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Abstract
Antifreeze proteins (AFPs) confer the ability to survive at subzero temperatures and are found in many different organisms, 
including fish, plants, and insects. They prevent the formation of ice crystals by non-colligative adsorption to the ice surface 
and are essential for the survival of organisms in cold environments. These proteins are also widely used for cryopreservation, 
food technology, and metabolic genetic engineering over a range of sources and recipient cell types. This review summarizes 
successful applications of AFPs in the cryopreservation of animals, insects, and plants, and discusses challenges encountered 
in cryopreservation. Applications in metabolic genetic engineering are also described, specifically with the overexpression 
of AFP genes derived from different organisms to provide freeze protection to sensitive crops seasonally exposed to subzero 
temperatures. This review will provide information about potential applications of AFPs in the cryopreservation of animals 
and plants as well as in plant metabolic genetic engineering in hopes of furthering the development of cold-tolerant organisms.
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Introduction

Antifreeze proteins and discovery

Antifreeze proteins (AFPs) are biological antifreeze mate-
rials found in many organisms that live in extreme cold 
environments. These proteins bind to ice in such a way that 
inhibits the growth of the ice crystals, allowing the organ-
isms to survive these harsh conditions. Scholander et al. 
(1957) first discovered antifreeze proteins during an inves-
tigation into why Arctic fish can survive in water colder 
than the freezing point of their blood. Similarly, DeVries 
and Wohlschlag (1969) isolated an antifreeze protein during 
an investigation of Antarctic fish. The presence of AFP in 
insects was discovered by Husby and Zachariassen (1980), 
and their existence in plants, fungi, and bacteria was uncov-
ered by Griffith et al. (1992) and Duman and Olsen (1993). 
The naming of AFPs ranges from antifreeze proteins to ice 

structuring or binding proteins or thermal hysteresis pro-
teins. For the purposes of this review, all such proteins will 
be referred to as AFPs.

Source of antifreeze proteins

Antifreeze proteins were first detected in Arctic fish (Scho-
lander et al. 1957) and later grouped into types I, II, III, 
and IV based on their sequences and structures (Fig. 1). All 
these proteins share an ability to alter the freezing point of 
solutions. Duman and Olsen (1993) first discovered AFPs in 
microorganisms such as bacteria and fungi, and discoveries 
of other AFPs in bacteria and fungi followed (Gilbert et al. 
2005; Hoshino et al. 2003; Kawahara et al. 2007; Muryoi 
et al. 2004; Newsted et al. 1994; Singh et al. 2014). Simi-
larly, plant AFPs have been observed in 60 plant species, 
and among them, 11 of these proteins have been purified 
and characterized (Gupta and Deswal 2014). AFPs observed 
in plants, such as winter rye (Griffith et al. 1997), carrot 
(Meyer et al. 1999; Zhang et al. 2004), grass (Sidebottom 
et al. 2000), winter cereals (Yeh et al. 2000), peach (Wis-
niewski et al. 1999), and Japanese radish (Kawahara et al. 
2009), demonstrate high sequence homology.

AFPs have also been discovered in insects, such as milk-
weed bugs (Patterson et al. 1981), budworm moths (Hew 
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et al. 1983), snow scorpionflies (Husby and Zachariassen 
1980), stoneflies (Gehrken and Somme 1987), the beetle 
Dendroides canadensis (Wu et al. 1991), Alaskan insects 
and spiders (Duman et al. 2004), and wood cockroaches 
(Duman 1979). AFPs allow these insects to survive subzero 
winter temperatures by decreasing the freezing points of 
their bodily fluids and inhibiting recrystallization.

Antifreeze proteins have been isolated from many differ-
ent organs, such as the liver, stomach, heart, seeds, stems, 
bark, leaves, and flowers (reviewed in Cheung et al. 2017). 
Although their structures and amino acid sequences vary, 
all bind to different faces of the ice crystal (Jia and Davies 
2002).

Mechanism of action and role of antifreeze proteins

AFPs allow organisms to survive in harsh environments by 
lowering the freezing point of water through binding with ice 
nuclei and inhibiting recrystallization (Figs. 2, 3). Recently, 
Liu et al. (2018) discovered that AFPs from the fungus 
Pichia pastoris lowered freezing temperatures, controlled 
ice crystal sizes, and reduced damage from the freezing of 
hydrated gluten. Similar activities by plant AFPs in protect-
ing plant cells from freezing damage have been reported, as 
well. AFPs from winter-hardy coniferous species have been 
shown to inhibit ice crystal formation (Jarzabek et al. 2009). 
The capacity for insect AFPs to reduce solution freezing 

points has also been well documented (Duman and Serianni 
2002; Duman 2002; Olsen and Duman 1997; Graham et al. 
1997; Tomczak et al. 2003). Interestingly, AFP structures 
in these organisms, such as the ocean pout, winter flounder, 
beetle, moth, and snow flea, are distinct from one another 
(Fig. 4, PDB 101).  

Classification of antifreeze proteins based 
on activity

AFPs can be classified as moderately active or hyperactive 
based on their ice binding positions. Moderately active AFPs 
bind to the prism and pyramidal planes of the ice crystal and 
generate a hexagonal bipyramidal ice crystal shape, whereas 
hyperactive AFPs bind to these planes and the basal plane 
of the ice crystal (Fig. 5), resulting in a circular disk-like ice 
crystal morphology (Knight et al. 1991; Drori et al. 2014; 
Park et al. 2012). The binding of hyperactive AFPs to the 
basal plane may result in a greater inhibitory effect on ice 
growth from whole ice surfaces than that of moderately 

Fig. 1  Structural differences among types of fish AFPs (I, II, III, and 
IV)

Fig. 2  Binding of antifreeze 
proteins (AFPs) to the ice 
nucleus to prevent the formation 
of large ice crystals

Fig. 3  Comparison of the status of ice recrystallization in solutions 
with (+) or without (–) AFP at – 6 °C for 60 min
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active AFPs, with much higher thermal hysteresis (TH) 
activity than that of their moderately active counterparts 
(Kong et al. 2016; Pertaya et al. 2008; Drori et al. 2014).

Classification of antifreeze proteins based on TH 
values

The changing of melting and freezing points conferred by 
AFPs is known as thermal hysteresis (TH). AFPs can also 
be classified based on TH values to indicate their level of 
antifreeze activity. AFPs with high TH values, such as insect 
AFPs (TH values 5−10 °C), are considered hyperactive (Lin 
et al. 2010), while those from plants and fish (TH values, 
0.2−0.6 °C and 1−2 °C) are classified as moderately active 
(Sicheri and Yang 1995; Griffith and Yaish 2004). However, 
hyperactive AFPs do not necessarily ensure better cryo-
preservation than moderately active proteins; for example, 
moderately active AFPs have been shown to protect mouse 
ovarian tissue ten times more effectively than hyperactive 
proteins (Kim et al. 2015; Lee et al. 2015a, b).

Application of antifreeze proteins

The reduction of freezing points by AFPs is non-colligative 
and does not significantly alter melting points regardless of 
concentration (Raymond et al. 2007; Lee et al. 2010; Tom-
czak et al. 2003). Effective inhibition of ice recrystallization 

by low concentrations of AFPs has been reported in previous 
studies (Knight et al. 1984, 1988), and differs from common 
antifreeze agents like methanol, glycerol, or ethylene glycol 
that lower freezing points in proportion to their concentra-
tions. AFPs are highly sought after for use in cryopreservation, 
biotechnology, and the food industry (Christner 2010) owing 
to their unique abilities. The addition of AFPs to cells, organs, 
and tissues of plants and animals has been shown to improve 
cryopreservation efficiency (Jeon et al. 2015; Seo et al. 2018). 
With regards to food, AFPs improve the texture of ice cream 
(Regand and Goff 2006) and the quality of preserved meat 
(Griffith and Ewart 1995). The expression of AFPs in trans-
genic plants increases ice growth therein (Griffith et al. 1997; 
Hoshino et al. 1999; Maunsbach et al. 2001; Holmberg et al. 
2001). This review discusses the applications of diverse AFPs 
in plant and animal biotechnology in detail.

Application of AFPs in cryopreservation

Cell, tissue, and organ cryopreservation methods are well 
established for plants and animals through the use of cryo-
protectants like dimethyl sulfoxide (DMSO), glycerol, and 
polyvinylpyrrolidone (PVP). However, as cell and organ 
membranes are extremely sensitive to freezing and thawing 
cycles, high concentrations of these compounds are neces-
sary to dehydrate the cytosol and minimize the formation of 
intracellular ice crystals during freeze and thaw cycles (Tay-
lor and Fletcher 1998, 1999). These high concentrations can 
also cause cytotoxicity by altering the epigenetic regulation 
of cells (Adler et al. 2006; Thaler et al. 2012) and has led to 
a demand for alternative cryoprotectants with less toxicity. 
As described above, AFPs can inhibit the growth of ice dur-
ing freezing and thawing without significantly affecting the 
melting point. In addition, as these proteins lower the freez-
ing point non-colligatively, they are considered less toxic 
than existing cryoprotectants. Relatively low concentrations 
of AFPs can inhibit the recrystallization of ice compared 
to other cryoprotectants. Many researchers have focused on 
the use of AFPs in the cryopreservation of cells, tissues, and 
organs of plants and animals, owing to their unique proper-
ties. According to a review by Kim et al. (2017), type III 
AFPs are most commonly used for cryopreservation, fol-
lowed by type I AFPs. Type II AFPs are rarely used as cryo-
protectants (Fig. 6).

Application of AFPs to the cryopreservation 
of animal cells, tissues, and organs

Different types of fish AFPs, especially types I and III, 
have been used to improve the cryopreservation of animal 
cells, tissues, and organs, such as oyster oocytes (Naidenko 
1997), bovine and porcine oocytes (Rubinsky et al. 1991, 

Fig. 4  Summary of structural differences among antifreeze proteins 
in different taxa (PDB 101)

Fig. 5  Different ice crystal-binding sites for hyperactive versus mod-
erately active antifreeze proteins
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1992), vertebrate and invertebrate cell lines (Koushafar and 
Rubinsky 1997), intact livers (Lee et al. 1992; Rubinsky 
et al. 1994), and bull sperm (Prathalingam et al. 2006). 
Improved motility and reduced enzyme leakage have been 
observed in sperm cryopreserved with AFPs compared to 
those without (Uperti et al. 1996). The presence of AFPs 
also improves the quality of cryopreserved sheep embryos 
(Baguisi et al. 1997). Rubinsky et al. (1994) reported that 
hearts preserved with AFPs remained viable, as evidenced 
by electron microscopy, while those preserved without AFP 
did not. AFPs have been shown to protect the heart from 
freezing damage and improve viability during cryopreserva-
tion in other studies, as well (Amir et al. 2004, 2005; Soltys 
et al. 2001). Embryos from Sparus aurata injected with AFP 
exhibited improved tolerance to chilling at 0 and – 10 °C with 
a hatching rate of approximately 100% (Robles et al. 2006). 
Jo et al. (2011) found that the addition of fish AFP (500 ng/
mL) to vitrification solution improved the survival rate of 
immature mouse oocytes, while Lee et al. (2015a) reported 
that a diverse array of proteins from yeast, bacteria, and fish 
improved murine oocyte quality and embryonic develop-
ment. Zilli et al. (2014) reported that the addition of type III 
fish AFP to the cryopreservation medium protected sperm 
from freezing and improved their viability as compared to 
other treatments (control, DMSO, and DMSO + type I fish 
AFP). The cryoprotective effect of type III fish AFP has also 
been observed in rabbit embryos (Nishijima et al. 2014). 
Ideta et al. (2014) reported that bovine embryos stored in 
medium containing 10 mg/mL AFP survived for 10 days at 
4 °C. Fish embryos incubated in a solution containing type 
I AFP exhibit a significantly increased survival rate upon 
exposure to 4 or 10 °C (Martínez-Páramo et al. 2008a, b, 
2009). Type I AFPs block potassium and calcium ion chan-
nels, reducing ion leakage from lipid membranes at 4 °C 
(Rubinsky et al. 1992; Baguisi et al. 1997), thereby helping 
to maintain the transmembrane ionic gradient and improve 

cryopreservation of cells and tissues (Arav et al. 1993). 
Similarly, type III AFPs stabilize the plasma membrane by 
interacting with lipids (Wang and Huang 1996). Unlike type 
I and III AFPs, type II AFPs have been associated with cyto-
toxicity in cells, tissues, and organs during cryopreservation 
(Naidenko 1997; Pham et al. 1999; Wang et al. 1999) and 
use thereof is infrequent in cryopreservation (Fig. 6). Higher 
concentrations of AFPs can cause the formation of destruc-
tive, needle-like ice and lead to a decrease in the post-thaw 
survival of cryopreserved cells (Lee et al. 2015a, b; Hansen 
et al. 1993; Carpenter and Hansen 1992). Low concentra-
tions of AFPs are thus preferred in cryopreservation stud-
ies. However, the optimal concentration for cryopreserva-
tion differs depending on cell type and AFP source, and the 
utilization of AFPs in cryopreservation requires fine-tuning 
depending on these different parameters.

Application of AFPs to the cryopreservation 
of plant cells, tissues, and organs

The cryopreservation of plant cells, tissues, and organs has 
also been attempted for long-term species conservation 
(Engelmann 2011; Jeon et al. 2015; Seo et al. 2018). How-
ever, since commonly used explants, such as the callus or 
shoot tips, contain high amounts of cellular water, freez-
ing injuries are likely via the crystallization of this water 
into ice during freezing and thawing, leading to low sur-
vival rates. In addition, as mentioned above, commonly used 
cryoprotectants, such as glycerol, sugars, and DMSO, are 
toxic to certain plant tissues. In 1989, Cutler et al. (1989) 
investigated the effects of AFP vacuum infiltration into the 
leaves of potato (Solanum tuberosum L.), canola (Brassica 
napus), and Arabidopsis thaliana (L.) plants, and found that 
AFPs lowered their freezing temperatures significantly com-
pared to that of water-infiltrated controls, with the amount 
of freezable water reduced across a range of low tempera-
tures. In canola, the freezing temperature was decreased by 
an average of 1.8 °C, indicating that AFP infiltration could 
depress its freezing point to a level that would substantially 
improve crop survival in typical agricultural environments. 
Wang et al. (2001) further reported that the utilization of 
AFPs improves cryopreservation efficiency in rice embryo-
genic cells. Jeon et al. (2015) also observed that the addi-
tion of type I fish AFP to vitrification solution significantly 
increased cryopreservation efficiency in the chrysanthe-
mum. Seo et al. (2018) found that the inclusion of type III 
fish AFPs in cryoprotection solutions improved the cryo-
preservation efficiency of potato shoot tips. Pe et al. (2019) 
observed involvement of AFPs in regulation of cold-respon-
sive genes in Hosta capitate under low-temperature condi-
tion. Currently, however, AFPs are utilized less frequently 

Fig. 6  Use of different types of AFPs in cryopreservation research
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in plant cryopreservation than in that for animals and animal 
tissues.

Application of AFPs in metabolic genetic 
engineering

The introduction of genes encoding AFPs via metabolic 
genetic engineering is another promising strategy to improve 
freeze tolerance in transgenic plants and animals. Many 
studies have attempted to generate freeze-tolerant plants and 
animals via the overexpression of AFP genes in otherwise 
cold-sensitive organisms. Success in this area has recently 
increased substantially.

The production of transgenic plants overexpressing fish 
AFPs has been reported for many species, including Arabi-
dopsis, tobacco, tomatoes, and potatoes (Hightower et al. 
1991; Kenward et al. 1993; Wallis et al. 1997; Worrall et al. 
1998). Ice recrystallization has been successfully inhibited 
in fish AFP-overexpressing transgenic tomato leaf extracts 
(Hightower et al. 1991), and Balamurugan et al. (2018) 
claimed that the overexpression of the AFP gene from rye 
grass (Lolium perenne) in tomato plants resulted in sig-
nificantly higher freeze tolerance than in wild-type plants 
through a threefold increase in relative water content and 
2.6-fold reduction in the electrolyte leakage index. Wallis 
et al. (1997) observed that transgenic potatoes overexpress-
ing AFP genes exhibited significantly less electrolyte leak-
age than control plants after freezing at – 2 °C. The overex-
pression of insect AFP in Arabidopsis resulted in significant 
antifreeze activity and improved frost resistance (Meyer 
et al. 1999), and transgenic Arabidopsis plants overexpress-
ing insect AFP showed increased cold tolerance through a 
decrease in their freezing temperature (Huang et al. 2002). 
Lin et al. (2011) confirmed that the integration of insect 
AFP in transgenic Arabidopsis reduced its freezing tempera-
ture of by 2−3 °C as compared to wild-type plants. Simi-
larly, improved freeze tolerance was observed in transgenic 
Arabidopsis overexpressing an insect AFP from a spruce bud 
worm; the transgenic lines had less ion leakage and malon-
dialdehyde than wild-type lines in temperatures as low as 
– 20 °C for 30 min and 4 °C overnight (Zhu et al. 2010). 
Similarly, the introduction of insect AFPs and type I fish 
AFPs into tobacco inhibits ice recrystallization (Holmberg 
et al. 2001; Kenward et al. 1993) in these plants. Deng et al. 
(2014) claimed that the heterologous expression of AnAFP 
in tobacco resulted in less wilting and less change in relative 
electrical conductivity under cold stress (– 3 °C) compared 
to wild-type plants after a 16 h freeze and 1 h thaw. Con-
versely, the overexpression of type II fish AFPs in tobacco 
does not confer cold tolerance (Kenward et al. 1999). Wang 
et al. (2008) also observed that transgenic tobacco over-
expressing AFP from the insect Microdera punctipennis 

demonstrated improved freeze tolerance over wild-type 
plants through reductions in ion leakage and malondial-
dehyde levels. Fan et al. (2002) confirmed that transgenic 
expression of the carrot AFP gene could enhance the toler-
ance of tobacco plants to cold through a significantly greater 
reduction in ion leakage (1−30%) than that of the wild type 
(1−80%). Transgenic wheat overexpressing AFP showed 
significant freeze tolerance at – 7 °C, with high levels of 
antifreeze activity (Khanna and Daggard 2006). The most 
effective antifreeze proteins for different plants, however, 
depend on AFP expression level, localization, and stability.

The introduction of type I fish AFP to salmon fish eggs 
resulted in the generation of cold-tolerant transgenic salmon 
fishes (Hew et al. 1992). Hew et al. (1999) went on to report 
that the integration of fish AFP into salmon resulted in 
inherited expression of the AFP gene in the  F3 generation. 
Similarly, the microinjection of ocean pout type III AFP 
into goldfish oocytes resulted in transgenic goldfish with 
improved resistance to low temperatures (Wang et al. 1995), 
and Hobbs and Fletcher (2008) also transferred the AFP 
gene to salmon to improve freeze resistance.

The overexpression of type III fish AFP has been shown 
to improve antifreeze activity and protect against freezing 
damage during the cryopreservation of transgenic mouse 
ovaries (Bagis et al. 2006, 2008). Uhlig et al. (2011) also 
reported that the heterologous expression of AFPs in Escher-
ichia coli yielded antifreeze activity and caused crystal 
deformation, recrystallization inhibition, and TH. Similarly, 
the expression of fish AFP in Drosophila increased anti-
freeze activity, and the transgenic flies were able to survive 
significantly longer in near freezing temperatures than con-
trols through the prevention of apoptosis (Nicodemus et al. 
2006; Neelakanta et al. 2012).

Conclusion

AFPs from diverse taxa, including fish, bacteria, fungi, 
insects, and plants, allow organisms to survive at subzero 
temperatures by reducing the freezing point for ice growth 
therein. AFPs derived from different species have been used 
successfully for the cryopreservation of plant and animal 
cells and organs, although their ability to reduce the freez-
ing temperature is dependent on the species and cell type 
from which the AFP is derived, AFP type and concentra-
tion, and cryopreservation protocol. Extensive research has 
focused on the development of AFP-overexpressing trans-
genic animals or plants to improve their survival in extreme 
cold conditions. However, the cytotoxicity of certain AFPs 
somewhat limits their cryopreservation applications. As 
such, the identification of novel AFPs better suited to cryo-
preservation would have important practical implications. 
The development of a technique for direct delivery of the 
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AFPs into cells to control crystal growth without damaging 
the cells is also necessary for improving the applicability of 
AFP in future cryopreservation techniques.

Future perspectives

Successful application of AFPs in cryopreservation of 
animals and plants has been reported in several different 
studies. However, due to low yield and high cost, future 
applications for AFPs remain uncertain. Increasing produc-
tion yields with different molecular biological techniques is 
needed, and lowering the cost of AFP use in cryopreserva-
tion and the food industry will increase future usage. The 
overexpression of AFP genes derived from different organ-
isms has been shown to confer freeze protection to sensi-
tive crops exposed to seasonally subzero temperatures, and 
costs associated with transgenic plants have been decreasing 
rapidly. We expect the production of AFP-expressing trans-
genic plants via metabolic genetic engineering to increase, 
especially to improve frost tolerance in garden plants and 
ornamental cut flowers, supporting further development in 
the global horticultural industry.
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