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Visual inputs and postural 
manipulations affect the location of 
somatosensory percepts elicited by 
electrical stimulation
Breanne P. Christie   1,2, Hamid Charkhkar 1,2, Courtney E. Shell2,3, Paul D. Marasco   2,3, 
Dustin J. Tyler   1,2 & Ronald J. Triolo1,2

The perception of somatosensation requires the integration of multimodal information, yet the effects 
of vision and posture on somatosensory percepts elicited by neural stimulation are not well established. 
In this study, we applied electrical stimulation directly to the residual nerves of trans-tibial amputees 
to elicit sensations referred to their missing feet. We evaluated the influence of congruent and 
incongruent visual inputs and postural manipulations on the perceived size and location of stimulation-
evoked somatosensory percepts. We found that although standing upright may cause percept size to 
change, congruent visual inputs and/or body posture resulted in better localization. We also observed 
visual capture: the location of a somatosensory percept shifted toward a visual input when vision was 
incongruent with stimulation-induced sensation. Visual capture did not occur when an adopted posture 
was incongruent with somatosensation. Our results suggest that internal model predictions based on 
postural manipulations reinforce perceived sensations, but do not alter them. These characterizations 
of multisensory integration are important for the development of somatosensory-enabled prostheses 
because current neural stimulation paradigms cannot replicate the afferent signals of natural tactile 
stimuli. Nevertheless, multisensory inputs can improve perceptual precision and highlight regions of 
the foot important for balance and locomotion.

Over two million people are living with limb loss in the United States1. Commercially available prostheses offer 
various control mechanisms (manual, body-powered, myoelectric) and multiple degrees of freedom, however 
none currently provide their users with somatosensory feedback. Previous studies have added sensory feedback 
via transcutaneous electrical stimulation2–7, vibration6,8–11, and by directly interfacing with the nerve12–16. Adding 
this feedback can improve functional ability10,14,15,17–22, reduce phantom pain2,14, and enhance prosthesis embod-
iment (i.e., incorporation of a prosthesis into one’s body schema)18,23–26. It is less clear how such somatosensory 
feedback integrates with other inputs, such as visual information and body posture, to shape one’s perception of 
the environment. In order to develop maximally beneficial somatosensory neuroprostheses, the impact of these 
inputs on elicited somatosensory feedback needs to be better understood.

The connection between natural tactile somatosensation and vision is strongly demonstrated in psychophys-
ical and biological studies. Previous psychophysical studies have shown that tactile spatial resolution improves 
by adding vision27–29. Electrophysiology experiments have supported these claims: viewing the body modulates 
human primary somatosensory cortex activity30,31, and tactile stimulation enhances activity in the visual cor-
tex32. Improvements in tactile acuity occur even when vision of the tactile stimulus is non-informative, i.e., an 
individual views the body part that is touched but does not see the tactile stimulus itself28,29,33–36. Tactile and 
visual feedback are thought to be integrated and inversely weighted by the uncertainty associated with each feed-
back modality; that is, the modality with greater uncertainty is weighted less27. As long as conditions for visual 
inputs are favorable, such as when there is sufficient lighting and contrast, uncertainty is typically lower for visual 
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feedback compared to touch, leading to greater trust in visual feedback27. Subsequently, estimates of the environ-
ment are more accurate with feedback from both touch and vision than estimates from either modality alone27.

When somatosensory and visual information are spatially incongruent, the parietal cortex is assumed to 
attempt to reestablish congruency by modulating the “gain” of sensory systems37. When using mirrors to intro-
duce conflict between the vision of touch and the feeling of touch, tactile sensitivity increases. If transcranial 
magnetic stimulation is applied to temporarily disengage the posterior parietal cortex, the gaining mechanism is 
temporarily eliminated. A visible consequence of this corrective gain is the phenomenon of visual capture: when 
visual and tactile inputs do not occur in the same location, somatosensory percepts can shift towards the location 
of visual inputs38. Once the multimodal mismatch is too large, however, the gaining mechanism is not sufficient 
and two inputs are no longer perceived as spatially congruent. Despite the well-studied relationship between 
somatosensation and vision, it is not clear whether the same connection still holds for prostheses with added 
sensory feedback.

The nervous system also utilizes postural information to determine the location of touch39–42. Information 
about the location of a tactile stimulus on the surface of the skin is combined with proprioceptive information 
about the location of each part of the body43. Most prior studies examined the relationship between posture and 
tactile localization by asking participants to cross their arms42 or turn their heads44. Posture manipulations that 
occur during locomotion, such as when the heel strikes the ground, have not been explored with respect to tactile 
localization.

Additionally, cognitive expectations arise from our internal knowledge of body posture. Prior experiences 
tell us that while standing upright, we expect to feel our feet touching the ground. These expectations of what 
we should feel influence what we do feel45. This is illustrated by a previous study that measured event-related 
potentials (ERPs) using electroencephalography (EEG) during a self-generated movement task with human par-
ticipants. Participants were instructed to move their hand to touch their chest. Before initiating the movement, 
a task-irrelevant tactile probe was applied to their chest. They found that action preparation modulated tactile 
probe-evoked somatosensory ERPs46. Our cognitive expectations largely influence how we perceive reality, which 
is also demonstrated by illusions resulting from differences between our perception and physical reality. Illusions 
can achieve a desired perceptual effect by compensating for missing information with the remaining senses47. For 
example, in one prior study, providing visual information about the stiffness of a virtual spring resulted in reports 
of haptically feeling physical resistance48.

To further explore the roles of visual information and posture in tactile localization, we utilized peripheral 
nerve stimulation (PNS) via implanted nerve cuff electrodes to disassociate multisensory stimuli. We have pre-
viously demonstrated that the electrical activation of residual peripheral nerves of trans-tibial amputees can 
generate somatosensory percepts projected to the missing feet13. In this study, we tested scenarios of congruent 
and incongruent visual inputs and postural manipulations to determine how multisensory integration affects 
stimulation-induced somatosensory perception. We hypothesized that changing body position from seated to 
standing would not impact percept size and location, that congruent information would confine percepts, and 
that incongruent information would cause percepts to spread. We anticipated that stimulation-induced tactile 
percepts with locations irrelevant to locomotion (such as tactile sensation on the side of the ankle) could become 
more functionally relevant as a result of visual inputs and postural manipulations.

Materials and Methods
Research participants.  Two volunteers with unilateral trans-tibial amputations (LL01 & LL02) due to 
trauma were enrolled in this study. At the time of device implantation, LL01 was 67 years old and had lost his 
limb 47 years prior. LL02 was 54 years old and lost his limb nine years beforehand. Both participants were male, 
regular prosthesis users, and did not have peripheral neuropathy or uncontrolled diabetes. The Louis Stokes 
Cleveland Veterans Affairs Medical Center Institutional Review Board and Department of the Navy Human 
Research Protection Program approved all procedures. This study was conducted under an Investigational Device 
Exemption obtained from the United States Food and Drug Administration. Both participants gave their written 
informed consent to participate in this study, which was designed in accordance with relevant guidelines and 
regulations.

Implanted technology and delivery of electrical stimulation.  Both participants had 16-contact 
Composite Flat Interface Nerve Electrodes (C-FINEs)49 installed around their sciatic, tibial and/or common per-
oneal nerves (Fig. 1)13. The details of implant procedure and post-operative care are described in our prior work13. 
Both participants received implants in 2016. The described experiments in this study were performed at least one 
year post-implantation, and participants received electrical stimulation near weekly during other experiments 
prior to this study. All C-FINE contacts were connected to percutaneous leads that exited the skin on the upper 
anterior thigh. These percutaneous leads were connected to a custom-designed external stimulator that had a 
maximum stimulation amplitude of 5.6 mA and a maximum pulse width of 255 μs50,51. Stimulation waveforms 
were monopolar, asymmetric biphasic, charge-balanced, cathodic-first pulses with return to a common anode 
placed on the skin above the ipsilateral iliac crest. Stimulation parameters were set in MATLAB (MathWorks, Inc.; 
Natick, MA, USA) and then sent to a single board computer running xPC Target (MathWorks, Inc.; Natick, MA, 
USA), which controlled the external stimulator in real time. Stimulation was limited to a charge density of 0.5 μC/
mm2 in order to minimize the risk of tissue and/or electrode damage52.

Experimental design.  Participants were instructed to adopt a specific posture, as described below, while 
electrical stimulation was delivered for five consecutive seconds to selected electrode contacts. When stimula-
tion ended, participants drew the location of the elicited percept on a blank diagram of a generic healthy foot. 
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The drawing was captured electronically using a touchscreen display (Cintiq 27QHD Touch; Wacom Co., Kazo, 
Saitama, Japan).

In the baseline condition, participants sat down and placed the prosthetic foot on a stool such that the knee 
was fully extended (#1 in Table 1 and Fig. 2). The dorsal surface of the prosthetic foot was in clear view and the 
participants were instructed to look at it. In static standing conditions, the participants stood upright with their 
eyes closed (#2) or with their eyes open and looking down at the prosthesis (#3). When standing upright, there 
was foot-floor interaction due to weight bearing. While standing upright with the eyes open, there was also visual 
confirmation of this prosthetic foot-floor contact.

During conditions with added visual inputs, the participants remained seated while watching an experimenter 
lightly touch the prosthetic plantar forefoot (#4) or rearfoot (#5). The forefoot encompassed the toes and the met-
atarsals, and the rearfoot encompassed the heel. The experimenter followed real-time visual cues on a computer 
screen (visible only to the experimenter and not to the participant) to determine the onset and offset for applying 
touch. The visual cues on the screen were synchronized with the timing of electrical stimulation delivery. The 
manner of applied physical touch was a mild constant pressure to the bottom of the shoe on the prosthetic foot. 
The touch was applied such that participants did not feel any added pressure through their socket and could 
therefore not detect the touch if their eyes were closed. The plantar surface of the foot, where the physical touch 
was applied, was not visible. This case of non-informative vision was intentional, given that the plantar surface of 
the foot is typically not visible during locomotion.

During conditions with postural manipulations, the participants stood upright with their eyes closed and 
adopted a posture that applied a load on either the plantar surface of the prosthetic forefoot (#6) or rearfoot 
(#7). During conditions with postural manipulations and visual inputs, participants repeated the same postures 
while looking down at the prosthesis with their eyes open (#8–9). These postural manipulations were designed to 
approximate stereotypical postures adopted during toe off and heel strike, key phases of gait.

All nine conditions were tested with a total of six C-FINE contacts (three per participant). Suprathreshold 
electrical stimulation paradigms were chosen after finding sensory detection thresholds via a forced-choice, 
two-alternative tracking paradigm53. Pulse width varied by contact from 80–200 μs, pulse amplitude varied 
between 0.8–1.2 mA, and pulse frequency was set at 20 Hz. The responses evoked by each C-FINE contact were 
evaluated 15 times per condition, except for one contact with participant LL02 that stopped responding to stimu-
lation due to electrical connection issues unrelated to the experiment. For that contact (R1), we collected at least 
ten trials per condition. Each experimental session lasted approximately three hours, including time for breaks. 
Trials were randomized between different electrode contacts in each session. Testing for each contact was typi-
cally completed within three sessions, which were 1–6 weeks apart.

Figure 1.  Three 16-contact C-FINEs were implanted around the sciatic, tibial, and common peroneal nerves 
of subject LL01 (left) and around the proximal sciatic, distal sciatic, and tibial nerves of subject LL02 (right). 
Reproduced from Charkhkar et al.13, (10.1088/1741-2552/aac964). © IOP Publishing Ltd. CC BY 3.0. Also 
printed with permission from © Novie Studio.
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After observing differences in the reported percepts during the seated versus static standing conditions, 
potential causes for these differences were evaluated with additional testing. To evaluate if interactions between 
electrode contacts and the primary neural fibers activated by electrical stimulation were affected by posture, 
detection thresholds were collected four times per contact while participants were sitting, and again while they 
were standing. To determine if changes in percept size were due to the recruitment of additional neural fibers, 
two contacts were re-tested with a larger electric field induced by delivery of a higher stimulation level while par-
ticipants were seated. We increased the charge until participants verbally reported the intensity to be double the 
initially reported level. We also hypothesized that neural fibers do not change their orientations with respect to 
C-FINE contacts due to changes in body position alone. To evaluate this, we re-tested four contacts while partici-
pants stood upright without their prostheses on, while holding onto a walker to maintain stability (condition #S1, 
Table 1 and Fig. 3). Finally, we hypothesized that cognitive expectations of foot-floor contact associated with don-
ning the prosthesis affected reported percept size. To test this, each participant reported percept locations while 
standing on a wooden box with the intact leg and letting the prosthetic leg dangle in the air without contacting 
the ground (condition #S2, Table 1 and Fig. 3).

Data analysis.  All the collected electronic drawings were processed and analyzed using the Image Processing 
Toolbox in MATLAB. The toolbox helped to convert drawings into binary mask images, in which pixels for the 
reported percept areas were set to 1, and all pixels outside the area were set to 0. The foot diagram was divided 
into three regions of interest (ROIs) that represented the areas most frequently involved in gait and balance: the 
forefoot, midfoot, and rearfoot. A primary ROI was assigned to each contact. The ROI in which sensations were 
reported in the greatest number of the baseline trials was identified as the primary ROI.

Inputs collocated with the primary ROI were classified as “congruent.” Using the baseline data, the three con-
tacts from participant LL01 were classified as congruent with inputs about the forefoot (referred to as contacts 
F1-F3) and three from participant LL02 were congruent with inputs about the rearfoot (referred to as contacts 
R1-R3) (Fig. 4). In order to test the greatest spatial mismatch, incongruent inputs were applied to the rearfoot 
when the primary ROI was the forefoot, and vice versa.

In every trial, an activation percentage was assigned to each region of the foot based on how much of the 
region was covered by the percept drawn by the participant (Supplementary Fig. S1). The equation for activation 
percentage was the following:

= ×Activation percentage area of percept within ROI
area of ROI

100

Activation percentages were calculated for the full plantar surface of the foot and each ROI. The mean and stand-
ard errors of these activation percentages are given in Supplementary Table S1.

Condition Body Position Visual Inputs Postural Manipulations

#1 Baseline Seated None None

#2
Static standing Standing

None None

#3 Observation of prosthetic foot-floor contact None

#4
Visual input Seated

Observation of experimenter lightly touching 
the plantar surface of the prosthetic forefoot None

#5 Observation of experimenter lightly touching 
the plantar surface of the prosthetic rearfoot None

#6

Posture manipulation

Standing

None
Adopting a posture that applies 
a load on the plantar surface of 
the prosthetic forefoot

#7 None
Adopting a posture that applies 
a load on the plantar surface of 
the prosthetic rearfoot

#8
Visual input + posture 
manipulation

Observation of prosthetic foot-floor contact
Adopting a posture that applies 
a load on the plantar surface of 
the prosthetic forefoot

#9 Observation of prosthetic foot-floor contact
Adopting a posture that applies 
a load on the plantar surface of 
the prosthetic rearfoot

#S1 Static standing, prosthesis off Standing with no prosthesis
None (contacts R2 and R3)

None
Eyes open, looking ahead (contacts F1 and F2)

#S2 Static standing, prosthesis on 
but unloaded

Standing with the intact leg on a wooden 
box and the prosthetic leg dangling in the 
air (“unloaded”)

None (contacts R2 and R3)
None

Eyes open, looking ahead (contacts F1 and F2)

Table 1.  Summary of the body position, visual inputs, and postural manipulations involved in each 
experimental condition. Electrical stimulation was combined with each condition.
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Statistical analyses.  Paired t-tests with significance levels of α = 0.05 determined if the activation percent-
ages in one condition were significantly different than the baseline condition. We split the electrode contacts into 
two groups based on their primary ROIs, therefore we grouped the forefoot contacts (F1, F2, F3) and rearfoot 
contacts (R1, R2, R3) together during statistical analyses. We compared the primary ROI between conditions 
and a combination of the two remaining ROIs (referred to later as ‘regions outside of the primary ROI’) between 
conditions.

During the comparisons of sitting versus static standing (conditions #2, #3, #S1, #S2), we analyzed the acti-
vation of the whole plantar foot surface because we did not add inputs to specific ROIs. Moreover, two-tailed 
tests were performed because we hypothesized that there would be no significant changes in percept size. In all 
congruent and incongruent conditions (#4–9), one-tailed t-tests were used to reflect our hypotheses that congru-
ent information localizes percepts, and incongruent information causes percepts to spread. A one-way repeated 
measures analysis of variance (ANOVA) was used to compare the sensory detection thresholds between sitting 
and standing for all electrode contacts.

2
3

6
8

7
9

1 4 5

Figure 2.  Experimental conditions are demonstrated by participant LL01. The number(s) in the left corner of 
each photo represent the condition number described in Table 1. The three photos in the bottom row have two 
numbers because each posture was repeated with the eyes open and closed.

S1 S2

Figure 3.  Participant LL01 demonstrates the two supplemental static standing conditions. The number in the 
top left corner of each photo represents the condition number described in Table 1. When testing contacts F1 
and F2, the eyes were open. For contacts R2 and R3, the eyes were closed.
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Results
Perceptual differences between sitting and static standing.  With respect to the baseline condi-
tion, activation in the entire plantar surface of the foot was significantly different during static standing (Fig. 5). 
Somatosensory percepts evoked by rearfoot contacts were different when the eyes were closed (condition #2, 
p = 0.031) and the percepts evoked by forefoot contacts were different when the eyes were open (condition #3, 
p < 0.001). For the rearfoot contacts, activation in the plantar surface of the foot decreased by 4 ± 2%. For the 
forefoot contacts, activation in the plantar foot surface increased by 20 ± 5%.

While participants stood upright without wearing their prostheses (condition #S1), only percepts evoked 
by rearfoot contacts were significantly different than the baseline condition (p = 0.013, Fig. 6a). In a post hoc 
two-tailed t-test that ungrouped the rearfoot contacts, there was no significant difference in activation percentage 
for contact R2 with respect to the baseline; the baseline percentage was 1 ± 1% and the condition #S1 percent-
age was 0 ± 0%. Therefore, while standing with the prosthesis off, the statistical effect for the rearfoot contacts 
was largely dominated by contact R3. While participants stood upright but did not load their prostheses on the 
ground (condition #S2), both groups of electrode contacts evoked significantly different percepts in the plantar 
surface of the foot (Fig. 6b) (p = 0.021 for the forefoot contacts, p = 0.004 for the rearfoot contacts). Activation 
percentages in the plantar surface of the foot increased for contacts F1, F2, and R3 and decreased for contact R2.

Sensory detection thresholds were not significantly different between sitting and standing. Average thresholds 
across all six contacts were 100 ± 45 nC while sitting and 115 ± 48 nC while standing (Fig. 7). We re-tested con-
tacts F1 and F2 at a higher charge level and did not find a significant increase in percept area on the plantar foot 
surface (Supplementary Fig. S2).

Perception during congruent inputs.  The addition of congruent visual inputs (conditions #4 and #5) 
caused more localized percepts than the baseline condition for the group of forefoot contacts (Fig. 8a). Reports of 
percepts in the primary ROI increased in frequency and/or grew to cover more of the ROI (p = 0.003). Although 
electrical stimulation paired with congruent visual inputs led to increased activation of the primary ROI for the 
rearfoot contacts, the effect was not strong enough to have statistical significance (p = 0.066). For rearfoot con-
tacts R1 and R2, the baseline percepts were primarily located on the side of the ankle with a few percepts reported 
on the heel. It is possible that the perception of percepts on the ankle overrode the percepts on the heel, interfering 
with the ability of visual inputs applied to the heel to act as “congruent” with electrical stimulation.

The addition of congruent postural manipulations (conditions #6 and #7) caused more localized percepts 
than the baseline condition for both groups of electrode contacts (Fig. 8b). Primary ROI activation increased 
(p = 0.004 for forefoot contacts and p = 0.046 for rearfoot contacts) and activation outside of the primary ROI 
decreased (p = 0.003 for forefoot contacts and p = 0.013 for rearfoot contacts).

During conditions with congruent visual inputs and postural manipulations (#8 and #9), percepts were more 
localized than the baseline condition for both groups of electrode contacts (Fig. 8c). Primary ROI activation 
increased for both groups of contacts (p = 0.006 for forefoot contacts and p = 0.035 for rearfoot contacts) and 
activation outside of the primary ROI decreased for the forefoot contacts (p = 0.005).

Perception during incongruent inputs.  Incongruent visual inputs (conditions #4 and #5) led to an 
increase in activation in the ROI touched by the experimenter, which was outside of the primary ROI, for the 
forefoot electrode contacts only (p = 0.027, Fig. 9a). Conversely, incongruent postural manipulations produced a 
decrease in primary ROI activation in the rearfoot electrode contacts (Fig. 9b,c). This occurred in both the eyes 
closed (p = 0.001, conditions #6 and #7) and eyes open (p = 0.004, #8 and #9) conditions. Additional post hoc 
t-tests confirmed that this effect was again dominated by electrode contact R3. Contacts R1 and R2 did not evoke 

Forefoot ROI  = Primary ROI Rearfoot ROI  = Primary ROI
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10 trials
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Figure 4.  During the baseline condition, each participant sat with the prosthesis elevated while an electrode 
contact delivered stimulation to the nerve. Participants then drew the perceived location of the evoked percept 
on a blank diagram of the intact foot and leg, represented here as one heat map per contact. Red areas indicate 
regions that were drawn in all fifteen trials. The forefoot region of interest (ROI) was classified as the primary 
ROI for contacts F1-F3, and the rearfoot ROI was classified as the primary ROI for contacts R1-R3.
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significantly different percepts between baseline and incongruent postural manipulation conditions, but contact 
R3 did (eyes closed p < 0.001, eyes open p = 0.003). The primary ROI for contact R3 was classified as the rearfoot 
from baseline data, but the entire plantar surface of the foot was frequently reported (parts of the forefoot ROI 
were reported in 41 ± 5% of trials, compared to 84 ± 2% for the rearfoot, which was the primary ROI). Though 
there were significant differences, they may not have been the result of truly “incongruent” inputs, but rather 
postural manipulations helping to focus attention on an alternate region that had fewer reported percepts than 
the primary ROI in the baseline condition.

Discussion
Humans integrate multiple streams of information to develop an internal understanding of the external environ-
ment and their interactions with it54–56. Information from one sensory stream can affect perception of informa-
tion from another, helping to reinforce or redefine ambiguous information56,57. In this study, we evaluated the 
perception of touch size and location by selectively manipulating the interplay between afferent somatosensory 
information, body posture, and vision.

Expectations of foot-floor contact can impact the size of somatosensory percepts.  Static stand-
ing affected percept location with respect to the baseline condition. While standing, percepts covered a smaller 
percentage of the foot surface for rearfoot contacts, and a larger percentage for forefoot contacts. These changes 
were most likely not due to any changes in nerve fiber recruitment. Sensory detection thresholds were not found 
to be significantly different between sitting and standing, which indicates recruited neural fibers did not move 
towards or away from the tested C-FINE contacts. However, it was still possible that the transition from sitting to 
standing would change the nerve cross-sectional geometry and consequently result in recruitment of additional 
fibers. To address this, while participants were seated, we increased the delivered charge density to broaden the 
electric field and recruit any smaller nearby fibers. However, we found that percept size on the plantar surface of 
the foot did not significantly increase in response to the elevated charge density, suggesting that increases in per-
cept size while standing were not due to additional fiber recruitment. One limitation of this test is that we may not 
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Figure 5.  A generic healthy foot is outlined in grey. Shaded red areas indicate regions that were reported more 
than the baseline condition, and shaded blue regions represent a decrease in reporting compared to baseline. 
The † symbol indicates significant changes in percept reporting frequency and/or percept size over the entire 
plantar surface of the foot (two-tailed paired t-tests, p < 0.05). (a) Stimulation was delivered while participants 
stood upright with their eyes closed. (b) Stimulation was delivered while participants stood upright with their 
eyes open, looking down at their feet.

https://doi.org/10.1038/s41598-019-47867-1


8Scientific Reports |         (2019) 9:11699  | https://doi.org/10.1038/s41598-019-47867-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

have increased charge enough to see an effect. However, increasing charge levels any further caused discomfort 
to the participant.

While standing without wearing the prosthesis, there were few differences in percept size compared to a 
seated position, indicating that simply changing body position did not affect fiber recruitment. While stimula-
tion through one contact (R3) elicited a significant increase in percept area, percepts evoked by the same contact 
covered over half of the plantar surface of the foot during the baseline condition. Therefore, this contact may 
have been close to multiple fibers of a similar diameter, and even small changes in posture could have realigned 
nearby fibers and affected recruitment. In contrast, donning the prosthesis but keeping it unloaded while standing 
affected percepts evoked by both groups of electrode contacts. We suspect that this was a result of the individuals’ 
internal knowledge of limb length (length of the residual leg plus the prosthesis) and expectations of potential 
foot-floor contact while wearing the prosthesis.

Percepts were focused by congruent information.  Our results confirmed that the addition of at least 
one congruent source of information helped participants clarify the location of stimulation-induced soma-
tosensory percepts. Though previous studies have shown that cognitive expectations influence tactile acuity45, 
the effects of postural manipulations were not well established. We found that postural manipulations, which 
are accompanied by an intrinsic understanding of the expected consequences of those manipulations, caused 
an increase in tactile sensitivity with respect to baseline. Though the addition of visual information localized 
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than the baseline condition, and shaded blue regions represent a decrease in reporting compared to baseline. 
The † symbol indicates significant changes in percept reporting frequency and/or percept size over the entire 
plantar surface of the foot (two-tailed paired t-tests, p < 0.05). We re-tested contacts F1, F2, R2, and R3 in 
two supplemental conditions. When testing contacts F1 and F2, the eyes were open in all three conditions 
shown here. For contacts R2 and R3, the eyes were closed. (a) During the “prosthesis off ” condition, electrical 
stimulation was delivered while a participant stood upright without wearing a prosthesis. (b) During the 
“prosthesis unloaded” condition, electrical stimulation was delivered while a participant stood on a wooden 
box with the intact leg and let the prosthetic leg dangle in the air. (c) Electrical stimulation was delivered while 
participants stood upright with their prostheses loaded. These results are also shown in Fig. 5, but repeated here 
to easily identify perceptual differences between standing conditions.
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stimulation-induced sensory percepts, just as natural somatosensation can be influenced by vision28,29, congruent 
postural manipulations had an even stronger effect.

Each form of congruent inputs was likely assisted by directing participants’ attention to the primary ROI. 
Previous studies on natural somatosensation have found that sustained spatial attention to one region of the body 
results in enhanced processing of tactile stimuli in that region over unattended regions58. For the case of tactile 
sensations elicited by electrical stimulation, attending to the primary ROI may have made it easier for participants 
to identify percepts in that location and to ignore percepts that occurred in unattended regions.

The results of the congruent scenarios tested with PNS could relax certain constraints in the implementation 
of somatosensory feedback in prostheses. Malleable percepts that migrate to functionally relevant locations can 
improve the fidelity and perhaps the ultimate utility of sensory neuroprostheses in locomotion. When developing 
sensory neuroprostheses, amputees who lost their limbs many years ago may have some initial trouble visualizing 
restored limb sensation and identifying the locations of evoked percepts. Although the brain representation of 
a missing limb is maintained over many years59, we have found that there appears to be an acclimation period 
between the first-ever percept elicited by PNS and the ability to express a clear and consistent percept referred 
to a missing body part13. We hypothesize that individuals receiving somatosensory neuroprostheses would likely 
benefit from a protocol applying congruent inputs to help localize percepts to functionally relevant locations 
and accelerate this acclimation process. This is analogous to how previous studies have exploited natural sensory 
illusions to achieve a desired perceptual effect by compensating for missing details47.

Visual capture occurred for congruent and incongruent visual inputs.  While congruent visual 
information localized the area of perceived touch, incongruent visual information broadened the location of the 
perceived touch for the forefoot contacts. Our findings corroborate prior reports on visual capture with natural 
somatosensation38: the location of stimulation-induced somatosensory percepts was affected by the location of 
visual inputs. Similar to past studies, for the rearfoot contact group, we found that if the mismatch between two 
inputs was too great, the illusion of congruency was not reached60 and perceived touch did not shift to include 
the location where touch was observed. Specifically, if plantar regions outside of the primary ROI were never 
reported in the baseline condition (i.e., the midfoot or forefoot for contacts R1 and R2), the perceived touch could 
not be shifted to these areas. It is also possible that visual capture could have occurred if the spatial mismatch was 
not as large between the visual input and stimulation-induced somatosensation60. An alternative explanation 
for our observations with incongruent visual inputs is that they were not completely incongruent. For example, 
for all three forefoot contacts, percepts were reported outside of the primary ROI in at least one of 15 baseline 
trials. Visual inputs likely directed the participants’ attention to percepts that were less perceptible during the 
baseline condition, enhancing them by attending to that location58. These results provide further evidence of a 
gaining system for establishing multisensory congruency37. In subsequent studies, our protocol for disassociating 
somatosensation from other stimuli could provide a unique framework to examine which regions of the brain are 
involved in establishing congruency between two inputs.

When incongruent with somatosensation, postural manipulations prevented visual cap-
ture.  Postural manipulations have a gating effect on the ability of visual information to influence the perceived 
location of stimulation-induced somatosensation. Although observed during conditions with incongruent visual 
inputs, visual capture did not occur for the majority of contacts when incongruent postural manipulations were 
also present. Though all experimental conditions involved static postures, a movement command had to be exe-
cuted in order to adopt each posture. An internal copy of this motor command, called an efference copy, accompa-
nies self-generated movement. An efference copy is then used to create an internal prediction of the movement’s 
sensory consequences38,61. When there is a discrepancy between the predicted and actual sensory information, 
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Figure 7.  Sensory detection thresholds while participants sat down with their prostheses elevated (teal) 
or stood upright with their eyes open (purple). N = 4 trials per contact per posture. The black bars indicate 
standard deviation.

https://doi.org/10.1038/s41598-019-47867-1


1 0Scientific Reports |         (2019) 9:11699  | https://doi.org/10.1038/s41598-019-47867-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

an internal prediction model is updated62. Even when these sensory predictions were isolated from vision during 
conditions #6 and #7, incongruent postural manipulations still did not modulate stimulation-induced percepts 
for the majority of contacts. Combined with our observations on congruent postural manipulations, this suggests 
that expectations based on motor commands can reinforce the location of perceived sensations, but they do not 
alter percept location.

Previous work also hypothesizes that visual capture only occurs if a seen posture is proprioceptively feasible38. 
Moreover, visual capture of touch occurs for body image (how one’s own body is perceived), but not as strongly 
for body schema (which is involved in self-generated actions)63,64. It is possible that body schema is not as heavily 
influenced by visual capture due to the involvement of proprioceptive information46,63. The postural manipula-
tions in this study incorporated proprioceptive information from the residual limb, which likely influenced visual 
capture. If the mismatch between postural manipulations and visual inputs had been less drastic, visual capture 
may have occurred. It would be interesting to investigate if these observations also occur during active move-
ments combined with visual inputs and electrical stimulation.

In future studies, it would be informative to apply incongruent inputs at different locations around the leg to 
test the sensitivity of visual capture. The primary somatosensory cortex (S1) is somatotopically organized with a 
layout that broadly follows the layout of the body itself. The foot region of S1 neighbors the toe and leg regions of 
S165. A previous study found that visual capture of touch occurs in accordance with the somatotopic organization 
of S134. While participants viewed the hand, tactile discrimination thresholds improved on the hand and the face, 
but not the foot. The hand and face regions border each other in the somatosensory homunculus, but multiple 
regions separate the hand from the foot. It would be interesting to use peripheral nerve stimulation as a tool 
to identify exactly how far apart two stimuli can be before visual capture is disrupted.
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Figure 8.  A generic healthy foot is outlined in grey, and the location of an added input is outlined in black. 
“Congruent” signifies that the experimenter touched the location of the primary ROI. The forefoot contacts (F1-
F3) had a primary ROI in the forefoot, and rearfoot contacts (R1-R3) had a primary ROI in the rearfoot. Shaded 
red areas indicate regions that were reported more than the baseline condition, and shaded blue regions represent a 
decrease in reporting compared to baseline. The † symbol denotes significantly increased activation in the primary 
ROI, and the ‡ symbol indicates significantly decreased activation in regions outside of the primary ROI (one-
tailed paired t-tests, p < 0.05). (a) During the conditions involving congruent visual inputs, electrical stimulation 
was delivered while participants sat and watched an experimenter apply a light touch to the primary ROI on the 
plantar surface of the prosthesis. (b) During conditions involving congruent postural manipulations with the eyes 
closed, electrical stimulation was delivered while participants stood upright and adopted a posture that applied a 
load to the location of the primary ROI. (c) Repeated condition ‘b’ with the eyes open.
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In a survey on phantom limb pain, 80% of amputees reported that they had experienced phantom pain over a 
four-week period prior to the survey66. The exact cause of phantom limb pain is not yet well defined. One previous 
study suggests that phantom pain is the result of incongruence between an efference copy and afferent sensory 
information67, whereas other studies could not establish this link68–70. Incongruent conditions in this study did 
not induce any pain in our participants.

Study design limitations.  Although we used a unique experimental design to evaluate the effects of con-
gruent and incongruent inputs on somatosensation, our study had certain limitations. Our findings could become 
more generalized if they are repeated in a larger group of amputees with more diverse demographics in age, sex, 
and amputation etiologies. At the time of this study, both participants received electrical stimulation-induced 
somatosensation in the laboratory for over a year and had a clear phantom perception of their missing limbs. 
They perceived electrical stimulation-elicited sensations as originating from their missing limbs, which was dif-
ferent from their general phantom perception. Future studies with a larger sample size could determine how 
stimulation-induced sensation is affected by the anomalies in phantom perception.

We did not expect significant variability in percept location between sessions because previous work has 
demonstrated that somatosensory percepts evoked by nerve cuff electrodes in amputees remain stable over the 
course of five months13. However, some trial-to-trial variability in reported percept location can be expected. For 
example, able-bodied individuals had an average localization error of 11.7 ± 2.3 mm when reporting the location 
of a physical tactile stimulus applied to the foot71. Tactile localization variability can be caused by a number of 
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Figure 9.  A generic healthy foot is outlined in grey, and the location of an added tactile input is outlined in 
black. “Incongruent” signifies that the experimenter touched a location outside of the primary ROI (forefoot 
contacts had a primary ROI in the forefoot, and rearfoot contacts had a primary ROI in the rearfoot). Shaded 
red areas indicate regions that were reported more than the baseline condition, and shaded blue regions 
represent a decrease in reporting compared to baseline. The † symbol denotes significantly increased activation 
in regions outside of the primary ROI, and the ‡ symbol indicates significantly decreased activation in the 
primary ROI (one-tailed paired t-tests, p < 0.05). (a) During the conditions involving incongruent visual inputs, 
electrical stimulation was delivered while participants sat and watched an experimenter apply a light touch to a 
region outside of the primary ROI. (b) During conditions involving incongruent postural manipulations with 
the eyes closed, electrical stimulation was delivered while participants stood upright and adopted a posture that 
applied a load away from the location of the primary ROI. (c) Repeated condition ‘b’ with the eyes open.
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things, such as one’s attentional state72. Such variability would be random, however, rather than systematic like the 
changes in location we observed in the present study.

Additionally, the exact timing between stimulation-induced sensation and physically-applied touch likely had 
some variation due to the experimenter’s response time and movement planning. However, this delay was min-
imal compared to the length of stimulation-induced sensation. Human response time and movement planning 
is typically about 262 ms73, more than an order of magnitude smaller than the length of stimulation-induced 
sensation.

Conclusion
Using peripheral nerve stimulation to evoke somatosensory percepts, we developed an experimental design 
that isolated afferent somatosensory information, postural manipulations, and vision. Using this disassociation 
method, visual inputs and postural manipulations were either congruent or incongruent with stimulation-elicited 
somatosensation. Compared to sitting, we found that standing upright may cause changes in percept area due 
to the cognitive expectations of weight bearing and foot-floor contact. Percepts could be focused by congruent 
visual inputs and/or congruent postural manipulations. We also demonstrated that visual capture occurred when 
visual information was incongruent with stimulation-induced sensation, which matches previous studies with 
natural somatosensation38. When incongruent with somatosensation, postural manipulations prevented visual 
capture. Furthermore, our results suggest that expectations based on motor commands can reinforce the location 
of perceived sensations, but they do not alter  percept location.

These characterizations of multisensory integration are important for somatosensory prosthesis development 
because current neural stimulation paradigms can only approximate the afferent signals from natural tactile stim-
uli. Our results suggest that the redundancy of multisensory inputs can improve perceptual precision and provide 
feedback in regions of the foot that are important for balance and locomotion.

Data Availability
The datasets generated during the current study are available from the corresponding author on reasonable  
request.
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