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ABSTRACT

Effective methods for managing the oral microbiome are necessary to ensure not only the
oral but also the systemic health of a human body. The purpose of this study was to
determine the sensitivity of four photosensitizers (PSs) to blue light in six representative
oral bacterial species that cause intraoral diseases. The following six strains were investigated:
Actinomyces israelii, Enterococcus faecium, Fusobacterium nucleatum, Lactobacillus
gasseri, Streptococcus mutans, Veillonella parvula. PS stock solutions (1 mg/ml) were prepared
by dissolving curcumin and protoporphyrin-IX in dimethyl sulfoxide, and resazurin and
riboflavin in distilled water. The inoculation of 20 ml of a bacterial suspension cultured for
24 hours was mixed with 1,980 ml of each test solution, and then a light source was placed in
front of the mixture. The irradiation wavelength was 405 nm and its applied energy was 25.3
J. The independent-samples t-test and one-way analysis of variance within groups were
performed to compare the antibacterial effects in the four PSs. The antibacterial susceptibility
when using different PSs and visible blue-light irradiation differed between the bacterial
strains. Antibacterial photodynamic therapy that includes light exposure and PSs can be used
to control the oral bacteria strains related to oral disease.
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The oral cavity is one of most complex organs, con-
sisting of various structures including teeth, tongue,
and cheek tissue. More than 600 species or phylo-
types reside in the oral cavity and many systemic
diseases are related to the composition of the oral
microbiota [1,2], which makes effective methods for
managing the oral microbiome necessary to ensure
the systemic health of a human body. Brushing is the
most widely used method to control the bacteria in
the oral cavity, but some areas such as pits and
fissures of molars are difficult to clean [3]. Attempts
to overcome this limitation have included modifying
the shape of toothbrush bristles and using oral care
products such as oral rinses and dental floss. In
addition, many germs are present on the tongue,
but the area near the throat is very difficult to clean
due to the gag reflex [4]. The presence of dental
structures with various shapes and sizes, such as
implants, resins, brackets, and dentures, make the
oral cavity complex. Microleakages occur at the inter-
face between the teeth and these materials, which
may cause diseases such as secondary caries and
implant failure.

In the early 1900s, von Tappeiner and his collea-
gue Oscar Raab discovered that a substance called
Acridine could kill paramecia upon light irradiation,
and in combination with oxygen they introduced the
term ‘photodynamic action’ for this phenomenon [5].

Photodynamic therapy (PDT) using a photosensitizer
(PS) and light is easy to implement and apply in
many fields. In particular, antibacterial PDT (aPDT)
has many advantages as a new alternative to antibio-
tics because it does not induce the tolerance in bac-
teria that has become a major problem in recent years
[6-8]. PDT has also been shown to be highly effective
in the field of dentistry [9]. The antibacterial effects
of PDT on bacteria associated with peri-implantitis,
periodontitis, and caries pathogens have also been
reported [10-12]. However, most of these studies
used excitation light with a wavelength longer than
500 nm. A longer wavelength will increase the pene-
tration depth but decrease the light energy, hence
reducing the clinical antimicrobial effects. In addi-
tion, few studies have investigated the sensitivity of
bacteria to different types of PS. The purpose of the
present study was to determine the sensitivity of four
PSs to violet-blue light in six representative oral bac-
teria species that cause intraoral diseases.

Materials and methods
Bacterial strains and culture media

The following six strains that are known to be associated
with oral diseases were investigated: Streptococcus
mutans ATCC 25,175 and Lactobacillus gasseri ATCC
33,323 associated with dental caries; Enterococcus
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faecium ATCC 19,434, Fusobacterium nucleatum ATCC
25,586, and Veillonella parvula ATCC 10,790 associated
with periodontal disease; and Actinomyces israelii ATCC
10,049 associated with actinomycosis. All six strains were
purchased from the Korean Collection for Type Cultures
(Biological Resource Center, Korea). A. israelii,
E. faecium, and F. nucleatum were grown in thioglycol-
late broth; L. gasseri was grown in MRS (de Man, Rogosa,
and Sharpe) broth; and S. mutans and V. parvula were
growth in BHI (brain heart infusion) broth. The compo-
sition of each broth is listed in Table 1. All liquid broths
were incubated anaerobically under 80% N,, 10% Ho,,
and 10% CO, at 37°C.

Photodynamic treatment

For the photodynamic treatment, stock solutions of four
PSs were prepared and stored at a concentration of 1 mg/
ml. Powder forms of curcumin (MW:368.38) and proto-
porphyrin IX (MW:606.62) were dissolved in dimethyl
sulfoxide (since they have low solubility in water), and
those of resazurin (MW:251.17) and riboflavin
(MW:376.36) were dissolved in distilled water. To evalu-
ate the antimicrobial activity induced by photodynamic
reactions, a stock solution was diluted tenfold in a liquid
medium to which each strain could be cultured to pre-
pare a solution having a concentration of 100 pg/ml
Serial dilution was then used to prepare test solutions
with concentrations of 10 pg/ml, 1 pg/ml, and 0.1 pg/ml.
The antimicrobial activity against light irradiation was
evaluated by preparing 1,980 pl of test solutions in two
24-well plates, and 20 pl of 24 h cultured medium. One
plate was irradiated for 5 min and the other plate was
placed in a dark condition. The light irradiation for
inducing the photodynamic reaction was provided by
a QLF-D (quantitative light-induced fluorescence -

digital, Inspektor Research Systems, Amsterdam,
Netherlands) device that included a 405-nm LED, and
the total light energy was 25.3 ] (84.5 mW/cm? x 300 s).
After treatment, a 200-pl aliquot of each solution
was transferred to a 96-well plate and incubated at
37°C in an anaerobic incubator for 24 h. The absor-
bance of the incubated solution was measured in
a 96-well microplate reader (Model 680, Bio-Rad,
Hercules, CA) at 655 nm. Each experiment studying
antibacterial activity was repeated three times.

Statistical analyses

Statistical analysis was performed using one-way analysis
of variance and the Tukey test to detect differences in the
bactericidal activity of PSs at different concentrations
against S. mutans. In addition, Student’s ¢-test was used
for comparisons between with and without light irradia-
tion. PASW Statistics (version 23.0, SPSS, IBM
Corporation, Armonk, NY) was used for all data analyses,
with a significance cutoff of p < 0.05.

Results

The aPDT effects against A. israelii were confirmed for
curcumin, protoporphyrin IX, and resazurin. The anti-
bacterial activity was highest for protoporphyrin IX, and
the cytotoxicity of the bacteria was identified even for
only light irradiation (i.e. without PS) (Figure 1). The
aPDT activities against E. faecium, F. nucleatum, and
S. mutans were revealed for only curcumin and proto-
porphyrin IX. The susceptibility was demonstrated when
the protoporphyrin IX concentration was higher than
0.1 pg/ml (Figures 2, 3, and 4). Antimicrobial effects
against L. gasseri were not observed for any of the four
sensitizers at concentrations below 10 pg/ml (Figure 5).

Table 1. Compositions of the bacterial media used in this study.

Component BHI broth MRS broth Thioglycollate broth
Beef extract 10.0 g/l -
Casitone - 15.0 g/l
K,HPO, 2.0 g/l -
L-cysteine hydrochloride - 0.25 g/l
MgSO, - 7H,0 0.2 g/l -
MnSO, - 4H,0 0.2 g/l

Peptone 10.0 g/I

Sodium acetate - 5.0 g/l .
Sodium chloride 5.0 g/l - 25 g/l
Sodium thioglycolate - - 0.5 g/l
Triammonium citrate 2.0 g/l -
Tween 80 1.0 ml/I -
Yeast extract - 5.0 g/l 5.0 g/l
BHI 17.5 g/l - -
Disodium phosphate 25 g/l

Enzymatic digest of gelatin 10.0 g/l - -
Glucose (dextrose) 209/l 20.0 g/l 6.0 g/l
Lactic acid 4.5 g/l - -
0.05% Hemin solution - 10 ml/l
0.5% Vitamin K; solution - - 0.2 ml/I
pH 74 +£0.2 6.4 71 +£02
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Figure 1. Photodynamic inactivation of A. israelii by four PSs. *p < 0.05, **p < 0.01, ***p < 0.001. Different letters indicate
significant differences between groups (p < 0.05). Data are mean and SD values.
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Figure 2. Photodynamic inactivation of E. faecium by four PSs. ***p < 0.001. Different letters indicate significant differences
between groups (p < 0.05). Data are mean and SD values.
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Figure 3. Photodynamic inactivation of F. nucleatum by four PSs. *p < 0.05, ***p < 0.001. Different letters indicate significant
differences between groups (p < 0.05). Data are mean and SD values.
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Figure 4. Photodynamic inactivation of S. mutans by four PSs. ***p < 0.001. Different letters indicate significant differences

between groups (p < 0.05). Data are mean and SD values.
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Figure 5. Photodynamic inactivation of L. gasseri by four PSs. Data are mean and SD values.

The antimicrobial activity against V. parvula was con-
firmed for all four PSs. However, the aPDT activity of
curcumin was confirmed only when it was present at
a high concentration (10 pg/ml), while the antibacterial
activity was evident for the other three PSs all of the
concentrations investigated (0.1-10 ug/ml) (Figure 6).

Discussion

In this study we examined the potential of a short
wavelength in the visible light region (405 nm pro-
vided by a violet-blue LED) to activate an antibacter-
ial photodynamic reaction with four PSs. Since
Akasaki et al. first developed the blue LED [13] it
has been used not only for display purposes but also
in various medical fields [14-17]. Blue LEDs are used
in dentistry for detecting early caries lesion [18] and
matured dental plaque based on autofluorescence
[19]. The PS currently used for PDT in clinical prac-
tice involves irradiation at a wavelength longer
than 600 nm [20]. In fact, most PSs are activated by
red light, such as hematoporphyrin derivatives (620--
650 nm), phenothiazine (620-700 nm),
cyanine (600-805 nm), phytotherapeutic agents
(550-700 nm), and phytalocyanines (660-700 nm)
[21]. This is because PDT involves deep penetration
of the skin in order to treat tumors and areas of
inflammation [9].

In the field of dentistry there have been several
reports on the inhibitory effect of oral microorgan-
isms using PDT. Fonseca et al. reported that a 660-
nm diode laser and 0.0125% toluidine blue inhibited
the growth of Enterococcus faecalis [22], and Metcalf
et al. [23] reported that an S. mutans biofilm was
inhibited by using 500-550 nm light with erythrosine.
However, the depth of penetration of light is not
a major problem in the oral cavity since most of the
relevant microorganisms are present on a tooth sur-
face or the surface of the tongue. In this study we
therefore selected PSs that exhibit absorption peaks at
400-500 nm, for curcumin 417 nm, riboflavin
445 nm, and protoporphyrin IX 469 nm, and resa-
zurin 610 nm.

The antimicrobial effect of violet-blue LED and
PSs differed with the bacterial species. Among them,
V. parvula was affected by all PSs in the presence of
light irradiation, while A. israelii was affected by all
PSs except for riboflavin. It was also confirmed that
A. israelii was inhibited only for light irradiation
without PSs, which is probably due to the presence
of substances of the porphyrin family in the cells. On
the other hand, E. faecium, F. nucleatum, and
S. mutans were found to be suceptible only for cur-
cumin and protoporphyrin IX, and not riboflavin and
resazurin. The results for the antimicrobial activities
depending on the concentration confirmed that the
susceptibility was higher for protoporphyrin IX than
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Figure 6. Photodynamic inactivation of V. parvula by four PSs. *p < 0.05, **p < 0.01. Different letters indicate significant
differences between groups (p < 0.05). Data are mean and SD values.

curcumin. There was no antimicrobial effect on
L. gasseri for all four PSs. Generally, aPDT is more
effective in inducing inactivation of Gram-positive
bacteria, since the outer portion of their cell wall
(composed of peptidoglycan and lipoteichoic acid) is
relatively more porous, which allows PS to reach the
cytoplasmic membrane [24]. However, there was no
big difference between Gram-positive and negative
bacteria used in this study. Similar to our results,
xanthene dyes (such as Rose Bengal and erythrosine)
and phenothiazinium dyes (such as toluidine blue
O and methylene blue) have also been found to
inactivate a wide range of both Gram-positive and
Gram-negative bacteria [24,25].

The susceptibility of aPDT also differed according
to the types of PSs even for the same bacterial strain.
These results have also been found in previous stu-
dies. Soria-Lozano et al. reported differences in sus-
ceptibility to three sensitizers (methylene blue, rose
bengal, and curcumin) for Streptococcus sanguinis,
S. mutans, and Candida albicans, which are caries-
related microorganisms [26]. On the other hand,
Hakimiha et al. [27] reported no difference in sus-
ceptibility to two PSs (toluidine blue O and
Radachlorin) against S. mutans. This is due to the
use of the two PSs at different concentrations. The
aPDT efficacy of PSs is governed by the chemical
characteristics of each PS, such as hydrophilicity,
amphiphilicity, and electric charge. Curcumin and

protoporphyrin IX are poorly soluble in water due
to their hydrophobic nature. In contrast, resazurin
and riboflavin are water soluble due to their hydro-
philic nature. Some studies have shown that the
hydrophilic cationic photosensitizers show higher
effectiveness of aPDT due to their strong attraction
to the negatively charged cell membrane and their
higher solubility than hydrophobic molecules [28,29].
In addition, hydrophobic molecules are prone to
aggregation in physical media, disturbing membrane
binding and ROS generation [30,31]. In our previous
study, higher concentration (10* ng/mL) of curcumin
has been shown to be ineffective in aPDT against
S. mutans compared to lower concentration [32].
This observation could be due to aggregation of cur-
cumin and its inability to dissolve sufficiently at high
concentration. However, our present results showed
that hydrophobic PSs are more effective than hydro-
philic PSs. Chemically, all PSs are able to absorb light
energy and transfer energy [33]. This process relies
on the m-conjugation system, which is related to
p-orbitals with delocalized electrons in compounds
with alternating single and multiple bonds. Among
the four PSs which were used in the present study,
increasing the length of the m-conjugation also
increased the efficiency. These results suggest that
different microorganisms in the oral cavity will react
differently depending on the type and concentration
of specific PSs, the presence or absence of light, and



the light wavelength. Further research is therefore
needed to selectively control the viability of oral
microorganisms.

There are limitations to evaluating planktonic cells of
individual strains because many microorganisms in the
oral cavity are present within biofilms, and the resis-
tance of a biofilm to antimicrobial agents can be 10- to
100-fold higher than in the planktonic state. Therefore,
the effect of these PSs should be evaluated in biofilm
models of single strains as well as in multiple-species
models including microcosms. Furthermore, many stu-
dies that have evaluated the microbial antimicrobial
activity through the use of photodynamic reactions
(including the present study) still have limitations in
inspecting the clinical efficacy. In addition, there has
been no comprehensive evaluation of various strains
constituting the biofilms present in the oral cavity.
Therefore, future validation of PDT for real biofilms
should be carried out by utilizing the rapid develop-
ments in molecular biology techniques, such as meta-
genome analysis and metabolomic analysis. In addition,
in order to understand how the antibacterial activity
differs according to the PS, it is necessary to study the
underlying mechanisms in oral microbial cells. Further
research is needed for identifying effective treatment
methods for the selective control of oral microorgan-
isms while minimizing adverse effects.

Conclusion

Curcumin, protoporphyrin IX, riboflavin, and resa-
zurin have been found to affect the growth of seven
oral microorganisms. However, the effects of differ-
ent types of PS, concentrations, and light character-
istics vary between strains. It is therefore expected
that aPDT for selectively inhibiting the growth of
oral microorganisms should select the PSs according
to the constitution of the oral microbiome in the
clinic.
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