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Abstract

Prior work on pro-social and self-serving behavior in human economic exchanges has shown that 

counterparts’ high social reputations bias striatal reward signals and elicit cooperation, even when 

such cooperation is disadvantageous. This phenomenon suggests that the human striatum is 

modulated by the other’s social value, which is insensitive to the individual’s own choices to 

cooperate or defect. We tested an alternative hypothesis that, when people learn from their 

interactions with others, they encode prediction error updates with respect to their own policy. 

Under this policy update account striatal signals would reflect positive prediction errors when the 

individual’s choices correctly anticipated not only the counterpart’s cooperation, but also 

defection. We examined behavior in three samples using reinforcement learning and model-based 

analyses and performed an fMRI study of striatal learning signals. In order to uncover the 

dynamics of goal-directed learning, we introduced reversals in the counterpart’s behavior and 

provided counterfactual (would-be) feedback when the individual chose not to engage with the 

counterpart. Behavioral data and model-derived prediction error maps (in both whole-brain and a 

priori striatal ROI analyses) supported the policy update model. Thus, as people continually adjust 

their rate of cooperation based on experience, their behavior and striatal learning signals reveal a 

self-centered instrumental process corresponding to reciprocal altruism.

Introduction

We often do not know what to expect of others. Although one’s social reputation informs 

these expectations to a degree, we also learn about others from experience. According to 

formal learning theory, such learning is driven by reward prediction errors – discrepancies 

between obtained and expected rewards often observed in the striatum and thought to reflect 

dopaminergic meso-striatal modulation of cortico-striato-thalamic loops (Chase et al., 2015; 

King-Casas et al., 2005). The effects of rewards and their predictors in social settings are 

increasingly well-characterized (Bhanji & Delgado, 2014; Bray & O’Doherty, 2007; Kahnt 

et al., 2008; Klein et al., 2007; Park et al., 2010; Robinson et al., 2013; Schlagenhauf et al., 

2012; van den Bos et al., 2009). Even when a desired outcome is not a social reward, 
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however, social predictors still appear to affect goal-directed behavior, leaving open a 

question of how or whether such information is incorporated into one’s learning.

For example, one interesting phenomenon is the effect of social reputation in behavioral and 

imaging studies of the trust game, where the subject (“investor”) invests money with a 

reciprocating or defecting “trustee”. Although the reputation was irrelevant to the trustee’s 

behavior in the cited studies, perceived trustworthiness increased the likelihood of 

investment and was associated with dampened striatal learning signals (Delgado, Frank, & 

Phelps, 2005; Fareri, Chang, & Delgado, 2012; cf. Fouragnan et al., 2013). Similar effects 

were shown for social distance (e.g., interacting with a friend versus a stranger: Fareri, 

Chang, & Delgado, 2015), indicating that the counterpart’s perceived social value elicits 

cooperation regardless of experience. How is the information about these social features 

incorporated into one’s learning? One possibility is that predicting the counterpart’s 

behavior correctly is also rewarding, as it informs one’s approach toward others. This form 

of reinforcement during economic exchanges – referred to here as “policy rewards” - is 

inherent to cognitive theories of social preference (Camerer, 2003), but has not received 

much attention in brain research on trust games. Imagine for example that you see an 

attractively priced used car, but decide against buying it because the dealer seems 

untrustworthy. You later look up the VIN and learn that the car is a lemon. While your actual 

reward is zero, you are surely happy that you did not buy the car and will avoid the dealer in 

future. Hence, to update a policy, one often needs to consider the counterfactual outcomes of 

one’s untaken actions (Boorman, Behrens, & Rushworth, 2011). Consequently, we 

hypothesized that striatal policy prediction errors during economic exchanges incorporate 

these counterfactual outcomes.

Although counterfactual representations and learning have been receiving a lot of attention 

(Boorman et al., 2011; Camille et al., 2004; Coricelli, Dolan, & Sirigu, 2007), these have not 

been investigated in the context of social decision-making, which by design, i.e., the 

inclusion of a social counterpart, offers more alternative accounts for which representations 

should drive learning. In the present study, we sought to test five alternative accounts of how 

the striatum encodes reinforcement on the trust game and what representation is being 

updated. (1) The null hypothesis was that instrumental learning only incorporates actual 

rewards (feedback on the task). (2) We also considered the possibility that the striatum maps 

the difference between the experienced and best possible outcome, i.e., one possible form of 

regret (Loomes & Sugden, 1982; Lohrenz et al., 2007; Chiu et al., 2008; Nicolle et al., 

2011). (3) Furthermore, as people track the counterpart’s social value, they may consider 

counterpart-oriented counterfactual choices, i.e., what the outcome would have been had the 

counterpart made a different decision. (4) Our primary hypothesis, however, was that in 

addition to learning from actual rewards, people update the value of their policy toward a 

counterpart, incorporating counterfactual outcomes of one’s untaken actions. To adjudicate 

among these four competing accounts, we revealed the would-be decisions of trustees on 

trials when the subject did not invest. One critical and distinctive prediction consequent to 

the policy account is that, provided that the subject did not invest, the trustee’s defection 

would be encoded as more rewarding than cooperation. Thus, the direction of the learning 

signal (or prediction errors) for those trials would be reversed. We also manipulated trustee’s 

cooperation rate to dissect the learning process and adjudicate among alternative models. (5) 
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Finally, we considered whether subjects track the counterpart’s social value, as defined by 

the expected rate of cooperation (Behrens et al., 2008; Fareri, Chang, & Delgado, 2015). 

This can be thought of as Pavlovian value of the counterpart since it is not conditioned by 

one’s own action history but is still reflected in participant’s bias to share or to keep with a 

particular trustee.

In summary, we investigated the representational underpinnings of striatal signals that 

mediate adaptive learning in the trust game. We predicted that both behavior and striatal 

learning signals would be more consistent with updating one’s policy than social value- or 

regret-driven updates.

Methods

Participants

Forty (25 female) middle-aged and older (age: M = 70.11, SD =10.62, range 47–95) 

participants completed the trust task outside (Study 1, n = 15) and inside the scanner (Study 

3, n = 25). To ensure the external validity of our findings across the lifespan, we also 

replicated our behavioral findings in sample of 29 (19 female) younger participants (Study 2, 

age: M = 25.14, SD =6.16, range 17–45) who performed the task in the scanner (imaging 

results will be described in a separate paper). The sample sizes were determined on the basis 

of other neuroimaging paradigms we and others have reported, including that of the trust 

task. One older participant (Study 3, age > 75) was excluded from the neuroimaging 

analyses after failing BOLD signal quality checks; specifically, null single subject maps for 

left versus right responses. Two others were excluded due to excessive motion in the scanner 

(> 2mm). All were free from organic brain disease and psychiatric disease, ascertained by an 

interview, review of medical records and SCID/DSM4. All participants provided written 

informed consent. The University of Pittsburgh institutional review board approved the 

studies.

Experimental paradigm

Figure 1A-B illustrates the experimental and single-trial design. Participants completed a 

modified version of an iterated trust game (Delgado et al., 2005). To enable direct 

comparisons with previous studies, participants interacted with three fictional trustees 

described in three separate biographies and, in Studies 1 and 3, with a computer. Each 

human trustee was introduced with a picture [white, neutral, male faces from the NimStim 

Face Stimulus Set; (Tottenham et al., 2009)]. A short biography describing trustee’s 

background including one noteworthy event served as an exemplar of trustee’s “good”, 

“bad” or “neutral” reputation. In contrast to previous studies (e.g., Delgado et al., 2005), the 

computer condition was not described as a lottery but as a “computer” player. The computer, 

therefore, may still have been perceived as having agency vs. a game of chance. In order to 

enhance experiential learning, we manipulated the rate with which a trustee (or a computer) 

shared with the participant. All trustees shared 50% of the time for the first 16 trials, as in 

earlier studies. Then trustees switched to a block of 25% (poor) or 88% (rich) reinforcement 

schedules, and for the final 16 trials reversed to opposite reinforcement schedules (i.e., rich-

to-poor or poor-to-rich). Trial order and the order of “rich” and “poor” reinforcement 
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schedules across the task were predetermined and four possible orders of the trustees were 

counterbalanced across the participants.

As before, participants were told that at the beginning of each trial they had $1.00, which 

they could either keep (and have $1.00 at the end of the trial, regardless of the trustee’s 

decision) or invest with a trustee. If they decided to invest with a trustee, they could receive 

$1.50 if the trustee shared, or be left with nothing if the trustee decided to keep. Between 

trustee blocks, participants saw how much money they “won” for that particular block.

A task trial (Figure 1B) started with a fixation cross, followed by the decision phase. During 

the decision phase, participants viewed a picture of the trustee and two options for keep and 

share (the location of keep and share options was randomized across trials). In Study 1 

(behavior only), the task was self-paced and the decision phase terminated with participant’s 

choice of the option on the left or the right of the screen. In studies 2 and 3 (scanner), 

participants had up to 2.7 seconds to make their response. After the decision phase, 

participant’s choice was briefly highlighted (300ms) and the outcome was shown. 

Importantly, in order to examine the mechanisms of experiential learning, we modified the 

outcome phase from the Delgado et al. study (2005), in which participants received feedback 

about the trustee’s decision only if they chose to share. Instead we showed participants the 

trustee’s decision regardless of their own, so that participants could also learn from 

counterfactual outcomes and the reinforcement history was kept identical across all 

participants regardless of their choices. After the keep decisions, the trustee’s decision was 

displayed in grey to indicate that it did not affect the outcome of the trial. The outcome was 

shown for 1.2 sec. The duration of the next fixation cross was jittered by combining the 

unused decision time from the previous decision phase and a base duration sampled from an 

exponential distribution with mean = 810 ms. No durations were allowed to be longer than 

1500ms or shorter than 250ms. The trials were blocked by trustee and the computer trials 

were identical in format to the trustee trials.

Before the experimental session, participants also filled out a seven-point Likert-scale 

questionnaire, rating the trustworthiness and likability of the counterparts. The same 

questionnaire and additional assessments were administered at the end of the experiment. E-

Prime (Psychology Software Tools, Sharpsburg, PA) was used to present stimulus and 

control the data acquisition.

Behavioral analyses

There were no missed trials for Study 1 because it was self-paced and too few for Studies 2 

and 3 to indicate whether their number differed by block (< 1%). Missed trials were 

excluded from further analyses. In model-free analyses (not relying on a reinforcement 

learning model), we examined factors influencing choice in a linear mixed effects 

framework. A backward model selection procedure was used, re-fitting reduced models and 

comparing goodness-of-fit statistics. Only the results of models selected by this procedure 

are reported here. In the first set of analyses, the binary dependent variable was the decision 

to invest or to keep and the independent variables were trustee type, previous decision made 

by trustee (representing recent reinforcement history), and the exchange number with 

trustee. Random effects included a random slope for previous trustee decision (to 
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accommodate individual differences in learning) and a random intercept for subject 

(individual differences in cooperation rate). Having determined that the inclusion of an 

averaged reinforcement schedule (i.e., blocks of 16 trials with varying return rates) did not 

explain additional variance in the participants’ choices in Studies 2 and 3 (see Supplement 

for details), we analyzed the data pooled across all reinforcement schedules. In the second 

set of reinforcement model-based analyses, we sought evidence that choices may distinguish 

between the alternative representational schemes, tested by model comparisons. Specifically, 

we conceived of the alternatives as different outcome representations (Figure 2, panel A). 

One hypothesis was that participants track actual rewards, i.e., the payoffs are described with 

respect to how much money participant has by the end of the trial (1). Another alternative 

was that participants may track a type of regret signal when the best possible outcome has 

not been experienced, i.e., the difference between an actual outcome versus the best possible 

outcome ($1.50). A third alternative was that participants may track the difference between 

the outcomes of trustee returning the investment (as the reference point) versus keeping it, 

i.e., a form of other-oriented counterfactual and which in practice only distinguished 

between the outcomes for when the participant decides to invest the money with the trustee. 

Finally, we considered the alternative that participants may be tracking the difference 

between actual and a would-be outcome, resulting from participant’s alternative action. For 

this alternative, the payoffs for the invest decisions were described with respect to how much 

money participant has by the end of the trial, whereas for the keep decisions, the payoffs 

were calculated as a counterfactual, i.e., as compared to what would have been the outcome 

if participant invested. This payoff representation gives rise to the update of the value of 

one’s own policy, which in practice distinguished the outcomes for both invest and keep 

actions of the participant. To reiterate the critical difference between models, all but one of 

the alternatives predict that if the participant decides to keep on the current trial, the 

incentive to invest on the next trial should be the same, regardless whether the trustee has 

kept or shared the money. The policy-oriented representation, however, suggests that 

following participant’s keep decisions, there should be a greater incentive to invest on the 

next trial, if the trustee shared on the current trial. Thus, we ran additional analyses only on 

the trials when the participant has made a decision to keep the money and tested whether the 

likelihood of investing on the next trial was greater for trustee share versus keep decisions. 

Note that both the regret and trustee-counterfactual models may be considered strong 

formulations of the competing hypotheses.

Computational modeling

All reinforcement learning (RL) models employed a version of Q-learning with a single 

hidden state for the expected value of the share action (policy model) or expected reward 

associated with the trustee (alternative models) on trial t. The value of the keep action was 

assumed to be updated reciprocally, as shown in previous studies (Dombrovski et al., 2010; 

Samejima et al., 2005). Q(share) was updated according to the delta rule:Q(share)t = 

Q(share)t-1 + θ ×[rewardt – Q(share)t-1], where θ is the learning rate parameter and rewardt – 

Q(share)t-1 is the prediction error. The choice was modeled using a softmax rule, P(share)t = 
1/(1 + exp[ κs+ κt + β × Q(share)t], where β is a temperature parameter that captures choice 

stochasticity. We enhanced the choice rule with κs, a subject-level parameter, to reflect a bias 

of the participant to keep or to share regardless of reinforcement and κt, a condition-level 
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parameter, to reflect the participant’s bias to keep or to share with a particular trustee, i.e., in 

this way modeling the effect of social reputation (see Supplement for alternative 

implementations of trustee- wise bias). Thus, the four models described here have the same 

four subject-specific parameters (θ, β, κs, κt) and differ only in their payoff matrices (Figure 

2A). A key implication of these differences for imaging analyses and the comparison of the 

policy model to the rest was that, for the policy model, specifically, relative to keep/return 

trials (incorrectly predicted defection), the valence of the outcome on keep/keep trials 

(correctly predicted defection) was positive (Figure 2B), resulting in differential predictions 

about the trial-by-trial time course of striatal learning signals on keep trials. Thus, while 

different RL models often predict indistinguishable BOLD time courses when given the 

same reinforcement (Wilson & Niv, 2015), the counterfactual feedback manipulation 

enabled us to adjudicate between models based on BOLD data.

We have also evaluated the performance of the Social value (SV) model developed by Fareri 

and colleagues (2015). The discussion of the SV architecture and the model comparisons are 

included in the Supplement as secondary analyses.

We used the Variational Bayes Approach (VBA) toolbox implemented in MATLAB 

(Daunizeau, Adam, & Rigoux, 2014) to test how four reinforcement learning (RL) models 

fit behavior (likelihood of sharing). We used uninformative Gaussian priors (M= 0, SD = 10) 

for all free parameters. We then performed Bayesian model comparisons (BMC) to select the 

best model (Stephan et al., 2009). An important advantage of the VBA approach is that the 

relative evidence for different models can be characterized using random effects BMC, while 

accounting for the full statistical risk incurred [Bayesian omnibus risk, BOR (Rigoux et al., 

2014)]. VBA parameterizes the choice history in a state-space framework consisting of 

dependent variables (i.e., choice time series to be predicted by the model), hidden states (i.e. 

expected action values tracked over trials), and evolution and observation functions that 

define the dynamics of hidden state transitions and the model-predicted output, respectively 

(for details see Daunizeau et al., 2014).

We also simulated data from each model, including SV, to perform parameter recovery and 

model identifiability analyses. The models’ parameters were identifiable (Table S1 and Fig. 

S1: all Pearson correlations > .4,p’s < .001). We also determined that the models were 

uniquely distinguishable, i.e., only the model generating a dataset provided the best fit for 

the dataset (all BORs < .05, eps = 1). Details of the simulations are in the Supplement.

fMRI acquisition

BOLD/T2* data were collected with a 3T Siemens Trio Tim scanner with the following 

parameters: TR = 1670ms, TE = 29ms, FoV = 200 mm, flip=75, 32 3mm slices. We 

collected 620 volumes across 4 runs.

Image preprocessing

Anatomical scans were registered to the MNI152 template (Fonov et al., 2009) using both 

affine (FSL FLIRT) and nonlinear (FSL FNIRT) transformations. Functional images were 

preprocessed using tools from NiPy (Millman & Brett, 2007), AFNI (Cox, 1996), and the 

FMRIB software library (Smith et al., 2004). First, large transient spikes in voxel time series 
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were interpolated downward using the AFNI 3dDespike program. Second, slice timing and 

motion correction were performed simultaneously using a four-dimensional registration 

algorithm implemented in NiPy (Roche, 2011). Non-brain voxels were removed from 

functional images by masking voxels with low intensity and by a brain extraction algorithm 

implemented in FSL BET. The alignment of subjects’ functional images to their anatomical 

scan was computed using the white matter segmentation of each image and a boundary-

based registration algorithm (Greve & Fischl, 2009). Functional scans were then resampled 

into 3mm isocubic voxels and warped into MNI152 template space using the concatenation 

of the functional-structural and structural-MNI152 transforms. Images were spatially 

smoothed using a 5-mm full-width at half maximum kernel (FSL SUSAN). A .008 Hz 

temporal high-pass filter was applied to remove slow-frequency signal changes.

Analyses

Trial-wise prediction error estimates were obtained from VBA posterior. To analyze the 

effect of prediction errors on the voxelwise blood oxygenation level-dependent (BOLD) 

signal, their HRF-convolved time-course aligned with feedback was added to choice and 

feedback regressors in subject-level general linear models in AFNI 3dDeconvolve and 

3dREMLfit (Cox, 1996). Importantly, prediction errors from different models were 

converted to z-scores, in order to avert model-parameter driven scaling differences in the 

BOLD signal (Lebreton & Palminteri, 2016). Group analyses used the 3dttest++ program. 

To control type I error, we thresholded voxelwise tests at p < .001 and cluster-thresholded 

them using a permutation method (3dttest++ with the 3dclustsim option).

Results

Manipulation check: trustworthiness and likeability ratings

Consistent with earlier findings, participants tended to rate good trustees as most trustworthy 

and bad trustees as the least trustworthy (Figure 3). Detailed analyses are described in the 

Supplement.

Behavior: effects of reputation

As expected, in all three studies, there was a main effect of trustee (Study 1: χ2 [3] = 18.76, 

p < .001; Study 2: χ2 [3] = 32.91; p < .001; Study 3: χ2 [3] = 58.13, p < .001). Participants 

were less likely to invest with the bad trustee compared to the good trustee (Study 1:6 = 

−0.47, SE = 0.12, p < .001; Study 2: b = −0.49, SE = 0.09, p < .001; Study 3 : b = −0.74, SE 
= 0.11, p < .001) with intermediate probabilities of investing with the neutral trustee and 

computer, except in Study 1, where the likelihood of investing with the computer was lower 

than but not significantly different from good trustee (b = −0.081, SE = 0.116, p = .904). 

This is illustrated by Figure 4.

Behavior: adaptive learning, conventional analyses

On average, the trustee returning the investment in the previous round encouraged 

subsequent investment in all studies (Study 1: b = 0.57, SE = 0.25, p = .02; Study 2: b = 

0.89, SE = 0.26, p < .001; Study 3: b = 0.53, SE = 0.20, p = .007). In Studies 2 and 3, there 

was also a main effect of the number of interactions with a trustee, decreasing the likelihood 
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of investing with any trustee over time (Study 2: b = −0.03, SE = 0.01, p < .001; Study 3: b = 

−0.03, SE = 0.01, p < .001). In Studies 2 and 3, there was an interaction of trustee type x 

number of interactions with trustee (Study 2: χ2 [1] = 15.66; p < .001; Study 3: χ2 [1] = 

31.80; p < .001). In Study 2, this interaction indicated that while the likelihood of investment 

with good trustee decreased over time (b = −0.81, SE = 0.22, p < .001) more dramatically 

than for bad (b = 0.53, SE = 0.22, p = .13) and neutral trustees (b = 0.26, SE = 0.22, p = .47). 

In Study 3, this interaction indicated that likelihood of investment with good (b = −0.80, SE 
= 0.27, p = .008) and computer (b = −0.59, SE = 0.26, p = .06) trustees decreased more 

dramatically over time than for bad (b = 0.33, SE = 0.26, p = .42) and neutral (b = −0.09, SE 
= 0.26, p = .93) trustees. Critically, in all three studies, the influence of the trustee’s previous 

action increased with learning (Figure 4B), indicating that participants learned to attend to 

outcomes rather than reputation over time (Study 1: b = 0.02, SE = 0.01, p = .003; Study 2: b 
= 0.03, SE = 0.01, p < .001; Study 3: b = 0.03, SE = 0.01, p < .001).

Furthermore, in all three studies, the likelihood of investing on trials following participant’s 

keep decisions increased, if trustee shared versus kept on the current trial, tentatively ruling 

out all representation alternatives but the policy-oriented: (Study 1: b = 0.63, SE = 0.28, p =.

024; Study 2: b = 0.89, SE = 0.27, p = .001; Study 3: b = 0.63, SE = 0.27, p = .018). This 

incentivizing effect increased with the number of exchanges (trustee’s decision × number of 

exchanges: Study 1: b = 0.03, SE = 0.009, p = .001; Study 2: b = 0.02, SE = 0.008, p = .02; 

Study 3: b = 0.03, SE = 0.008, p < .001). These latter findings provide evidence of adaptive 

learning where reinforcement increasingly dominates reputation effects.

Reinforcement learning model comparison

Model comparison of all four alternatives indicated that the policy model dominated the 

alternatives (Figure 2), although the effect did not withstand the correction for Bayesian 

omnibus risk (BOR) in the smaller, self-paced Study 1 (Study 1: BOR = 0.386, exceedance 

probability for policy model (ep) = 0.986; Study 2: BOR = 0.004, ep = 1.0; Study 3: BOR < 

0.001, ep = 1.0).

Parametrization of trustee effects in the models

We verified that the means of trustee-level bias parameter (k) from the policy model (pooled 

across all three studies) were significantly different between trustee conditions (χ2 [2] = 

23.44, p < .001). The pattern of differences paralleled the effects of trustee conditions on 

behavior: The bias to invest was smaller for the bad than for the good (t[201] = 4.80, p < .

001) and for the neutral (t[201] = ‒2.96, p = 0.010) trustees, but not different between good 

and neutral trustees (t[201] = 1.84, p = 0.202). Both the subject-level bias (κs) to invest (b = 

0.25, SE = 0.03, p < .001) and the subject’s rating of the trustee (b = 0.06, SE = 0.01, p < .

001) predicted the trustee-level bias. Overall, lower values of trustee-level bias were 

associated with lower trustworthiness ratings and higher values of trustee-level bias were 

associated higher trustworthiness ratings (Figure 5).

Neuroimaging

Prediction error (PE) signals—Signed PE signals derived from the policy model were 

found in the bilateral ventral and dorsal striatum, frontal operculum/posterior insula as well 
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as a network of paralimbic areas (anterior and mid-cingulate, posterior insula, posterior 

cingulate/precuneus), and the lateral fronto-parietal network (Figure 6 and Table 1; 

Supplement includes full maps for PEs derived from alternative models).

Model comparison using neural data—A unique prediction of the policy model is that 

on keep/keep trials where the subject correctly anticipates the trustee’s defection, positive 

reinforcement (higher signed PEs) is assigned to the taken action compared to keep/return 

trials where the anticipated defection of the trustee does not occur. PE signals corresponding 

to the policy PEs were stronger than for regret and trustee-counterfactual models.

Specifically, for an unbiased comparison, we extracted β coefficients from the four maps of 

model-derived PEs. To avoid circularity, we used the independent mask derived from the 

meta-analysis of neural correlates of prediction error signal (Chase et al., 2015), consisting 

of anterior insula, midbrain, dorsal and ventral striatum and visual cortex. To ascertain 

whether any specific model-estimated PEs indexed stronger activations (i.e., higher β values) 

we entered model and brain region as first-level predictors in mixed-effects model with 

subject as a second-level variable with a random intercept (to control for between-subject 

differences in overall activation strength) and a random intercept for the brain region x 

subject (to control for between-subject differences in the strengths of activation for the 

different/nested brain regions). Model type significantly predicted the strength of activation 

[χ2(3) = 26.24, p < .001)]. Pairwise contrasts (HSD Tukey adjustment) indicated that policy 

PEs resulted in greater activation across regions than alternative models (vs. actual rewards: 

t(312) = −3.80, p = 0.001; regret: t(312) = 4.58, p < 0.001; trustee: t(312) = 4.01, p < 0.001). 

That is, the signal derived from this model appeared to best capture brain activity than the 

signal derived from other models. We did not test the SV model against neural data, given 

that its key SV parameter was not significantly different from 0 and could not affect PE 

signals. To ascertain that these findings were not an artifact of our modeling choices, we also 

verified that maps for the non-model-based contrast corresponding to the policy update 

hypothesis (congruent [invest-return and keep-keep] vs. incongruent [keep-return and invest-

keep] trials) were similar, but statistically weaker (striatum: tmax = 4.52, k = 18 at pvoxelwise 

< 10−4). Furthermore, in model-free analyses, we evaluated the activation differences with a 

contrast between the four types of trial outcomes: subject invests/trustee returns, subject 

invests/trustee keeps, subject keeps/trustee returns, subject keeps/trustee keeps. From the 

group maps generated by 3dMEMA, we extracted the β coefficients using an unbiased 

ventral striatum mask from a PE meta-analysis (Chase et al., 2015) and the meta-analytic 

estimates of variance (τ2). Illustrated by Figure 7, comparisons indicated that striatal 

activation was greater bilaterally when subjects invested and trustee returned the investment 

(vs. subject invested/trustee kept: zieft striatum = 20.24; zright striatum= 25.56; vs. subject 

kept/trustee returned: zieft striatum = 29.47; zright striatum= 18.61; all ps < .001) and when 

subjects kept and trustee kept the investment (vs. subject invested/trustee kept: zieft striatum 
13.21; zright striatum 13.24; vs. subject kept/trustee returned: zieft striatum 16.86; zright 
striatum= 12.30; all ps < .001). There was slightly greater activation in the left striatum for 

mutual cooperation vs. defection outcomes (z = 7.21, p < .001), but no difference in 

activation for the right striatum, or for the two incongruent outcomes. Thus, the critical 
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observation here is that striatal responses to correctly predicted trustee defections are 

positive.

Effects of Trustee type—Because participants were less likely to invest with the bad 

trustee vs. all others, we also examine this contrast and its interaction with prediction errors. 

We found no evidence of trustee effects or of their interaction with prediction errors (see 

Supplement for details). Thus, reputation did not appear to directly interfere with 

instrumental learning signals.

Discussion

Our findings indicate that adaptive learning during social exchanges depends on tracking the 

success of one’s approach (policy) toward the counterpart and is unlikely to be driven 

merely by actual rewards or updates of the counterpart’s Pavlovian “social value”. This 

conclusion was supported by model-free behavioral analyses and reinforcement learning 

model comparison in three samples and by analyses of neural activation. Compared to 

alternative models, learning signals derived from the policy model, which tracked the 

success of a given approach, indexed stronger activation of the striatum and other nodes in 

the canonical prediction error network, e.g., anterior insula, caudate, and thalamus. 

Critically, when participants correctly predicted the counterparts’ defection, we observed 

positive striatal prediction errors. Our study also confirmed the presence of, in this case, 

irrelevant reputation effects (Delgado et al., 2005; Fareri et al., 2012). However, our data 

suggested that reputation effects do not interact with adaptive instrumental learning, but 

rather exert an additive Pavlovian influence on cooperation rates.

Persistent effects of social reputation on participants’ decisions in the trust task have led 

earlier studies to focus on whether participants estimate the social value or pro-sociality of 

the counterpart, indicated by the trustee’s return on the investment. In these studies, 

participants also learned of trustee’s decisions only from their decisions to invest (Delgado 

et al., 2005; Fareri et al., 2012, 2015). Thus, both the experimental design and the modeling 

approach implied a Pavlovian account of social decision-making in this task, i.e., learning 

about the counterpart as a stimulus, without regard to one’s own actions. In the present 

study, by showing participants outcomes for both actions and introducing reversals into the 

trustees’ behavior, we were able to investigate the extent to which decision-making was 

accounted for by an instrumental process, as well as to examine representational schemes 

that incorporated counterfactual thinking.

Importantly, our findings indicate that the behavior and learning signals in the task are best 

described by a policy that anticipates the trustees’ actions. This interpretation is supported 

by our neuroimaging findings: prediction errors derived from a model tracking the successes 

of its own decisions resulted in more robust maps than those derived from the other three 

representational schemes. Critically, model-free analyses of neural signals associated with 

the four different trial outcomes indicated stronger positive striatal responses when 

participant’s decisions matched that of the trustee, including strongly positive responses to 

correctly predicted defections. Taken together, these results illuminate the reference frame 

for striatal instrumental learning signals during social exchanges: they represent updates on 
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the individual’s action policy, with negative responses to unpredicted cooperation and 

positive responses to predicted defection. Effects of trustee reputation on behavior, captured 

by a trustee-specific bias parameter provide support for independent, possibly parallel, 

processes: an instrumental learning process as revealed by our design, and Pavlovian 

approach/avoidance toward the counterpart influenced by reputation.

Interestingly, in the more recent examination of prediction errors in the trust task (Fareri et 

al., 2015), where social distance from the counterpart was controlled, social value (SV) 

model-derived prediction error maps were similar to those observed in this study, even if less 

robust statistically. The computational model in Fareri et al. tracked participant’s beliefs 

about the probability of the trustee sharing and, thus, prediction errors reflected the 

difference between the outcome and that expectancy. This is in contrast to the policy model, 

which posited that participants track the expected value of the action to invest. However, 

similarly to the models presented here, Fareri et al. model included a social value parameter, 

which enhanced reciprocation with high-reputation counterparts, affecting choice but not 

learning. In terms of learning, the predictions of the policy model and Fareri’s social value 

model are nearly identical on trials where the participant shares, but on keep/return trials the 

policy model predicts a negative outcome, while the social value model does not. This 

difference must be responsible for the fact that, when confronted with counterfactual 

feedback on keep trials, the social value model could not provide a precise account of 

participants’ behavior.

It may be important acknowledge that our study, in which one learns about would-be or 

counterfactual outcomes, reflects only a subset of social situations in which one learns 

second-hand about the trustworthiness of others based on a transaction in which one was not 

directly involved. We believe that this learning may be critical to those of individual’s 

interactions that can be framed as investment decisions of time and/or other resources with 

others (as well as, more conventionally thought of as investments in the financial world). In 

the introduction, we used an example of a one-shot counterfactual learning: a car, which one 

decided not to purchase, has turned out to be a lemon and, therefore, was a good decision. 

We would argue that one’s decisions in a social setting, often characterized by multiple 

transactions, can be informed in a similar manner. For example, more specific to the 

academic setting, a colleague may solicit collaboration on an article (or a grant) which may 

require a significant investment of time and effort. Having refused this offer, one can learn 

about the article’s publication (or a grant’s acceptance) that may, in turn, influence one’s 

future decisions on collaboration.

More specifically, our findings demonstrate that adaptive learning in these situations may 

depend critically on credit assignment, the process by which reward value is attributed to 

one’s decisions or stimuli, extensively studied in non-social animal learning (Boorman et al., 

2011; Boorman et al., 2009; Daw et al., 2011; Noonan et al., 2010; Walton et al., 2010). 

Correct credit assignment depends on the ability to set up the state space, or a map of 

available actions and possible outcomes in a given environment. The state space is thus 

organized around one’s policy, or an algorithm by which one selects which action to take, 

which in turn controls outcomes (state transitions). In the social setting, we would argue that 

the counterpart, e.g., a trustee, is viewed as an environment where one forages. The 
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counterpart’s social characteristics induce a Pavlovian stimulus-outcome belief eliciting 

approach or avoidance. We examined striatal prediction error (PE) signals - the best-

validated neural index of reward learning - to adjudicate among alternative representational 

schemes. The ability to find the best strategy and overcome irrelevant social biases, however, 

is likely to depend on multiplexing of information about own and others’ choices and 

outcomes in the dorsal anterior cingulate cortex [ACCs/ACCg (Apps, Rushworth, & Chang, 

2016)], also indexed by PEs in our study. For example, Haroush and colleagues, recording 

form the monkey ACCs, described two cell populations whose firing rates predict not only 

the monkey’s own choice, but also the counterpart’s choice in the prisoner’s dilemma 

(Haroush & Williams, 2015).

One limitation of this study was the lack of a live trustee, which precluded us from 

examining how participants represented the impact of their own actions on the counterpart. 

However, reducing such strategic behavior in participants was necessary to closely examine 

trial-by-trial learning. Because the trials for each trustee had to be blocked rather than 

interleaved to enhance learning, we had to sacrifice the power to examine neural correlates 

of reputation and its putative interactions with PE signals. It is also important to note that, 

detracting from our ability to capture the trustee effects, trustee was a block variable which 

varied by run. Therefore unique baselines for trustees could not be recovered, in contrast to 

studies with a mixed trial design. We also did not query participants whether they were 

consciously aware of the changes in reinforcement schedules. The results of our 

computational models, however, suggest that their behavior reflected learning of the 

different reinforcement rates. Furthermore, participants’ exposure to counterfactual 

outcomes varied with their cooperation rate, raising questions about the robustness of our 

results vis-à-vis different strategies. This issue is partly mitigated by including the random 

effect of person in both model-free analyses and RL model comparisons. Finally, although 

age-related differences have been observed in other economic games (e.g., Brown & 

Ridderinkhof, 2009), we have not systematically investigated these differences in this paper 

and instead report the replication of the behavioral findings in the older participants from 

studies 1 and 3, and also in the younger sample in Study 2.

In summary, we found that as humans learn whether to cooperate with others from 

experience, their striatal learning signals reflect reinforcement by the correctness of their 

predictions about what others will do, a process that may underlie reciprocal altruism.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Reinforcement schedule by trustee and block; (B) Trial design. Counterfactual feedback 

is presented to participants after “KEEP” decisions (top panel).
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Figure 2. 
(A) Payoff matrices by model; (B) difference between correctly anticipated (keep/keep) and 

incorrectly anticipated trustee defection (keep/retum) shaping predicted striatal learning 

signal time course on those trials, (C) exceedance probabilities from the Bayesian model 

comparison, (D) neural responses in ventral striatum to model-derived prediction errors (PE) 

(pVOXeiwise< 001, cluster size = 100 voxels, pcorr < .05). 1) Actual-rewards model: actual 

rewards in the task; 2) Regret model: difference between actual rewards and the maximum 

outcome ($1.5); 3) Trustee-counterfactual model: difference between actual rewards and 

would-be outcome from trustee’s alternative action; 4) Policy model (best model): 
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difference between actual rewards and would-be outcome from subject’s alternative action. * 

indicates that results withstand correction for the Bayesian omnibus error rate.
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Figure 3. 
Manipulation check: pre- and post- task ratings of trustworthiness (A) and likeability (B). 

(A) While the good trustee is initially perceived as more trustworthy, and the bad trustee as 

less trustworthy, these perceptions revert to the mean following experiential learning. (B) A 

similar pattern is seen for likeability, but effects of reputation are more persistent.
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Figure 4. 
(A) Observed probability of investing by reputation (trustee type) in Studies 1–3; (B) 

Predicted likelihood of investing by previous trustee decision and exchange number 

(previous trustee decision × exchange number), indicating the growing effect of 

reinforcement as the participant leams (adaptive learning).
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Figure 5. 
Estimated means of trustee-level bias parameter by low (1), mid (4), and high (7) values of 

trustworthiness ratings.
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Figure 6. 
BOLD response to PEs derived from the policy model (pvoxeiwise < .001, cluster size = 100 

voxels, pcorr < .05).

Vanyukov et al. Page 22

Cogn Affect Behav Neurosci. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Means of β coefficients for the four types of trial outcomes (subject invests/trustee keeps; 

subject invests/trustee returns; subject keeps/trustee keeps; subject keeps/trustee returns).
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Table 1.

Regions representing policy prediction errors.

Region MNI Coordinates Peak t(17) Cluster Size (mm3)

[1] Left/Right Precuneus (BA 7) −10, −52, 40 8.91 124858

[2] Left/Right Lentiform Nucleus/Putamen −25, 9, 10 9.47 65422

[3] Left/Right Declive −10, −69, −22 7.39 21085

[4] Right Inferior Frontal Gyrus (BA 46) 46, 29, 11 7.72 19662

[5] Left Superior Frontal Gyrus (BA 8) −32, 17, 55 6.06 5706

[6] Right Middle Frontal Gyrus (BA 8) 25, 34, 45 4.87 2275

[7] Left Anterior Cingulate (BA 24/BA 32) −3, 34, 16 6.21 2227

[8] Left Medial Frontal Gyrus (BA 10) −6, 65, 8 6.00 1935

[9] Right Culmen 29, −42, −27 5.79 1752

[10] Right Postcentral Gyrus (BA 2) 64, −21, 29 5.64 1679
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