaning) to predict the fixation density maps. We also 

report 95% confidence intervals (CI) that indicate the range of values that are 95% certain to 

contain the true mean of the population.

Because our primary research question concerned the ability of meaning and salience to 

independently account for variance in fixations, we used semi-partial correlations. Semi-
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partial correlations capture the amount of total variance in the fixation density maps that can 

be accounted for with the residuals from each of the predictors (meaning and salience) after 

removing the correlation between those predictors. In other words, the semi-partial 

correlations indicate the total variance in the fixation density maps that can be accounted for 

by the meaning-independent variance in salience and the salience-independent variance in 

meaning. Two-tailed one-sample t-tests were used to compare the unique variance in 

attention explained by each map type against zero. The same 95% CI accompany these 

results.

Context-free meaning vs. image salience.—For the squared linear correlation, 

context-free meaning explained 39% of the variance in fixation density (M = 0.39, SD = 

0.14) and image salience explained 24% of the variance (M= 0.24, SD = 0.14), t(19) = 7.08 

P < 0.001, 95% CI = [0.10, 0.19] (Figure 3). For the semi-partial correlations, context-free 

meaning explained a unique 16% of the variance in fixation density controlling for salience 

(M = 0.16, SD = 0.07): t(19) = 9.52, p < 0.001, 95% CI = [0.13, 0.20], whereas salience 

uniquely explained only a unique 2% of the variance in fixation density controlling for 

meaning (M = 0.02, SD = 0.03): t(19) = 2.37, p = 0.03, 95% CI = [0.002, 0.03].

These results replicate and extend to a free viewing task the previous context-free meaning 

map results from memorization, aesthetic judgment, and scene description tasks (Henderson 

& Hayes, 2017; Henderson et al., 2018). Once again, meaning was a better predictor of the 

spatial distribution of attention than image salience.

Contextualized meaning vs. context-free meaning.—For our secondary question, 

we investigated whether contextualized and context-free meaning maps would produce 

similar results. For the squared linear correlation, contextualized meaning explained 40% of 

the variance in fixation density (M = 0.40, SD = 0.14) and context-free meaning explained 

39% of the variance in fixation density (M = 0.39, SD = 0.14), t (19) = 1.44, p = 0.17, 95% 

CI = [−0.007, 0.04] (Figure 3). When the variance explained by context-free meaning was 

statistically controlled, contextualized meaning uniquely explained 4% of the variance in 

fixation density (M = 0.04, SD = 0.03): t(19) = 5.74, p < 0.001, 95% CI = [0.03, 0.05]. 

When the variance explained by contextualized meaning was statistically controlled, 

context-free meaning uniquely explained 2% of the variance in fixation density (M = 0.02, 

SD = 0.02): t(19) = 4.27, p = 0.0004, 95% CI = [0.02, 0.03]. These results demonstrate that 

the two types of meaning largely account for the same variance in the distributions of 

fixations over scenes.

Ordinal Fixation Analyses

It has been suggested that when a scene first appears, attention might initially be guided by 

image salience, with meaning playing a larger role as viewing unfolds (Anderson & Donk, 

2017; Anderson et al., 2015; Henderson & Ferreira, 2004; Henderson & Hollingworth, 

1999). This hypothesis predicts that the correlation between image salience and fixation 

density maps should be greater for earlier than later fixations, with salience dominating 

meaning in the earliest fixations. Alternatively, it could be that meaning guides attention 

from scene onset due to rapid gist apprehension (Oliva & Torralba, 2006; Potter et al., 2014) 
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and the use of schema to activate memory representations of where likely objects will be 

located in the scene (Henderson, 2003; Henderson & Hollingworth, 1999; Torralba et al., 

2006) for attentional prioritization. This hypothesis predicts that meaning should account for 

attentional guidance at the earliest moments of scene viewing. To test these competing 

hypotheses in the free viewing task, we conducted an ordinal fixation analysis for the first 

three fixations, in which density maps were generated for each sequential fixation for each 

scene. The analyses focused on the first three of these fixations (1st fixation, 2nd fixation, 

and 3rd fixation) and proceeded as in the main analyses, with p-values corrected for multiple 

comparisons using the Bonferroni correction.

Context-free meaning vs. image salience.—For the squared linear correlations, 

context-free meaning accounted for 38%, 31%, and 20% of the variance in the first three 

fixations whereas salience accounted for 10%, 15%, and 11% of this variance (Figure 4), 

with all three ordinal fixation meaning versus salience comparisons significant (fixation 1: 

t(19) = 7.71, Bonferroni-corrected p < 0.001, 95% CI = [0.20, 0.36]; fixation 2: t(19) = 5.48, 

Bonferroni-corrected p < 0.001, 95% CI = [0.10, 0.22]; fixation 3: t(19) = 3.06, Bonferroni-

corrected p = 0.02, 95% CI = [0.03, 0.15]). For the semi-partial correlations, meaning 

accounted for 30%, 19%, and 12% of the unique variance in the first three fixations (fixation 

1: t(19) = 8.92, Bonferroni-corrected p < 0.001, 95% CI = [0.23, 0.37]; fixation 2: t(19) = 

7.06, Bonferroni-corrected p < 0.001, 95% CI = [0.14, 0.25]; fixation 3: t(19) = 4.65, 

Bonferroni-corrected p = 0.001, 95% CI = [0.07, 0.17]) and image salience accounted for 

2%, 3%, and 3% of this variance (fixation 1: t(19) = 3.00, Bonferroni-corrected p = 0.04, 

95% CI = [0.005, 0.03]; fixation 2: t(19) = 4.51, Bonferroni-corrected p = 0.001, 95% CI = 

[0.02, 0.05]; fixation 3: t(19) = 4.06, Bonferroni-corrected p < 0.004, 95% CI = [0.02, 

0.05]), (Figure 4).1

Overall, the ordinal fixation analysis comparing context-free meaning and image salience 

showed that meaning was a better predictor than salience early in free scene viewing, 

contrary to the salience first hypothesis. This effect is consistent with and extends our past 

work on early influences of meaning (Henderson & Hayes, 2017; Henderson et al., 2018; 

Peacock et al., 2019).

General Discussion

The current study was designed to assess several questions related to understanding the roles 

of meaning and image salience in predicting attentional guidance in real-world scenes. The 

main question was whether the previously observed advantage for meaning over image 

salience would extend to a free viewing task that does not impose any specific top-down task 

constraints. Earlier comparisons of meaning and image salience have used explicit viewing 

tasks (Henderson & Hayes, 2017, 2018; Henderson et al., 2018; Peacock et al., 2019). 

However, it is common to use free viewing with no explicit task in the saliency literature, 

and indeed saliency model benchmarks are based on free viewing (Bylinskii et al., 2015), so 

it was important to extend the previous results to free viewing. The present results using free 

1As in the main analyses, contextualized and context-free meaning produced identical results across the first three fixations (all 
Bonferroni corrected ps > 0.05).
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viewing were consistent with previous studies that have compared meaning and image 

salience: meaning accounted for significantly more of the overall variance in the spatial 

distribution of fixation density than salience. Furthermore, when the variance explained by 

meaning was statistically controlled, salience explained no more of the unique variance in 

fixation density, but when the variance explained by salience was controlled, meaning 

continued to explain substantial unique variance. In addition, contrary to the idea that image 

salience plays a major role during early scene viewing, these results held for the earliest 

fixations.2 This pattern of results replicates the previous findings and extends them to free 

viewing. We note that when we weighted the fixations by duration to produce duration-

weighted fixation density maps, all of the results held, consistent with Henderson and Hayes 

(2018).

The current results are consistent with the results of recent research suggesting that meaning 

continues to strongly influence attentional guidance in scenes even when meaning is not 

directly relevant to the viewer’s task. Peacock et al. (2019) used tasks in which participants 

were cued to either count bright patches within a scene or rate scenes for their overall 

brightness. Despite the fact that salience was task-relevant and meaning was task-irrelevant, 

meaning continued to guide attention. The convergence of the findings reported by Peacock 

et al. (2019) and the current study suggests that the influence of meaning over salience on 

attention is robust and not readily influenced by tasks designed to minimize attention to 

meaning nor tasks designed to reduce top-down influences of task on attention.

To date, meaning maps have been based on context-free meaning in the sense that the maps 

have been created from ratings of scene patches that are presented to raters without their 

scenes (Henderson & Hayes, 2017, 2018; Henderson et al., 2018). The present study 

expanded the concept of meaning maps to contextualized meaning generated from ratings of 

scene patches that are presented in the context of their scenes. The question was whether 

meaning maps that reflected local meaning assessed in the context of the overall scene 

would better predict fixation density than context-free meaning maps. The results showed 

that the contextualized meaning maps were significantly correlated with and predicted 

fixation density similarly to context-free meaning maps. This convergence suggests that our 

original results were not due to peculiarities of the specific way meaning ratings were 

obtained. This result also shows that the context-free meaning maps do not seem to be losing 

much critical semantic information despite the fact that sometimes only parts of large 

objects and scene regions are shown in the rated patches.

An interesting issue is why the contextualized and context-free meaning maps were similarly 

related to attention. One possibility is that local scene meaning ratings are not significantly 

affected by global scene context in the absence of object-scene inconsistencies. Indeed, 

studies using scenes containing local object manipulations find that objects contain greater 

meaning when they are inappropriate (versus appropriate) to the global context of the scene 

which influences attention (Henderson et al., 1999; Loftus & Mackworth, 1978; Võ & 

2We note that in the ordinal fixation analyses, the correlations decline as a function of fixation. This is an artifact of using center-
biased maps to predict fixations. When using prediction maps that do not contain center bias, this artificial bump in meaning is not 
observed, as has been shown in previous meaning map studies (Peacock et al., 2019).
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Henderson, 2009). The literature has also shown that scene gist (Oliva & Torralba, 2006; 

Potter et al., 2014) and schema representations guide our expectations of what local objects 

will appear in a scene given its global context (Henderson, 2003; Henderson & 

Hollingworth, 1999; Torralba et al., 2006). Given the importance of global scene context on 

attention, future conceptions of contextualized meaning maps will need to be made with 

scenes containing object-scene inconsistencies to fully predict how global scene context 

influences the meaning of local elements and attention to those elements.

There are a few other reasons why the contextualized and context-free meaning maps maps 

similarly predicted attention. The first is that the two maps were highly correlated with each 

other, and that the shared variance in meaning across the two map types did most of the 

work in guiding attention. The second is that the current study used a passive viewing task, 

whereas studies showing an effect of scene context on eye movements have used active tasks 

such as change blindness (Spotorno et al., 2013; Stirk & Underwood, 2007), memorization, 

and search (Henderson et al., 1999; Võ & Henderson, 2009). To better understand how 

global scene context influences attention to local scene elements, future studies may wish to 

use active viewing tasks in conjunction with scenes containing object-scene inconsistencies.

Conclusion

The current work used a free viewing task in scenes to investigate the relationships between 

meaning and image salience on attention, as operationalized by fixation density, without 

introducing additional top-down task biases. We found that meaning was more related to 

attention than image salience both when assessing the overall spatial distribution of attention 

and when focusing only on the early guidance of attention. Additionally, the concept of 

contextualized meaning maps was introduced and compared to previously used context-free 

meaning maps. Contextualized meaning maps capture the spatial distribution of semantic 

features based on how informative or recognizable scene patches are in the context of the 

scenes from which they derive. We found that contextualized and context-free meaning maps 

predicted attention equally well. In total, these findings show that meaning plays a dominant 

role in real-world attentional guidance in free viewing, with little influence from image 

salience.
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Highlights

• Meaning predicts overall attention better than image salience during free 

viewing.

• This result held for early attention, contrary to the ‘saliency first’ hypothesis.

• Contextualized meaning maps were introduced to replicate and extend 

context-free meaning maps.

• Context-free and contextualized meaning are significantly correlated and 

similarly predict attention.
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Figure 1. Rating Patch Examples.
Examples of a low meaning fine patch (a) and a high meaning fine patch (b) shown 

alongside the scene from which each patch derived. Patch locations are circled in green in 

each scene. Example patches and their grids for a fine grid (c) and a coarse grid (d).
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Figure 2. Map Examples.
The panels show an example scene overlaid with fixation locations (a), the fixation density 

map (b), the contextualized (c) and context-free meaning maps (d), and the GBVS saliency 

map (e) for the example scene.
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Figure 3. Squared Linear and Semi-Partial Correlations by Scene.
Line plots show the squared linear (a) and semi-partial correlations (b, c) between the 

fixation density maps, contextualized meaning (green triangles), context-free meaning (red 

circles), and image salience (blue squares). The scatter plots show the grand mean (black 

horizontal line), 95% confidence intervals (colored boxes), and one standard deviation 

(black vertical line), for contextualized meaning, context-free meaning, and salience across 

all 20 scenes for each analysis.
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Figure 4. Ordinal Fixation Analysis.
The line plots show the squared linear correlations (a) and semi-partial correlations (b) 

between the fixation density maps, contextualized meaning (green triangles), context-free 

meaning (red circle), and image salience (blue square) as a function of fixation number 

collapsed across scenes. Analyses focused on the first three fixations and fifteen fixations are 

displayed for comparison. Error bars represent the standard error of the mean.
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