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Evidence for a link between the 
Atlantic Multidecadal Oscillation 
and annual asthma mortality rates 
in the US
Sergio Bonomo   1,2,3, Giuliana Ferrante4, Elisa Palazzi5, Nicola Pelosi2, Fabrizio Lirer2, 
Giovanni Viegi1 & Stefania La Grutta1

An association between climatic conditions and asthma mortality has been widely assumed. However, 
it is unclear whether climatic variations have a fingerprint on asthma dynamics over long time intervals. 
The aim of this study is to detect a possible correlation between climatic indices, namely the Atlantic 
Multidecadal Oscillation and Pacific Decadal Oscillation, and asthma mortality rates over the period 
from 1950 to 2015 in the contiguous US. To this aim, an analysis of non-stationary and non-linear signals 
was performed on time series of US annual asthma mortality rates, AMO and PDO indices to search 
for characteristic periodicities. Results revealed that asthma death rates evaluated for four different 
age groups (5–14 yr; 15–24 yr; 25–34 yr; 35–44 yr) share the same pattern of fluctuation throughout 
the 1950–2015 time interval, but different trends, i.e. a positive (negative) trend for the two youngest 
(oldest) categories. Annual asthma death rates turned out to be correlated with the dynamics of the 
AMO, and also modulated by the PDO, sharing the same averaged ∼44 year-periodicity. The results 
of the current study suggest that, since climate patterns have proved to influence asthma mortality 
rates, they could be advisable in future studies aimed at elucidating the complex relationships between 
climate and asthma mortality.

Asthma is the most prevalent chronic respiratory disease worldwide, affecting more than 330 million people 
of all ethnic groups throughout all ages1,2. Notably, an increasing trend of asthma prevalence is reported in the 
general population3 as well as in children4. In the US, in particular, asthma is one of the most common and costly 
diseases, which about 20 million persons are affected by5; furthermore, it is responsible for more than 5000 deaths 
annually6. Adults are four times more likely to die from asthma than children7, but childhood asthma death rates 
have increased by 3.4% per year from 1980 to 19988.

Asthma is thought to be caused by a combination of genetic and environmental factors9. The latter can con-
tribute to develop and/or exacerbate the disease and are in great part associated with low air quality conditions, 
both indoor (e.g. presence of allergens) and outdoor (e.g. allergens and air pollution10, high tropospheric ozone 
levels, and others). Under specific climatic conditions, such as droughts accompanied by dusty conditions and 
wildfires producing smoke and dust, asthma can get worse. A recent study in the western US, for example, showed 
that the respiratory-related mortality risk significantly increased by 1.55% (0.17% to 2.95%) during worsening 
drought conditions11 in the period 2000–2013. Other short-term studies focusing on the analysis of temperature 
variations led to a wide consensus on extremely high temperatures as a risk factor for respiratory-related mor-
tality rates in warmer regions12,13. However, assessments on the relationship between long-term changes in the 
persistence and intensity of temperature- and precipitation-related extremes and asthma death rates are scarce14 

1Istituto per la Ricerca e l’Innovazione Biomedica, National Research Council (CNR-IRIB), Via Ugo La Malfa 153, 
90146, Palermo, Italy. 2Institute for Marine Sciences, National Research Council (CNR-ISMAR), Calata Porta di Massa, 
80133, Napoli, Italy. 3National Institute of Geophysics and Volcanology (INGV), Via della Faggiola 32, 52126, Pisa, 
Italy. 4Dipartimento di Scienze per la Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica 
di Eccellenza “G. D’Alessandro”, University of Palermo, Palermo, Italy. 5Institute of Atmospheric Sciences and 
Climate, National Research Council (CNR-ISAC), Corso Fiume 4, I-10133, Torino, Italy. Correspondence and requests 
for materials should be addressed to G.F. (email: giuliana.ferrante@unipa.it)

Received: 19 February 2019

Accepted: 16 July 2019

Published: xx xx xxxx

OPEN

https://doi.org/10.1038/s41598-019-48178-1
http://orcid.org/0000-0001-7077-494X
mailto:giuliana.ferrante@unipa.it


2Scientific Reports |         (2019) 9:11683  | https://doi.org/10.1038/s41598-019-48178-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

and scant evidence exists on the impact of temperature and precipitation variations on asthma mortality burden 
on climatological time scales15.

It is worth remembering that climate variations, both in the mean state and in the occurrence of extremes, may 
result from external factors able to change the Earth’s energy balance but also from internal processes and inter-
actions within or between components of the climate system. External factors can be natural, e.g. variations in the 
sun, changes in the orbit of the Earth around the sun, volcanic eruptions or anthropogenic, e.g., human related 
changes in the atmospheric greenhouse gas concentrations or in land use. Increased concentrations of anthro-
pogenic CO2 in the atmosphere, for example, have warmed up the planet by about 1 °C since the pre-industrial 
period, affecting all climate system’s components. The global hydrological cycle, in particular, is getting intensified 
leading to more severe and prolonged heat waves and droughts, especially in summer, interspersed with periods 
of intense precipitation and flooding16.

Internally induced natural climate variability and change, on the other hand, arise from processes within the 
atmosphere and ocean particularly, and from interactions between these components. These interactions occur in 
specific geographical areas but are able to establish “teleconnections” with other regions even over very long dis-
tances and affect in this way temperature, rainfall regimes and climate worldwide. Some outstanding examples are 
represented by teleconnections like El Niño-Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), 
the Atlantic Multidecadal Oscillation (AMO), the Pacific Decadal Oscillation (PDO) and others. All of them are 
expressed as an index whose intensity and sign represent the periodical cycles or phases which characterize the 
long-term fluctuations of these internal climate variability modes.

As an example, the AMO is a multidecadal fluctuation of sea surface temperatures in the North Atlantic, 
which has been linked to rainfall and river flow anomalies over the United States17, increased drought occurrence 
over the Southwest and the North-central United States and fewer drought events over Florida during its warm 
phase14. Sometimes different teleconnections interact with each other: the AMO, for example, can also indirectly 
affect precipitation regimes through the modulation of the influence of ENSO on drought18.

While some published studies have assessed the existence of a link between climatic fluctuations, for exam-
ple in terms of changes in sea surface temperatures or sea level pressure, and the respiratory system12,15,19, a few 
studies exist linking the variations of the indices quantifying internal modes of climate variability and the time 
variations of respiratory diseases and of asthma specifically. One paper, for example, analysed the association 
between winter asthma mortality in the UK and the Scandinavia teleconnection pattern (SCA) which has been 
shown to influence climatic conditions such as precipitation, temperatures and cyclone activity20 in Northern 
Europe during winter.

Starting from the hypothesis that annual asthma death rates could be in part influenced by the occurrence 
of dry and wet periods, this study aims at investigate a possible link between climate variations in sea surface 
temperatures expressed by the AMO and PDO teleconnection indices and annual asthma death rates in the US. 
This study is performed over a relatively long time period (66 years), taking advantage of the availability of US 
annual asthma death rate data encompassing the years 1950–2015, thus giving us the opportunity to explore, for 
the first time, the relationship between AMO/PDO and annual asthma death rates over climatological timescales 
and contributing to fill in one gap in the current state of knowledge on this subject.

The atlantic multidecadal oscillation and pacific decadal oscillation.  The AMO and the PDO are 
internal modes of climate variability. The AMO is a multi-decadal low-frequency alternation of high and low sea 
surface temperatures (SSTs) in the North Atlantic21,22 with a reported oscillation period of about 65–70 years21. 
Enfield et al.18 documented a 65–80 year cycle from 1856 to 1999 in North Atlantic SST data. In 2011, Knudsen 
et al.23 explored the past 8000 years through proxy records and found a quasi-persistent ∼55- to 70-year AMO 
signal linked to the ocean-atmosphere internal variability.

The AMO is known to influence rainfall, temperature and pressure in many regions of the Northern 
Hemisphere24, frequency of Atlantic hurricanes25, North American climate26 and river flows18 as well as the 
hydro-climatic conditions in other areas, like rainfall variability in Northeast Brazil27 and occurrence of droughts 
in the Sahel28,29.

The PDO is a pattern of ocean-atmosphere climate variability in the Pacific which appears as warm or cool 
surface waters in the Pacific ocean poleward of 20°N30. Over the past century, the amplitude of this climate pat-
tern has varied irregularly at interannual (time periods of a few years) to interdecadal (time periods of multiple 
decades) time scales. This climate pattern affects the Northern Hemisphere climate, the North Pacific ecosystem, 
North American precipitation, stream flow, surface temperature anomalies31,32, fluctuations of the Asian mon-
soon33, and a modulation of ENSO34. Minobe35–37 found that PDO fluctuations were most energetic at perio-
dicities in the 15–25 and 50–70 years bands; Chao et al.38 found evidence for oscillatory variations at 15–20 and 
near to 70 years. Willmott et al.39 jointly analysed the November–April PDO index and surface temperature and 
precipitation gridded data and found that the warm phases of the PDO tend to coincide with anomalously warm 
temperatures in northwestern North America, northern South America and northwestern Australia, and anoma-
lously cold temperatures in Eastern China, Korea, Japan, Kamchatka, and the Southeast US and Mexico. Gedalof 
and Smith40 identified 11 regime shifts in the PDO record since 1650, with the most recent occurring in 1976/77. 
With a 23 years average duration of a regime, they suggested that another shift is expected by around the end of 
this century. Many of the climate anomalies associated with the PDO are broadly similar to those associated with 
ENSO phases, though generally not as extreme30,37,41.

One recent study42 analysed the observed temperature time-series since the beginning of the 20th century in 
nine climate regions of the US and found that their time variations and oscillations were accurately reproduced 
by a combination of AMO and PDO oscillations with a monotonic signal associated with anthropogenic CO2 
warming. The small temperature decrease observed in the period 1938–1974 and the large temperature increase 
in the period 1980–2000 were thought to be caused, respectively, by the superposition of a downward trend of the 
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oscillatory mode on an upward trend of the monotonic mode and by the superposition of an upward trend of the 
AMO oscillatory mode on the upward trend of the monotonic mode. Yao et al.43 found periods of warming slow-
down from 1880 to 2012, caused by the superposition of the AMO and PDO oscillations on the steady monotonic 
warming signal, presumably caused by increasing amounts of atmospheric CO2.

Subsequent studies have been focused on the idea that droughts occurred over the contiguous US (in 1996 and in 
1999–2002) were associated with North Atlantic warming (positive phase of the AMO) and northeastern and trop-
ical Pacific cooling (negative phase of the PDO). The multidecadal oscillations in the behavior of the North Atlantic 
Ocean thus plays a crucial role for long-term explanation and predictability of drought frequency in the US44.

Results
Asthma mortality and climatic data.  North America annual asthma death rates from 1950 to 2015 are 
shown in the first four plots of Fig. 1, divided by age groups (from the oldest to the youngest, from top to bot-
tom). Mean death rate value over the entire time interval increases from the youngest to the oldest age group 
(5–14 yr = 0.232; 15–24 yr = 0.369; 25–34 yr = 0.562; 35–44 yr = 1.027). For all age groups, the time-series of 
annual death rates show a similar oscillatory behaviour but a different trend in the 1950–2015 time period. In 
particular, the trend is positive for the two youngest categories and negative for the two oldest ones. Less intense 
positive (negative) trend is observed for the intermediate 15–24 (25–34) years old categories of individuals.

Figure 1 also shows the time-series of North America Land Temperature Anomaly (TA), PDO index and 
AMO index from 1950 to 2015. The AMO index shows positive values from 1950 to 1964, overall negative values 
up to 1995, interspersed with short positive events, and again positive values from 1996 to 2015. The PDO index 
is characterized by negative values from 1950 to 1977 with sporadic positive events, positive values from 1976 
to 1999 except in the period 1988–1992, followed by predominantly negative values from 1999 to 2015. The TA 
time-series exhibits an overall positive trend and an amplification since the 1980s can be observed.

Correlation matrix between asthma death rates, AMO, PDO, and TA.  Table 1 shows the corre-
lation coefficients (and their statistical significance) between asthma death rates for the four age groups, the 
AMO and PDO indices, and TA. To properly calculate correlations45,46, all raw data were first standardized, by 
subtracting the mean and dividing by the standard deviation, and detrended, by subtracting the linear trend from 
the original signal. The AMO index is positively and significantly (p < 0.05) correlated with asthma death rates 
for only the 25–34 and 35–44 age groups (25–34 yr, p = 2.06 × 10−8 r = 0.62; 35-44 yr, p = 1.17 × 10−10 r = 0.69), 
as is TA (25–34 yr, p = 0.035 r = 0.26; 35–44 yr, p = 0.006 r = 0.33). For both AMO and TA, the correlations with 
the other age groups turn out not be statistically-significant. The AMO index is positively and significantly cor-
related with TA. The PDO index is positively correlated with the AMO, TA, and the asthma death rates for the 
two youngest age groups, while negatively correlated with the two oldest age groups; however, none of the PDO 
correlations turn out to be statistically significant47. The four age groups are all significantly (p < 0.05) correlated 
with each other.

Signal analysis results.  The CEEMD analysis revealed five intrinsic mode functions (IMFs) plus the trends 
(IMFs 6) (see Supplementary Information) for all analyzed signals shown in Fig. 1. A first visual analysis of all 
IMFs shows that from IMF2 to IMF4 the asthma death rate signals (all age classes), AMO, and PDO indices, 
recorded significative periodicities. Instead, all IMFs1 recorded predominantly noise, and all IMF5 of asthma 
death rate (all age classes) and TA contain an incomplete cycle. For these reasons we exclude IMFs 1 and 5 from 
successive analysis.

To obtain analytical results of periodicities recorded in the analyzed signals, we apply REDFIT and weighted 
wavelet Z-transform (WWZ) on a total of 23 IMFs (see Supplementary Information). The spectra results with 
periodicities above 95% Confidence Interval (CI) are reported in Table 2.

These results show us that only the IMF4 component of all signal (Fig. 2), except for the TA, have a main 
peaks in the ~37/~57 years periods range, all above the 95% CI and continuous throughout the investigated time 
window (Fig. 3).

Finally, applying a bad-pass filter to the AMO (filter 45–65 years), PDO (filter 35–55 years), and the asthma 
mortality raw data (filter 30–50 years), all insignificant frequencies were removed in order to obtain a more easy 
inspection of the relation between the asthma death rates and climatic indices. In Fig. 4, the raw and band-pass 
filtered data of all age groups death rates, AMO, and PDO are depicted. The visual inspection of all significant data 
suggests synchronicity between AMO and asthma death rates for all age groups, highlighting a slight desynchro-
nisation effect starting from ∼1980. With regard to PDO vs AMO and asthma death rates, negative synchronicity, 
centered at ∼1960 and ∼2000 respectively, occurs. During the 1980–85 time interval, the high positive PDO 
period seems to show null relationship with other data.

Discussion
This is the first study comparing historical US annual asthma death rates for four age groups, from childhood 
(5–14 yr) to adulthood (35–44 yr), with relevant climatic indices, which are known to modulate drought periods 
in this geographic area. Droughts conditions are among the main contributors to environmental factors leading 
to or exacerbating asthma.

The studied period covers a long time-span (66 years), from 1950 to 2015, during which an increasing trend 
in surface air temperature has been observed and the historical records of precipitation, streamflow and drought 
indices have pointed toward increased aridity since 1950 over many land areas48, including the regions considered 
in this paper.
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Mean asthma death rates in the US have revealed a gradual increase, from the younger age-groups to the older 
ages49,50; this might be due to an increase in comorbid conditions (e.g. obesity) aggravating the asthma manage-
ment or possibly causing death events51. Moreover, all age groups share the same increase/decrease sequences 
in asthma death rates throughout the 1950–2015 time period but a different long-term trend52. Since a long 

Figure 1.  Comparison in time domain between the month (grey dashed lines) and annual mean data (black 
plain lines) of the Atlantic Multidecadal Oscillation, and Pacific Decadal Oscillation were reported. Annual 
mean data of the North America Land Temperature Anomaly was reported. Red infill indicate values above 
zero. Annual asthma mortality death rates for the 4 selected age groups (5–14 yr, 15–24 yr, 25–34 yr, 35–44 yr), 
grey dashed lines represent linear trends.
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time-span of asthma mortality rate data in US has been encompassed for the first time, our findings cannot be 
adequately compared to previous results. Nonetheless, results obtained for shorter time intervals (e.g., 1968–
198752) are in agreement with our findings on increasing/decreasing sequences and trends.

The observed variations in asthma death rates cannot be an effect of the four revisions of the International 
Classification of Disease codes (ICD) occurred in the last 56 years (see Methods), since they do not coincide with 
sharp inversion or trend modification which has occurred. Instead, a combination of different factors includ-
ing increasing prevalence of asthma, changing patterns of both disease severity and medical care, as well as an 
enhanced recognition of the disease might be the major drivers of the observed sequence of fluctuations52. In 
particular, when considering the introduction of bronchodilators from 1960’s and the inhaled steroid treatment 
from 1990’s, no evident effects on US annual asthma death rates could be recognized. Noteworthy, an increase 
trend of annual asthma mortality can be observed starting from 1980’s and encompassing the 1990’s up to 1996 
in all the age groups. According to previous studies, this finding might be attributed to different factors relative to 
prescription patterns53, medication misuse, underuse, overuse, as well as toxic effects54.

On the other side, environmental variables may play a role that could mainly be observed when long time 
intervals are taken into account.

Our results pointing toward a correlation between increase/decrease sequences of asthma death rates and the 
AMO index oscillation may indicate a phenomenon previously unrecognized in the link between climate vari-
ability and respiratory events. Indeed, a comparable evolution of the AMO index and the fluctuations of annual 
asthma mortality rates for the four age groups has been observed in the 30-year period 1950–1980. Periods of 
maximum (minimum) in asthma death rates correspond to periods of positive (negative) values in the AMO 
index, thus suggesting the AMO, through its links to drought events, as a possible risk factor for asthma mortality 
in the contiguous US. Additionally, it is known that the 1945–1957 drought period, a European-to-North America 
continent event recorded by several different datasets, indices, and proxies (e.g.: Global Historical Climatic 
Network observation-based dataset, Palmer Drought Severity Index, tree rings55–57; Reworked Coccoliths58 and 
references therein), was for the first time correlated to US asthma death rates. After 1980, a combined superim-
posing effect of increasing TA and positive PDO occurred. This effect impairs the visual correlation between 
mortality data and AMO index for the last 35 years. In order to bypass this problem and to highlight the common 
cyclicity, the EMD analysis allowed us to find main peaks centred at ~57 and ~46 years (mean ∼51 yr) for AMO 
and PDO, respectively. This result is in agreement with previous literature data23,42. In the mortality IMF4 signal, 
main peaks centred at ~37 years were found from the younger to the older age groups. The comparison of all 
IMF4 data in respectively long-term frequency band shows that the asthma death rates signals are in phase with 
the AMO oscillations during the 1950–1980 time interval, where maxima in mortality correspond to positive 
values in AMO signal. After 1980, a slight desynchronization of about 5–7 years has been recognized, probably 
related to the co-occurrence of a long positive phase of the PDO index, the 1980/90 abrupt climatic shift, and a 
period characterized by the two largest volcanic eruption of the century, El Chichón and Pinatubo, occurred in 
1983 and in 1991, respectively.

AMO PDO TA 5/14 15/24 25/34 35/44

AMO 0.342 5.40E-08 0.051 0.235 2.06E-08 1.17E-10

PDO −0.119 0.308 0.210 0.170 0.398 0.653

TA 0.610 0.127 0.663 0.839 0.03515 0.0065

5/14 0.241 0.156 0.055 2.88E-16 3.15E-10 7.49E-10

15/24 0.148 0.171 0.025 0.807 3.76E-10 9.40E-08

25/34 0.625 −0.106 0.260 0.681 0.679 1.77E-27

35/44 0.693 −0.056 0.332 0.670 0.601 0.918

Table 1.  Correlation matrix between Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation 
(PDO), North America land temperature anomaly (TA), and asthma death rates for the four age groups. Bold 
and italic numbers indicates the significant p values < 0.05 and the relative correlation coefficients respectively.

IMF2 IMF3 IMF4 IMF5

5/14 7.3 (yr) (above 95% CI from 1980 to 2015) 26.4 (yr) 36.3 (yr)

15/24 7–8 (yr); 13.9 (yr) (above 95% CI from 1965 to 2015) 29.3 (yr) 36.3 (yr)

25/34 7.1 (yr) (above 95% CI from 1950 to 1990) 29.3 (yr) 36.3 (yr)

35/44 7.3 (yr) (above 95% CI from 1950 to 1998) 29.3 (yr) 36.3 (yr)

TA 6.1 (yr) (above 95% CIfrom 1964 to 2015) 11.5 (yr) (above 95% CI from 1985 to 2015)
20.3 (yr) (above 95% CI from 1950 to 1980)

24 (yr)
66 (yr)

AMO 7.4–8.9 (yr) 17.2–23.2 (yr) 57.0 (yr) 92.8 (yr)

PDO 8.9 (yr) (above 95% CI from 1970 to 2005) 19,0.3 (yr) 46.4 (yr) 66.3 (yr)

Table 2.  Periodicity above 95% CI of asthma death rates for the four age groups, North America land 
temperature anomaly (TA), Atlantic Multidecadal Oscillation (AMO), and Pacific Decadal Oscillation (PDO), 
extracted from the IMF2, IMF3, IMF4, and IMF5.
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The global climate shift in the late 1980s was observed in the atmosphere59,60, ecosystems61 and human-social 
systems62. Three regime shifts (1970s, 1980s and 1990s), distinguished by marked increases in temperatures or 
by abrupt temporal changes across different biophysical systems, have been identified in the last few decades63–68. 
Whilst documented at ocean basin or regional scales, the mechanisms behind these events, their environmental 
interactions, and the synchrony and scale of their effects around the globe are poorly understood. Thus, there is a 
considerable research gap with many disparate observations by different scientific disciplines, without a comprehen-
sive overall assessment. In addition to its modulation of the carbon cycle69; diseases (Vibrio cholerae70); biotic, phys-
ical and chemical land components71,72; freshwater73; precipitation74; marine75,76; cryospheric77 and atmospheric59,60 
systems, herein we hypothesize that the 1980 shift might have modulated also the US asthma mortality cyclicity.

Figure 2.  Comparison in time domain between the AMO, PDO, and annual asthma mortality rates raw (black 
lines) and respectively IMF4 signals (blue lines). Red infill indicate the AMO and PDO values above zero.
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This study certainly has some limitations, such as not having considered gender classifications or having lim-
ited the analysis to a very large area without focusing on small regions, potentially useful to highlight the contri-
bution of local climate or other local effects.

Figure 3.  Signal analysis of the AMO, PDO, and the four annual asthma death rate age groups. In the 6 box 
IMF4 (horizontal boxes, blue line), Lomb-Scargle periodogram (vertical boxes, blue line), and weighted wavelet 
Z-transform power spectrum were reported. The green and black line represent the 95% and 80% Confident 
Level respectively. Significantly periodicity (red dot) and relative values expressed in years were reported.
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On the other hand, the strength of this research lies in the long time interval which is investigated, allowing 
to better identify periodical signals, and in the application of a novel robust methodology (EMD) for studying 
asthma mortality rates.

Conclusions
The interactions among AMO, PDO, and the climatic conditions including the 1980–90 climatic shift, may have 
influenced and shaped the asthma mortality rate fluctuations in the US during the last 66 years. This result is 

Figure 4.  Comparison in time domain between the AMO, PDO, and annual asthma mortality rates raw (black 
lines) and band-pass signals (blue lines) filtered with the wavelet decomposition and reconstruction method, in 
a narrow range centered on long-term trend climatic cycles.
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supported by the finding of a common mean periodicity of about 44 years among the analysed variables, which 
introduces some new elements in the research on asthma epidemiology, though cyclical fluctuations have been 
already documented in the epidemiology of other diseases (e.g., pneumoniae78; influenza79).

Furthermore, since drought variations in US have been shown to be controlled by AMO and PDO indices, 
they may be hypothesized as an emerging risk factor for asthma mortality. This is in agreement with the recent 
statement of the Global Asthma Network: “Environmental factors are much more likely than genetic factors to 
have caused the large increase in the number of people in the world with asthma, but we still do not know all the 
factors and how they interact with each other and with genes”80.

At last, the results of the current study suggest that patterns of climate variability may be emerging risk factor 
for asthma mortality rates. Thus, it would be advisable to develop future correlative studies including the afore-
mentioned climatic indices in order to elucidate the complex relationships between climatic factors and asthma 
mortality. Finally, further studies are envisaged to test the applicability of our methodology also in different geo-
graphic areas and confirm or extend our findings.

Methods
Asthma mortality data.  The annual asthma mortality dataset was downloaded from the US Centers for 
Disease Control and Prevention - National Center for Health Statistics - National Vital Statistics System web-
site (1950 to 1998 data downloaded from https://www.cdc.gov/nchs/nvss/mortality/hist290.htm - 1999 to 2015 
data downloaded from https://www.cdc.gov/nchs/data_access/Vitalstatsonline.htm#Mortality_Multiple). This 
dataset is a compilation of mortality data by 10 yr-age groups, race, gender, and cause of death (according to the 
International Statistical Classification of Disease and Related Health Problems –ICD code), as reported annually.

Asthma deaths were identified using the following ICD codes: ICD-7 241 (from 1950 to 1967), ICD-8/9 493 
(from 1968 to 1998), and ICD-10 J45/46 (from 1999 to 2015). Population age classes were categorized into chil-
dren (5–14 years), youth (15–24 years), young adults (25–34 years), and middle-aged adults (35–44 years), fol-
lowing the World Health Organization classification. Older age groups were not taken into account in view of 
the possible lack of precision of death certificates for asthma in such ages. To study long-term trends, the crude 
asthma mortality rates (n/100000) for the 4 age groups were calculated49.

Climatic indices.  The detrended monthly mean AMO and of PDO data from 1900 to 2015 were downloaded 
from the National Oceanic and Atmospheric Administration (https://www.esrl.noaa.gov/psd/data/timeseries/
AMO/ - https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/PDO/). The AMO and PDO annual mean values 
were calculated by applying a 12 points running average. Annual mean data of the North America land tem-
perature anomalies (TA, 1950–2015) were downloaded from https://www.ncdc.noaa.gov/cag/global/time-series/
northAmerica/land/ytd/12/1950–2015.

Signal analysis.  In order to single out characteristic periodicities in the time-series which we analysed, the 
analysis of the non-stationary (frequency changes with time) and non-linear signals was performed by applying 
the Empirical Mode Decomposition algorithm (EMD) by Huang et al.81.

The Ensemble Empirical Mode Decomposition (EEMD) and its complete variant (CEEMD) are adaptive, 
noise-assisted data analysis methods that improve on the ordinary Empirical Mode Decomposition (EMD) by 
Huang et al.81. This decomposition provides a powerful method to look into the different processes behind a given 
time series data, and provides a way to separate short time-scale events from a general trend.

Empirical mode decomposition is a form of adaptive time series decomposition method where the basis func-
tions are derived from the signal itself, while in some standard forms of spectral analysis methods like Fourier and 
wavelet analysis, the basis functions are fixed as sine and cosine for the first and as mother wavelet functions for 
the second. The decomposition process produce IMFs that are singular function representing an oscillatory mode 
with one instantaneous frequency that needs to satisfy two criteria:

•	 In the whole time series, the number of extrema and the number of zero crossings must be either equal or 
differ at most by one;

•	 At any point in the time series, the mean value of the envelopes which is defined by local maxima (upper 
envelope) and local minima (lower envelope) is equal to zero.

This decomposition technique rests on the assumption that any complicated signal can be decomposed into 
a finite and often small number of components called “Intrinsic Mode Functions” (IMF)81, each of them repre-
senting an embedded characteristic simple oscillation on a separated time-scale. The data were detrended prior to 
analysis. We have added in the Supplementary Materials a complete discussion of EMD analysis and its upgrades, 
as well as of REDFIT and Foster’s wavelet spectral technique.

The IMF components are analysed with “REDFIT”, an evolution of the Lomb-Scargle periodogram82–84, and 
Foster’s85 weighted wavelet Z-transform.

With the purpose of comparing the dominant periodicities recorded in the asthma death rates with the same 
order periodicities documented in the reference global signal (AMO and PDO), we applied a band-pass filter 
using the wavelet multi-level decomposition and reconstruction technique, which is invertible and thus suitable 
for filtering data. In particular, we used the multiresolution analysis (MRA) algorithm to decompose a signal into 
scales with different time and frequency resolution organized according to a hierarchical scheme86.
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