
Sequence analysis

DeepPhos: prediction of protein

phosphorylation sites with deep learning

Fenglin Luo1, Minghui Wang1,2,*, Yu Liu1, Xing-Ming Zhao3 and Ao Li1,2

1School of Information Science and Technology, 2Centers for Biomedical Engineering, University of Science and

Technology of China, Hefei AH230027, China and 3Institute of Science and Technology for Brain-Inspired

Intelligence, Fudan University, Shanghai 200433, China

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on September 14, 2018; revised on November 19, 2018; editorial decision on December 12, 2018; accepted on December 12, 2018

Abstract

Motivation: Phosphorylation is the most studied post-translational modification, which is crucial

for multiple biological processes. Recently, many efforts have been taken to develop computational

predictors for phosphorylation site prediction, but most of them are based on feature selection and

discriminative classification. Thus, it is useful to develop a novel and highly accurate predictor that

can unveil intricate patterns automatically for protein phosphorylation sites.

Results: In this study we present DeepPhos, a novel deep learning architecture for prediction of

protein phosphorylation. Unlike multi-layer convolutional neural networks, DeepPhos consists of

densely connected convolutional neuron network blocks which can capture multiple representa-

tions of sequences to make final phosphorylation prediction by intra block concatenation layers

and inter block concatenation layers. DeepPhos can also be used for kinase-specific prediction

varying from group, family, subfamily and individual kinase level. The experimental results demon-

strated that DeepPhos outperforms competitive predictors in general and kinase-specific phos-

phorylation site prediction.

Availability and implementation: The source code of DeepPhos is publicly deposited at https://

github.com/USTCHIlab/DeepPhos.

Contact: mhwang@ustc.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Post-translational modification (PTM) is a pivotal mechanism of

regulating cellular functions by the covalent and generally enzymatic

modification, which plays vital roles in regulating various biological

processes, e.g. gene expression, cell division and cell signaling

(Walsh, 2006). As one of the most well studied PTMs, protein phos-

phorylation usually phosphorylated on serine (S), threonine (T) and

tyrosine (Y) residues, and it is fundamental for regulating cellular

process such as DNA repair, growth, motility, metabolism and cell

cycle control (Li et al., 2008; Matthews, 1995; Trost and Kusalik,

2011). There are evidences showing that more than 30% of eukary-

otic proteins can be phosphorylated, and half of them closely relate

to different kinds of diseases, especially cancer (Walsh, 2006).

Due to the significance of phosphorylation in understanding bio-

logical systems of proteins and guidance to basic biomedical drug

design, researches on phosphorylation were booming in the last dec-

ades. And numerous trials including experimental methods and

computational prediction strategies have been made to identify

phosphorylation sites (Huang et al., 2015; Qin et al., 2016; Trost

et al., 2013; Trost et al., 2016). Conventional biological experimen-

tal identification methods including low-throughput 32P-labeling

(Aponte et al., 2009; Beausoleil et al., 2006) and high throughput

Mass Spectrometry techniques can annotate phosphorylation sites

accurately, therefore accumulating a large number of phosphoryl-

ation examples. However, traditional experimental methods are

labor-intensive and time-consuming especially applied in verifying
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huge amounts of candidate phosphorylation sites (Liu et al., 2018;

Wang et al., 2017; Wen et al., 2016). Alternately, computational

approaches are becoming popular to deal with the difficulties of ex-

perimental strategies.

To date, there are more than 40 computational methods for

identifying phosphorylation sites, and a considerable number of

them are based on machine learning algorithms including Support

Vector Machine (Huang et al., 2015), Bayesian decision theory (Xue

et al., 2006), logistic regression (Li et al., 2018) and Random forest

(Fan et al., 2014). For example, Gao et al. (2010) proposed an algo-

rithm called Musite, which uses protein disorder scores as well as

local amino acid sequences frequencies and k-nearest neighbor fea-

tures to further improve the prediction accuracy. Xue et al. (2008)

proposed a Markov cluster algorithm based method, Group-based

Prediction System (GPS), which uses an amino acid substitution ma-

trix to predict kinase-specific phosphorylation sites.

These computational methods and tools promote the under-

standing on phosphorylation and have efficient improvement on

performance. However, the majority of them perform a three-stage

classification using multiple sequence based features, such as protein

disorder, physicochemical properties or extra domain knowledge

(Gao et al., 2010; Xue et al., 2008). Generally, the first stage is to

generate all the features using additional tools, but not all of these

features would be used in final prediction for the large number of

features and the redundancy among features (Fan et al., 2014; Wei

et al., 2017). So these predictors choose some crucial and effective

features in the second stage. Finally, applying the selected features to

the machine learning algorithm for the discriminative classification.

Although these methods have achieved good performance, they rely

on the ranking of important features to identify the phosphorylation

sites, and this situation may bring over optimization and cause bias

in evaluation (Wang et al., 2017). Recently, deep learning has made

breakthrough on image recognition (Cireşan et al., 2011), natural

language understanding and sentiment analysis (Collobert et al.,

2011). A distinctive advantage of deep learning lies on the fact that

instead of choosing features manually, it can automatically discover

complex patterns and capture the high level abstraction adaptively

from the training data, which seems to be an attractive solution for

the challenge of phosphorylation site prediction.

So far, a number of deep learning-based explorations have been

successfully undertaken in different bioinformatics areas (Alipanahi

et al., 2015; Sun et al., 2017). For example, to predict DNA and

RNA targets of binding proteins, Babak et al. proposed a novel

method called DeepBind (Alipanahi et al., 2015) that is established

upon convolution neural network (CNN), and the results suggest that

CNN has stable ability for abstract sequence representation and motif

discovery. Indeed, deep learning is attractive for PTM site prediction.

For example, Muscadel (Chen et al., 2018) successfully applies long

short-term memory (LSTM) recurrent neural networks (RNNs) to

predict eight types of lysine PTMs, and DeepNitro (Xie et al., 2018)

uses multi-layer deep neural network to predict nitration and nitrosy-

lation sites. As a pioneer approach for phosphorylation site predic-

tion, Wang et al. lately presented Musitedeep (Wang et al., 2017) that

adopts a multi-layer CNN architecture to discover complex sequen-

tial representation automatically. By comprehensive analysis of vari-

ous results obtained by MusiteDeep and other competitive methods,

the CNN architecture is shown to be superior to the traditional meth-

ods, which inspires further comprehensive exploration and more care-

fully designed CNN architectures that hold the promise of

performance improvement in predicting phosphorylation sites.

In this work, we present a novel multi-layer CNN architecture,

DeepPhos, to accurately predict phosphorylation sites with protein

sequential information. Different from aforementioned deep learn-

ing methods, DeepPhos consists of so-called densely connected

CNN (DC-CNN) blocks in which convolutional layers are con-

nected to each other simultaneously via intra block concatenation

layers (Intra-BCL), to not only efficiently enhance the flow of phos-

phorylation information but also integrate different levels of repre-

sentations extracted by convolutional layers. Meanwhile, multiple

DC-CNN blocks with distinct window and filter sizes are adopted

to capture the vital sequence representations of protein phosphoryl-

ation sites automatically, which are further integrated by an inter

block concatenation layer (Inter-BCL) to make final prediction. To

evaluate the performance of DeepPhos, we collected plenty of veri-

fied phosphorylation examples from several databases, which are

used to train and valuate the models. The evaluation results reveal

that DeepPhos outperforms existing methods in general phosphoryl-

ation prediction. In addition, our architecture can be successfully

applied to a series of kinase-specific phosphorylation site prediction

tasks varying from kinase group level to individual kinase level by

layer transfer from a base general DeepPhos model. Further evalu-

ation also demonstrates DeepPhos has better performance for

kinase-specific phosphorylation site prediction.

2 Materials and methods

2.1 Overview
DeepPhos is a novel deep learning architecture for phosphorylation

site prediction, and the working flow of DeepPhos is described in

Supplementary Figure S1 and Figure 1a. First, all verified data from

multiple databases was used to construct the dataset for deep learn-

ing models. The dataset construction including data collection and

pre-processing is illustrated in Section 2.2. The following procedures

consists of training of DeepPhos for general and kinase-specific pre-

diction at group, family, subfamily and individual kinase level,

which were evaluated on independent test data for performance as-

sessment. The details of architecture and training process for general

and kinase-specific prediction are introduced in Subsection 2.3.

Subsection 2.4 is the performance assessment adopted in this study.

2.2 Data collection and pre-processing
To ensure the high quality of data, we collected the experimentally

verified phosphorylation sites of human proteins from several data-

bases including Phospho.ELM (Diella et al., 2004), PhosphositePlus

(Hornbeck et al., 2012), HPRD (Peri et al., 2004), dbPTM (version

3.0) (Lu et al., 2013) and SysPTM (Li et al., 2009). For general site

prediction, we removed all repetitive items from different databases,

then the CD-HIT tool (Huang et al., 2010) with similarity threshold

of 40% (Pan et al., 2014) was applied to phosphorylation proteins

to reduce the sequence redundancy of phosphorylation proteins and

avoid model overfitting. Finally 12 810 protein sequences were

reserved for further general phosphorylation site prediction in this

work. Next, we extracted all experimentally verified phosphoryl-

ation sites for S/T sites and Y sites from those filtered proteins

sequences as positive examples, the number of S/T sites and Y sites

is 140 120 and 27 691, respectively. As for negative examples, we

randomly selected a subset of the other S/T and Y sites to match the

number of positive examples (Gnad et al., 2010). For kinase-specific

prediction, similar pre-processing procedure was used and we then

cluster all the 8130 phosphorylation sites with kinase annotations

into group, family, subfamily and individual kinase levels as

described in previous study (Xue et al., 2008). Meanwhile, a com-

mon performance evaluation strategy used in deep learning methods
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for sequence analysis was adopted in this study, which separates the

dataset into strictly non-overlapping training, validation and independ-

ent test randomly (Min et al., 2017; Zhou and Troyanskaya, 2015). In

this way, the training dataset is used to adjust the weights of the model,

and the validation dataset is used to avoid overfitting (Min et al.,

2017). The independent test data (�10% for general and �20% for

kinase-specific sites) is used to assess the performance of DeepPhos and

compare with other phosphorylation predictors (Ismail et al., 2016; Li

et al., 2015). The detailed description of training dataset and independ-

ent dataset can be found in Supplementary Materials.

2.3 Training of DeepPhos model
DeepPhos is a novel CNN architecture, which can map the local

protein sequence to a high dimensional continuous representation

by a series of non-liner transformation and finally generate the clas-

sification results of phosphorylation sites. Instead of using common

multi-layer CNN directly, DeepPhos utilizes different DC-CNN

blocks (Fig. 1b) that could efficiently ensure the critical protein se-

quence information for phosphorylation prediction. More details of

the architecture are described as below:

For a local protein sequence x, the input of DeepPhos with total-

ly K DC-CNN blocks is a set of sequence features Ek 2 RLk�I for

DC-CNN block kðk ¼ 1; 2; . . . ;K), with I and Lk being the size of

the amino acid symbol dictionary and the corresponding local win-

dow size of phosphorylation sites, respectively. In this study, we

code protein sequences by one-hot encoding scheme, and therefore I

is set to 21 (Khurana et al., 2018). We carefully explored various

configurations of DC-CNN blocks with distinct window sizes in the

task of phosphorylation site prediction and finally develop an effi-

cient network architecture with K ¼ 3 and window sizes of 15, 33

and 51, which have been previously proposed for phosphorylation

site (Blom et al., 2004; Wei et al., 2017; Xue et al., 2006) for DC-

CNN block 1, 2 and 3, respectively.

The convolutional layers in each DC-CNN block perform one-

dimension convolution operation along the protein sequence length

(Khurana et al., 2018) (Supplementary Fig. S2) and generate corre-

sponding values, which are then applied to activation function ak

(here we use ReLU), in order to activate the neurons and realize the

non-linear transformation. For DC-CNN block k, the feature maps

generated by the first convolutional layer are defined as:

hk
1 ¼ akðWkEk þ bk

1Þ (1)

where Wk represents the weight matrix with the size of I � Sk �D,

I � Sk is the size of filters and Sk¼3, 7, 13 for k ¼ 1, 2, 3, D is the

number of filters and bk
1 refers to the bias item. In order to reduce the

risk of overfitting in training, dropout is used in each convolutional

layer, which abandons some neurons randomly after convolution layer.

To enhance the flow of phosphorylation information in the DC-

CNN blocks of DeepPhos, we introduce Intra-BCLs that connect all

previous convolutional layers with subsequent convolutional layers

(Fig. 1b). Consequently, the input of the ith convolutional layer receives

the feature maps as the concatenation of sequence feature and the out-

put of all previous layers, which can help to transfer the abstraction of

previous layers with different levels to current layer as the network

becomes deep (Huang et al., 2017). Accordingly, the output feature

maps of the ith convolutional layer in DC-CNN block k are concaten-

ated along the feature dimension, which can be calculated as follows:

hk
i ¼ akðWk

i ½Ek; hk
1; . . . ;hk

i�1� þ bk
i Þ; 2 � i � C (2)

where hk
i�1 refers to the feature maps produced in the (i�1)th convo-

lutional layer, Wk
i 2 R

D�Sk�D0 with D
0

is the total number of filters

for convolutional layer 1 to i and C is the number of convolutional

layers in each DC-CNN block and is set to 5 in this study.

After generating the sequence representations of protein phos-

phorylation sites using different DC-CNN blocks, they are further

integrated by an Inter-BCL in DeepPhos (Fig. 1b) that performs con-

catenation along the first dimension as follows:

hf ¼ ½akðh1
CÞ; . . . ; akðhk

CÞ� (3)

where hk
C represents the feature maps produced by convolutional

layer C in the kth DC-CNN block. In this way, multiple feature

maps are concatenated and then transformed to one-dimensional

tensor h
0

f 2 Rd by a flatten layer. After that fully connect neural net-

work is applied to generate the input of final softmax function,

fc ¼ hf W
f , Wf 2 R

d�n and n is the number of neurons. Finally, the

prediction score of phosphorylation is calculated as follows:

Pðy ¼ 1jxÞ ¼ 1

1þ e�fcWc
(4)

where Wc 2 R
fc�q, q represents the number of categories to be pre-

dicted, and P y ¼ 1xð Þ is between 0 and 1. In this study, the

Fig. 1. DeepPhos overall framework. (a) The working flow of kinase-specific

phosphorylation site prediction in DeepPhoos. (b) The network layout of the

DeepPhos approach. The raw sequences are transformed into a set of se-

quence features by one-hot codings. Intra-BCLs between two convolutional

layers in each DC-CNN block are designed for connecting previous and cur-

rent feature maps as shown by the different colorful arrows, in which feature

maps are concatenated in the feature dimension. S1 in the convolutional

layers refers to the width of the filters used in convolutional operation, D rep-

resents the number of filters used in convolutional layers, and Sk � D 0 refers

to the size of output feature maps. The representations generated by multi-

blocks are further integrated by inter-BCL and transformed to FC layer (n rep-

resents the number of neurons), and finally generate the phosphorylation

prediction by softmax function (Color version of this figure is available at

Bioinformatics online.)
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phosphorylation prediction task is a binary classification problem,

so the scores of non-phosphorylation can be formulated as:

Pðy ¼ 0jxÞ ¼ 1� Pðy ¼ 1jxÞ: (5)

The standard cross-entropy for binary classification problem is

adopted as cost function to minimize the training error:

LC ¼ �
1

N

XN

j¼1

yjlnPðyj ¼ 1jxjÞ þ ð1� yjÞlnPðyj ¼ 0jxjÞ (6)

where N refers to the total number of training examples, xj refers to

the jth input local sequence and yj refers to corresponding phosphor-

ylation status label of the jth input sequence. In addition, to relieve

the overfitting, L2 regularization is adopted in training, thus the

final objective function of DeepPhos is defined as:

minW Lc þ k
X
ðkWk2Þ

2 (7)

where k is the regularization coefficient, and W2 means the L2

norm of weight matrix. In this study, mini batch strategy is used

during training process, which divides the training dataset into sev-

eral parts according to the mini-batches for each epoch stochastical-

ly. We choose Adam optimizer, a widely used optimizer that can

adjust learning rate automatically.

DeepPhos can be applied to phosphorylation site prediction including

general and kinase-specific prediction at group, family, subfamily or indi-

vidual kinase level. To this end, for general phosphorylation site predic-

tion, all available S/T and Y phosphorylation sites data are used to train

deep learning models. On the other hand, training of deep learning mod-

els for kinase-specific phosphorylation site prediction is more challenging

as currently most of the verified phosphorylation sites lack corresponding

kinase annotation (Wang et al., 2017). To address this issue, we first

trained and validated a base deep learning model Mp by phosphorylation

data without kinase annotation. Afterwards, we further fine-tuned Mp to

obtain final deep learning model Mt using kinase-specific training and

validation data (Fig. 1b). In this study, we adopted a transfer learning

fine-tuning strategy called layer transfer (Yosinski et al., 2014), to transfer

the network in Mp including convolutional layers for all DC-CNN

blocks, Intra-CBLs/Inter-CBLs, as well as the learned weight matrices

and bias items associated with the convolutional layers.

2.4 Performance evaluation
To assess the performance of phosphorylation site prediction, sev-

eral commonly used statistical measurements are employed in this

study, including sensitivity (Sn), specificity (Sp), overall accuracy

(Acc), precision (Pre), Matthew’s correlation coefficient (MCC) and

F1 scores. The detailed definitions are:

Sn ¼ TP

TPþ FN
(8)

Sp ¼ TN

TPþ FP
(9)

Pre ¼ TP

TPþ FP
(10)

Acc ¼ TPþ TN

TPþ TNþ FPþ FN
(11)

MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞ � ðTPþ FPÞ � ðTNþ FNÞ � ðTNþ FPÞ

p

(12)

F1 ¼ 2� Pre� Sn

Preþ Sn
: (13)

Here, TP is the number of positive samples correct classified in

prediction, and TN represents the number of negative samples cor-

rect classified by predictors. FP and FN represent the numbers of

positive or negative samples that classified by mistake, respectively.

Therefore, Sn refers to the percentage of true positive samples cor-

rect classified by predictors, and similarly, Sp is the percentage of

true negative samples. Pre represents the ratio of true positive sam-

ples that generated by predictors, MCC indicates the balance quality

of positive and negative data, F1 score is a metric that comprehen-

sively considers precision and recall. Furthermore, we also used

receiver-operating characteristic (ROC) curve as well as the area

under ROC curve (AUC) to assess the overall performance, the

closer ROC curve to the left corner, the closer the AUC value to 1,

which demonstrates that the overall performance is better.

3 Results

3.1 Evaluation of DeepPhos for general phosphorylation

site prediction
In this section, we first compared DeepPhos with different deep learn-

ing network architectures including CNN (LeCun et al., 1998),

RNN, fully connected neural network (FCNN) and LSTM on the in-

dependent test data as described in Section 2.2. The AUC values of

these methods on residues S/T and Y were listed in Supplementary

Table S1. In general, DeepPhos obtained higher AUC values than

other deep learning architectures, showing that DeepPhos had better

overall performance. For example, on Y sites, the AUC value of our

architecture is 71.58%, which has 3.14, 2.81, 3.66 and 3.82% im-

provement over CNN, RNN, LSTM and FCNN, respectively. In add-

ition to AUC values, Sn, Sp, Acc, MCC and F1 score were also

calculated in this study to evaluate the performance of DeepPhos.

Here, we followed the study of Liu et al. (2018) to set the Sp thresh-

old at the high and medium stringency level ¼95 and 90%, respect-

ively. Details of these measurements about S/T and Y sites were listed

in Table 1 and Supplementary Table S2. It is obvious that DeepPhos

consistently achieved higher performance on all the measurements

than other deep learning architectures. For S/T sites, Sn, Acc, MCC,

Pre values and F1 score of the prediction performance of DeepPhos at

the high-stringency level are 33.86, 64.43, 36.48, 87.13 and 48.77%,

respectively. Among the other methods, the performance of LSTM is

better than FCNN, RNN and CNN at the medium and high-strin-

gency level. For example, the Sn value of LSTM is 31.44%, while the

values of FCNN, RNN and CNN are 23.77, 26.98 and 30.19%, re-

spectively. However, the performance of LSTM is not as good as

other deep learning architectures on Y sites, indicating that LSTM

may not be an ideal architecture for phosphorylation site prediction.

In comparison with other architectures, DeepPhos achieves prediction

performance with Sn of 18.59%, Acc of 56.79%, MCC of 21.05%,

Pre of 78.76% and F1 score of 30.08% on Y sites at the high-strin-

gency level. In short, DeepPhos achieved better overall performance

than other deep learning architectures on S/T and Y sites, suggesting

that DeepPhos is an efficient deep learning framework that suitable

for phosphorylation site prediction. In addition, Supplementary

Figure S3 shows that the performance of the independent test data is

similar to that obtained by 10-fold cross-validation as following pre-

vious study (Dou et al., 2014).

To further assess the performance of DeepPhos, we compared

DeepPhos with several existing tools for prediction of general

phosphorylation sites using independent test data. For general
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phosphorylation prediction on S/T and Y sites, several well-known

predictors including NetPhos3.0 (Blom et al., 2004), PPSP (Xue

et al., 2006), Musite (Gao et al., 2010) and MusiteDeep (Wang

et al., 2017) were used to make comparison. In general, DeepPhos

achieved higher performance than other four predictors. For Y sites,

the AUC value of DeepPhos is 71.58%, which is 15.51, 7.49, 17.58

and 4.98% higher than NetPhos3.0, PPSP, Musite and MusiteDeep,

respectively. As for S/T sites, NetPhos3.0, PPSP, Musite and

MusiteDeep predictors achieve AUC value of 63.18, 74.14, 57.94

and 77.58%, respectively, while DeepPhos obtains a better perform-

ance than these predictors with AUC value of 80.43%.

Furthermore, we also calculated the Sn, Pre, Acc, MCC and F1 score

of all compared predictors, and the bar graphs of these predictors

are displayed in Figure 2. We find that Musite has satisfied Pre val-

ues, but other measurements are not as good as other predictors

when predicting Y sites. PPSP, NetPhos3.0 and MusiteDeep have a

good balance of prediction performance. Consistent with previous

study (Wang et al., 2017), deep learning-based MusiteDeep shows

better performance compared with other predictors. Take Y site as

an example, the performance of MusiteDeep at medium level are Sn

of 24.95%, Acc of 57.48%, MCC of 19.70%, Pre of 71.41% and

F1 score of 36.98%. In comparison, DeepPhos further improves the

prediction performance and the corresponding Sn, Acc, MCC, Pre

and F1 score reach 30.11, 60.06, 25.13, 75.09 and 42.99%, respect-

ively. These results show that with the novel deep learning architec-

ture, DeepPhos compared favorably with existing predictors in

general phosphorylation prediction.

3.2 Comparison with existing tools for kinase-specific

phosphorylation site prediction
In this session, we compared DeepPhos with some existing predictors

for kinase-specific prediction including PPSP, GPS and MusiteDeep

based on independent test data. In consistent with previous studies

(Wang et al., 2017; Xu et al., 2018), we selected some kinase groups,

families, subfamilies and individual kinases on S/T and Y sites with

the largest sample sizes for performance assessment. We compared

with MusiteDeep only in family level on S/T sites for MusiteDeep

can be applied to predict kinase families (Wang et al., 2017).

Figure 3 and Supplementary Figure S4 display the ROC curves with

the corresponding AUC values of different predictors. From the

results, DeepPhos achieved comparable or better performance than

other predictors. Take group CMGC as an example, the AUC value

of DeepPhos is 91.85%, while PPSP and GPS have the AUC value of

82.12 and 83.23%, respectively. As for group CAMK, DeepPhos

obtains the AUC value of 90.92%, while the corresponding AUC of

PPSP and GPS are 71.26 and 70.57%, respectively. Also, as shown in

Supplementary Figure S4, the AUC value of group AGC, Atypical

and TK of DeepPhos are 88.43, 83.20 and 82.04%, respectively,

which are higher than other methods. Take family CDK as an ex-

ample, DeepPhos achieves the AUC value of 95.98%, which has an

improvement of 3.01, 9.88 and 5.53% compared with MusiteDeep,

PPSP and GPS. As for subfamily CDC2, the performance of both

GPS and DeepPhos are significantly better than PPSP, which achieve

the AUC values of 91.08 and 93.60%, respectively. For prediction of

subfamily and individual kinase level, GPS also achieved good per-

formance with high AUC values. For example, the performance of

subfamily CDC2, subfamily ERK1, kinase CK2a1 and kinase CDK1

are AUC of 91.08, 92.36, 84.43 and 91.8%, respectively. In compari-

son, DeepPhos achieved comparable or better AUC values than GPS.

In addition to AUC values, we listed the metrics of Sn, Acc,

MCC, Pre and F1 scores with the high specificity stringency of differ-

ent predictors in Table 2 and Supplementary Table S3. From these

results, we find that DeepPhos offered a balanced performance with

not only good Sn and Pre, but also higher MCC and F1 scores. For

example, in prediction of group CMGC, DeepPhos achieves the Sn of

67.24%, Acc of 81.07%, MCC of 64.75%, Pre of 93.104% and F1

score of 78.10%, while other predictors have lower values. In conclu-

sion, aforementioned analysis shows that DeepPhos obtained better

performance in prediction of kinase-specific phosphorylation sites

varying from group, family to subfamily and individual kinase level.

To further analyze the significance of layer transfer on kinase-

specific prediction, we also compared the results of DeepPhos with

the model without layer transfer at group level. Take CMAK group

as an example, the AUC value of DeepPhos is 90.9%, while the

Table 1. Performance of different architectures on S/T sites at the

medium and high-stringency levels

Stringency Measure DeepPhos FCNN RNN LSTM CNN

Sp=90% Sn(%) 47.80 37.95 40.75 45.21 43.77

Acc(%) 68.90 63.98 65.37 67.60 66.89

MCC(%) 41.69 32.74 35.32 39.37 38.09

Pre(%) 82.70 79.15 80.28 81.88 81.40

F1(%) 60.58 51.30 54.06 58.25 56.93

Sp=95% Sn(%) 33.86 23.77 26.98 31.44 30.19

Acc(%) 64.43 59.39 60.99 63.22 62.59

MCC(%) 36.48 26.75 29.98 34.25 33.06

Pre(%) 87.13 82.62 84.36 86.28 85.77

F1(%) 48.77 36.92 40.88 46.09 44.66

Note: Best performing method in bold.

Fig. 2. Performance comparison of different predictors for general phosphor-

ylation S/T and Y sites prediction at the high and medium stringency levels.

The left field represents the Sp values of 90%, the right part represents the Sp

of 95%. The upper rows refer to the performance of Y sites, the rows under

refer to the S/T sites. The Sn, Acc, MCC, Pre and F1 represent the different

measurements (Color version of this figure is available at Bioinformatics

online.)
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AUC value of model without layer transfer is 84.0%, more details

were displayed in Supplementary Table S4. The results show that

the application of layer transfer in DeepPhos was significant in

kinase-specific phosphorylation prediction for solving the small

number of examples with kinase annotation.

3.3 Visualization of learned features
In order to distinguish the abstractions generated by our deep learn-

ing architecture, we visualized the features extracted by DeepPhos

and original one-hot coding of protein sequences in this section.

To observe the difference between phosphorylation and

non-phosphorylation intuitively, a popular visualization algorithm

t-Distributed Stochastic Neighbor Embedding (Maaten and Hinton,

2008) was used here to visualize the results, by which we squeezed

the high-dimensional features into 2D space and normalized the

value to �1 to 1.Take group CMGC as an example, the representa-

tion of abstract features extracted by our architecture and the origin-

al sequence features were plotted in Figure 4. It is difficult to

separate the phosphorylation sites from non-phosphorylation sites

by original sequences one-hot coding, while it is much clearer for us

to identify these two classes after the abstract representation of

DeepPhos. The comparison for some other kinase groups was also

displayed in Supplementary Figure S4. Through the visualization of

t-Distributed Stochastic Neighbor Embedding, we demonstrated

that sequences of raw proteins can be mapped into meaningful rep-

resentation through the non-linear transformation generated by

DeepPhos, which can be helpful for further analysis of phosphoryl-

ation sites.

3.4 Analysis of potential phosphorylation sites
To evaluate the ability of DeepPhos in discovery of unknown phos-

phorylation sites, by following previous study (Wang et al., 2016)

Fig. 3. ROC curves of DeepPhos and other predictors for group CMGC, group CAMK, family PKC, family CDK, subfamily PKCa, subfamily CDC2, kinase SRC and

kinase PRKCA. Here, DeepPhos (red lines) is compared with PPSP (green lines), GPS (the yellow lines) and MusiteDeep (light orange lines) (Color version of this

figure is available at Bioinformatics online.)

Table 2. Performance of different predictors for kinase-specific

phosphorylation site prediction at the high stringency level

Kinase Measure DeepPhos GPS PPSP

Group Sn(%) 57.80 9.83 20.81

CAMK Acc(%) 74.68 48.42 54.43

MCC(%) 55.65 9.27 23.10

Pre(%) 93.46 70.83 83.72

F1(%) 71.43 17.26 33.33

Group Sn(%) 67.24 50.10 29.90

CMGC Acc(%) 81.07 72.47 62.33

MCC(%) 64.75 50.43 32.79

Pre(%) 93.14 91.00 85.79

F1(%) 78.10 64.62 44.35

Note: Best performing method in bold.

Fig. 4. Visualization of abstract features extracted by DeepPhos and original

sequence features by one-hot codings. The red star represents the phosphor-

ylation sites with kinase annotation belonging to group CMGC, the blue dot

represents the non-phosphorylation sites (Color version of this figure is avail-

able at Bioinformatics online.)
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we checked the top 20 candidate phosphorylation sites manually

from the high-quality protein database Uniport. The candidate phos-

phorylation sites were extracted from our independent test that are

not verified by experiment but likely to be phosphorylation sites

according to DeepPhos. The top 20 candidate sites of S/T and Y

were listed in Table 3, Supplementary Table S5, respectively. In

Table 3, we find three sites, i.e. Ser788 of protein Q9H987 that

ranks four with score of 0.9637, Ser476 of protein O43526 with

score of 0.9393 and Ser783 of protein Q9UPX0 with score of

0.9358, seem to be phosphorylated according to the evidences in

Uniport database (bold in Table 3). These results demonstrated that

DeepPhos can be applied to detect unknown phosphorylation sites

practically, which can be helpful for discovering the mechanisms of

related biological processes.

4 Discussion

Phosphorylation is of significance in biological process, which

relates to various diseases. Due to the limitations of experimental

verifying sites that cost time and money, it is very useful to develop

effective computational methods for phosphorylation prediction.

Hence, in this study, we propose DeepPhos, a novel deep learning

architecture, which can predict potential general phosphorylation

sites and kinase-specific sites including group, family, subfamily and

individual kinase levels. DeepPhos has a better performance than

existing phosphorylation predictors evaluated by independent test.

In addition to performance metrics, we visualized the features

extracted by DeepPhos, the visualization results show that the pro-

posed architecture can transform protein sequences to meaningful

representations. Furthermore, there are evidences in Uniport data-

base corresponding to the highly ranked results, which can be help-

ful for further biology research.

The major contributions of our work can be summarized as fol-

lows. Firstly, different from existing deep learning architectures such

as deep learning architectures such as CNN (Wang et al., 2017),

LSTM (Chen et al., 2018), deep neuron networks (Xie et al., 2018)

in PTM site prediction, the Intra-BCL in each DC-CNN block could

assign different weights to input automatically and enhance the flow

of phosphorylation information, in this way, useful information can

pass to help obtain final decision. Another difference in the architec-

ture of DeepPhos is that application of distinct filter sizes according

to different windows can integrate multiple abstracts of sequence

features by Inter-BCL, and finally catch the non-linear relationships

between original raw protein sequences and the phosphorylation

prediction results. Secondly, by applying layer transfer to a pre-

trained model using the large amount of phosphorylation data with-

out kinase annotation, the proposed framework can efficiently deal

with kinase-specific phosphorylation site prediction including

group, family, subfamily and individual kinase level. Meanwhile,

the dropout and L2 regularization were also used here to prevent

overfitting, leading to better fine-tune and generalization perform-

ance. Finally, as an efficient deep learning architecture for protein

sequence representation, DeepPhos can be further modified and

extended for the tasks of PTM site prediction using the training data

of different type of PTMs.

Although our architecture has shown promising performance of

phosphorylation site prediction, there are still some limitations that

can be further improved. Since the deep learning method is still a

black-box (Ma et al., 2018), our method cannot be explained well

with meaningful biological process. Our future work would concen-

trate on the considerable biological interpretation and carry on to

improve the framework by combing some efficient modules, such as

the generative adversarial networks (Goodfellow et al., 2014) and

attention mechanisms (Mnih et al., 2014). Although attention mech-

anisms have been used in PTM site prediction (Wang et al., 2017),

there are some improved attention mechanisms such as spatial

(Chen et al., 2017) and modular attention (Yu et al., 2018), which

can be further explored in future study. In addition, we would use

other parameter optimization strategies such as batch normalization

(Ioffe and Szegedy, 2015), for optimizing the parameters of deep

learning models. Moreover, features based on amino acid properties

or protein function are also very important for PTM site prediction

(Dou et al., 2014, 2017; Song et al., 2017), which can be further

combined with protein sequences in future study. In conclusion, we

propose a novel deep learning architecture for phosphorylation site

prediction, DeepPhos, which can be applied to reduce the cost and

provide clues for further biological research.
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Cireşan,D. et al. (2011) A committee of neural networks for traffic sign classi-

fication. In: The 2011 International Joint Conference on Neural Networks

(IJCNN). pp. 1918–1921. IEEE.

Table 3. The top 20 candidate phosphorylation sites on S/T of inde-

pendent test

Rank Protein Position Score Rank Protein Position Score

1 Q8N5F7 217 0.9916 11 Q9HBD4 1458 0.9400

2 Q9Y438 857 0.9786 12 O43526 476 0.9393

3 Q9NSI6 1822 0.9698 13 O14529 418 0.9391

4 Q9H987 788 0.9637 14 Q5CZC0 6583 0.9380

5 Q8N3T6 807 0.9598 15 Q8N3T6 557 0.9367

6 Q9H4Q3 239 0.9549 16 Q15648 1447 0.9362

7 Q9C0D6 525 0.9546 17 Q9UPX0 783 0.9359

8 Q09MP3 21 0.9545 18 Q6ZQQ6 2242 0.9358

9 O60393 444 0.9495 19 Q9H0D2 1268 0.9353

10 O14529 986 0.9475 20 A1L0S7 953 0.9343

Note: The sites seem to be phosphorylated according to the evidences in

Uniport database in bold.

2772 F.Luo et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1051#supplementary-data


Collobert,R. et al. (2011) Natural language processing (almost) from scratch.

J. Mach. Learn. Res., 12, 2493–2537.

Diella,F. et al. (2004) Phospho. ELM: a database of experimentally verified

phosphorylation sites in eukaryotic proteins. BMC Bioinformatics, 5, 79.

Dou,Y. et al. (2014) PhosphoSVM: prediction of phosphorylation sites by inte-

grating various protein sequence attributes with a support vector machine.

Amino Acids, 46, 1459–1469.

Dou,Y. et al. (2017) Prediction of protein phosphorylation sites by integrating

secondary structure information and other one-dimensional structural prop-

erties. In: Prediction of Protein Secondary Structure. Springer, New York,

pp. 265–274.

Fan,W. et al. (2014) Prediction of protein kinase-specific phosphorylation sites

in hierarchical structure using functional information and random forest.

Amino Acids, 46, 1069–1078.

Gao,J. et al. (2010) Musite: a tool for global prediction of general and

kinase-specific phosphorylation sites. Mol. Cell. Proteomics, 9, 2586–2600.

Gnad,F. et al. (2010) Predicting post-translational lysine acetylation using sup-

port vector machines. Bioinformatics, 26, 1666–1668.

Goodfellow,I. et al. (2014) Generative adversarial nets. In: Advances in

Neural Information Processing Systems, pp. 2672–2680.

Hornbeck,P.V. et al. (2012) PhosphoSitePlus: a comprehensive resource for investi-

gating the structure and function of experimentally determined post-translational

modifications in man and mouse. Nucleic Acids Res., 40, D261–D270.

Huang,G. et al. (2017) Densely Connected Convolutional Networks. In:

CVPR. p.3.

Huang,S.-Y. et al. (2015) Using support vector machines to identify protein

phosphorylation sites in viruses. J. Mol. Graph. Model., 56, 84–90.

Huang,Y. et al. (2010) CD-HIT Suite: a web server for clustering and compar-

ing biological sequences. Bioinformatics, 26, 680–682.

Ioffe,S. and Szegedy,C. (2015) Batch normalization: accelerating deep net-

work training by reducing internal covariate shift. In: ICML, p.3.

Ismail,H.D. et al. (2016) RF-Hydroxysite: a random forest based predictor for

hydroxylation sites. Mol. BioSyst., 12, 2427–2435.

Khurana,S. et al. (2018) DeepSol: a deep learning framework for

sequence-based protein solubility prediction. Bioinformatics, 34, 2605–2613.

LeCun,Y. et al. (1998) Gradient-based learning applied to document recogni-

tion. Proc. IEEE, 86, 2278–2324.

Li,F. et al. (2018) Quokka: a comprehensive tool for rapid and accurate pre-

diction of kinase family-specific phosphorylation sites in the human prote-

ome. Bioinformatics, 34, 4223–4231.

Li,F. et al. (2015) GlycoMine: a machine learning-based approach for predict-

ing N-, C-and O-linked glycosylation in the human proteome.

Bioinformatics, 31, 1411–1419.

Li,H. et al. (2009) SysPTM: a systematic resource for proteomic research

on post-translational modifications. Mol. Cell. Proteomics, 8,

1839–1849.

Li,T. et al. (2008) Prediction of kinase-specific phosphorylation sites with se-

quence features by a log-odds ratio approach. Proteins, 70, 404–414.

Liu,Y. et al. (2018) PTM-ssMP: a Web Server for Predicting Different Types of

Post-translational Modification Sites Using Novel Site-specific Modification

Profile. Int. J. Biol. Sci., 14, 946–956.

Lu,C.-T. et al. (2013) DbPTM 3.0: an informative resource for investigating

substrate site specificity and functional association of protein

post-translational modifications. Nucleic Acids Res., 41, D295–D305.

Ma,J. et al. (2018) Using deep learning to model the hierarchical structure and

function of a cell. Nat. Methods, 15, 290.

van der Maaten,L and Hinton,G. (2008) Visualizing data using t-SNE. J.

Mach. Learn. Res., 9, 2579–2605.

Matthews,H.R. (1995) Protein kinases and phosphatases that act on histidine,

lysine, or arginine residues in eukaryotic proteins: a possible regulator of the

mitogen-activated protein kinase cascade. Pharmacol. Ther., 67, 323–350.

Min,X. et al. (2017) Chromatin accessibility prediction via convolutional long

short-term memory networks with k-mer embedding. Bioinformatics, 33,

i92–i101.

Mnih,V. et al. (2014) Recurrent models of visual attention. In Advances in

Neural Information Processing Systems, pp. 2204–2212.

Pan,Z. et al. (2014) Systematic analysis of the in situ crosstalk of tyrosine mod-

ifications reveals no additional natural selection on multiply modified resi-

dues. Sci. Rep., 4, 7331.

Peri,S. et al. (2004) Human protein reference database as a discovery resource

for proteomics. Nucleic Acids Res., 32, D497–D501.

Qin,G.-M. et al. (2016) PhosD: inferring kinase–substrate interactions based

on protein domains. Bioinformatics, 33, 1197–1204.

Song,J. et al. (2017) PhosphoPredict: a bioinformatics tool for prediction of

human kinase-specific phosphorylation substrates and sites by integrating

heterogeneous feature selection. Sci. Rep., 7, 6862.

Sun,D. et al. (2017) Prognosis prediction of human breast cancer by integrat-

ing deep neural network and support vector machine: supervised feature ex-

traction and classification for breast cancer prognosis prediction. In: 2017

10th International Congress on Image and Signal Processing, BioMedical

Engineering and Informatics (CISP-BMEI). pp. 1–5. IEEE.

Trost,B. et al. (2013) DAPPLE: a pipeline for the homology-based prediction

of phosphorylation sites. Bioinformatics, 29, 1693–1695.

Trost,B. and Kusalik,A. (2011) Computational prediction of eukaryotic phos-

phorylation sites. Bioinformatics, 27, 2927–2935.

Trost,B. et al. (2016) DAPPLE 2: a tool for the homology-based prediction of

post-translational modification sites. J. Proteome Res., 15, 2760–2767.

Walsh,C. (2006) Posttranslational Modification of Proteins: Expanding Nature’s

Inventory. Roberts and Company Publishers, Greenwood Village, CO.

Wang,D. et al. (2017) MusiteDeep: a deep-learning framework for general

and kinase-specific phosphorylation site prediction. Bioinformatics, 33,

3909–3916.

Wang,J.-R. et al. (2016) ESA-UbiSite: accurate prediction of human ubiquiti-

nation sites by identifying a set of effective negatives. Bioinformatics, 33,

661–668.

Wang,X. et al. (2017) Prediction of phosphorylation sites based on

Krawtchouk image moments. Proteins, 85, 2231–2238.

Wei,L. et al. (2017) PhosPred-RF: a novel sequence-based predictor for

phosphorylation sites using sequential information only. IEEE Trans.

Nanobioscience, 16, 240–247.

Wen,P.-P. et al. (2016) Accurate in silico prediction of species-specific methy-

lation sites based on information gain feature optimization. Bioinformatics,

32, 3107–3115.

Xie,Y. et al. (2018) DeepNitro: prediction of Protein Nitration and

Nitrosylation Sites by Deep Learning. Genomics Proteomics Bioinformatics,

16, 294–306.

Xu,Y. et al. (2018) PhosContext2vec: a distributed representation of

residue-level sequence contexts and its application to general and

kinase-specific phosphorylation site prediction. Sci. Rep., 8, 8240.

Xue,Y. et al. (2006) PPSP: prediction of PK-specific phosphorylation site with

Bayesian decision theory. BMC Bioinformatics, 7, 163.

Xue,Y. et al. (2008) GPS 2.0, a tool to predict kinase-specific phosphorylation

sites in hierarchy. Mol. Cell. Proteomics, 7, 1598–1608.

Yosinski,J. et al. (2014) How transferable are features in deep neural net-

works? In: Advances in Neural Information Processing Systems, pp.

3320–3328.

Yu,L. et al. (2018) Mattnet: Modular attention network for referring expres-

sion comprehension. In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). pp. 1307–1315. IEEE.

Zhou,J. and Troyanskaya,O.G. (2015) Predicting effects of noncoding

variants with deep learning–based sequence model. Nat. Methods,

12, 931.

DeepPhos: prediction of protein phosphorylation sites with deep learning 2773


	bty1051-TF1
	bty1051-TF2
	bty1051-TF3

