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ABSTRACT
Extracellular vesicles (EVs) are small membraned vesicles and approximately 50–150 nm in
diameter. Almost all of the type of cells releases the EVs and circulates in the body fluids. EVs
contain multiple functional components, such as mRNAs, microRNAs (miRNAs), DNAs, and
proteins, which can be transferred to the recipient cells, resulting in phenotypic changes.
Recently, EV research has focused on their potential as a drug delivery vehicle and in targeted
therapy against specific molecules. Moreover, some surface proteins are specific to particular
diseases, and therefore, EVs also have promise as biomarkers. In this concise review, we
summarize the latest research focused on EVs, which have the potential to become
a promising drug delivery method, biomarker, and new therapeutic target for improving
the outcomes of cancer patients.
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1. Introduction

It has been shown that almost all of the cells release
various types of extracellular vesicles (EVs), including
exosomes, microvesicles, and apoptotic bodies. EVs
vary in size, properties, and secretion pathway depend-
ing on the originated cells, and the EVs are indeed
taken up by recipient cells via a variety of mechanisms
(Figure 1) [1,2]. Exosomes are small EVs (sEVs), their
diameter is approximately 100 nm. Exosomes are initi-
ally formed by a process of inward budding in early
endosomes to form multivesicular bodies (MVBs) and

released into the extracellular microenvironment to
transfer their components [3,4]. Microvesicles (MVs)
are larger than exosomes, approximately 100–1000 nm,
and are composed of lipid components of plasma
membrane [5]. MVs are synthesized in directly shed-
ding or budding from plasma membranes. Apoptotic
bodies have various sizes (1–5 μm), and only when
cells are killed by the process of programmed cell
death, resulting in secretion of apoptotic bodies.
These various types of EVs have similar characteristics,
such as size and density. Thus, more detailed classifi-
cation is required for EV research. Although the role
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of EVs was initially supposed to be cellular waste
management, such as, throwing unwanted proteins
and biomolecules [6], in 2007, Valadi et al. have
shown that EVs have contained mRNA in their
lumen as well as microRNAs (miRNAs), which is
considered a novel cell to cell communication tools
[7]. In a few years from that year, several groups
demonstrated that EVs transferred their functional
miRNAs to recipient cells [8–11].

EVs from normal cells can affect their microenvir-
onment. EVs derived from normal cells contribute to
maintain homeostasis in their microenvironment,
and it was shown that they can prevent cancer initia-
tion [9,12]. For instance, Takahashi et al. demon-
strated that the inhibition of EV secretion results in
the accumulation of nuclear DNA in the cytoplasm,
leading to the reactive oxygen species dependent
DNA damage response, which induces the cell apop-
tosis [12]. On the other hands, tumor-derived EVs,
including miRNAs, mRNAs, DNA, and proteins, also
target various cell types to modify the tumor micro-
environment and support the growth of tumor cells
[11]. From these points of view, it has been shown
that EVs are associated with physiological and patho-
logical phenomena. With these advances, it is becom-
ing possible to develop EV-based therapy.

In this review, we summarize the recent advances
in EV research from bench to bedside. First, we
discuss basic information about EVs. Second, we
introduce the latest reports, which describe commu-
nication via EVs. Third, we focus on the current
development of EV-based therapy, which has led to

breakthroughs in therapeutics for cancer patients: 1,
EVs as a vehicle for a drug delivery system (DDS); 2,
EV components as diagnostic or prognostic biomar-
kers; and 3, antibody therapy against EV surface
markers. Finally, we describe the issues remaining
to be solved to allow EV-based therapy.

2. Basic information about EVs

EVs have been observed in all body fluids, such as
blood, urine, saliva, sputum, breast milk, semen, and
cerebrospinal fluid [13–19]. EVs have been shown to
contain miRNAs, mRNA, DNAs, and proteins within
the lipid bilayer [11]. This bilayer construction, which
is very stable, enables EVs to circulate intact through
body fluids, and thus, EVs can transfer their compo-
nents to distant recipient cells. The accumulating data
have indicated that the contents, size, and membrane
composition of EVs are highly heterogeneous,
dynamic and depend on the cellular source, state,
and environmental conditions. EVs have some exo-
somal markers, including members of the tetraspanin
family (CD9, CD63, CD81), members of the endoso-
mal sorting complex required for transport (ESCRT)
(TSG101, Alix), heat shock proteins (Hsp60, Hsp70,
Hsp90), and RAB proteins (RAB27 A/B) [20,21].
Cells release heterogeneous vesicles of different sizes
and intracellular origins, including small EVs formed
inside endosomal compartments and EVs of various
sizes budding from the plasma membrane [22].
Differential separation by immuno-isolation using
either CD63, CD81, or CD9 was proposed. Several
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Figure 1. EV production procedure.
Exosomes, 50–150 nm, are initially formed by a process of inward budding in early endosomes to form multivesicular bodies. Microvesicles are larger
than exosomes, approximately 100–1000 nm. They are composed of lipid components and are directly shed or budded from plasma membranes. RAB
proteins (RAB27A, RAB27B), ESCRT (Alix, TSG101) are associated with EV secretion. There are some markers on EV membranes, which is useful to detect
EVs. EVs vary in size, properties, and secretion pathway depending on the originated cells, and the EVs are indeed taken up by recipient cells via
a variety of mechanisms. Electron microscopy indicates the EVs derived from MCF7 breast cancer cell lines.
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classically used exosome markers, like major histo-
compatibility complex (MHC), flotillin, and Hsp70
proteins, are similarly present in all EVs, and they
also identified proteins specifically enriched in small
EVs, and defined a set of five protein categories dis-
playing different relative abundance in distinct EV
populations. In this way, understanding the hetero-
geneity of EVs is important for EV-based therapy,
since each EV has difference of their biological func-
tion on their membrane surface.

For a long time, only their functional abilities of EV
are focused on, because the process from isolation step
to detection step of EV is very complicated. To eluci-
date the biology of EV, highly purified EVs are essen-
tial for EV research. Typically, the ultracentrifugation
(UC) method is used to collect EVs. Even today, the
UC method is a general EV purification method; how-
ever, it has been reported that EVs purified by the UC
method have low purity, the structure of the EVs is
damaged by the high-gravity conditions, and the pro-
cess is time consuming [23]. Thus, several other EV
isolation methods have been developed, such as differ-
ential ultracentrifugation, density gradient centrifuga-
tion (sucrose or iodixanol gradients), filtration and
size-exclusion chromatography, polymer-based preci-
pitation, the antibody-coated immunobead method,
ultrafiltration, and affinity chromatography [23–36].
Each method has advantages and disadvantages in
cost, purity, and convenience. For instance, the advan-
tages of the ultrafiltration method are simplicity,
speed, and the ability to process many samples simul-
taneously; however, there are some disadvantages,
such as protein contamination and poor biological
activity [31]. We summarized the advantages and dis-
advantages of various EV purification methods in
Table 1. Recently, new EV purification methods
using microfluidic devices have been developed.
Mengxi et al. have shown that a separation method
based on acoustofluidics, the fusion of acoustics and
microfluidics, can isolate EVs directly from whole

blood in a label-free and contact-free manner [37].
This method uses two types of sequential surface
acoustic wave microfluidic modules; one is a cell-
removal module, and the other is an EV isolation
module. These modules enable the isolation of EVs
from undiluted blood samples with high purity and
yield. As we have shown above, the development of
EV isolation methods has been remarkable; however,
there are still some issues of cost, convenience, and
time consumption.

3. Pathological roles of EVs

Over the last decade, accumulating evidence has
shown that EVs can communicate between cancer
and normal cells. In cancer, there are various phases,
such as initiation, progression, metastasis, and recur-
rence. Tumor-derived EVs are closely associated with
each phase and target various cell types to modify the
tumor microenvironment to support the growth of
tumor cells by inducing angiogenesis, tumor cell
migration and metastasis, immune response modula-
tion, and drug resistance [3]. Cancer cells are placed
under low oxygen concentration, since there are few
blood vessels carrying oxygen around tumor micro-
environment, resulting in cancer cells become
hypoxic. Hypoxia also leads to a change in the
cargo within EVs, which induces angiogenesis in the
nearby or distant microenvironment [38,39].
Hypoxia-inducible factor-1 promotes the production
of angiogenesis-related genes, such as vascular
endothelial growth factor. Abnormal angiogenesis in
tumors is considered a major factor in cancer prolif-
eration, therapy resistance, and metastasis. Treps
et al. revealed that EVs are produced by glioblastoma
multiforme (GBM), which contain a subpopulation of
tumor cells with stem-like properties, termed glio-
blastoma stem-like cells (GSCs) [40]. VEGF-A is car-
ried in EVs secreted from GBM patient-derived
GSCs, and then, VEGF-A increases permeability and

Table 1. Comparison of the advantages and disadvantages of various EV isolation methods.
Method Advantage Disadvantage References

Ultracentrifugation & differential
ultracentrifugation

Most common method, isolation from
large sample volumes and multiple
samples, no additional reagents

Time consuming procedure, EVs damaged from high
speed centrifugation, contamination of non-EV
fraction

[25,32–33]

Density gradient centrifugation
(sucrose or iodixanol gradients)

High purity, no additional reagents Complex procedure, loss of samples, affected by
ultracentrifugation time

[28,35,37]

Size-exclusion chromatography High purity and high reproducibility,
reduced sample loss and EV
aggregation, no additional reagents

Limitation on sample volumes, complex procedure,
necessity of additional equipment, only one
sample in each column, high cost

[27,34]

Polymer-based precipitation Low cost, simple procedure, Contamination and retention of the polymer [31]
Antibody-coated immunobead
method

High purity and high selectivity Difficulty with detachment of the molecules, non-
sopecific binding, existence of intact EVs, high
cost

[26,29]

Ultrafiltration Simple and fast procedure, the ability to
process many samples simultaneously,
no additional reagents

Loss of samples, contamination, poor biological
activity

[36]

Microfluidic methods High purity and efficiency, Complexity of devices, necessity of additional
equipment, high cost

[39,84,85]

Sci. Technol. Adv. Mater. 20 (2019) 748 T. YAMAMOTO et al.



angiogenic potential in human brain endothelial cells.
In the initiation phase of cancer, angiogenesis is very
important for cancer survival. In the progression and
metastasis phase, primary tumor cells can drive
tumor progression through the transfer of EVs [41].
Zhen et al. demonstrated that miR-25-3p,
a metastasis-promoting miRNA of colorectal cancer
(CRC), can be transferred from CRC cells to endothe-
lial cells via EVs, which consequently promotes vas-
cular permeability and angiogenesis [42]. In addition,
miR-25-3p from CRC cell derived EVs dramatically
induces vascular leakiness and enhances CRC metas-
tasis in liver and lung of mice. Tominaga et al.
showed that miR-181c in EVs derived from breast
cancer cells contributes to breaking the blood–brain
barrier through the abnormal localization of actin via
the downregulation of the miR-181c target gene,
PDPK1, which leads to the downregulation of phos-
phorylated cofilin and the resultant activated cofilin-
induced modulation of actin dynamics [43]. In
another study, interactions of surface EV proteins
with breast cancer cells lead to consequent activation
of focal adhesion kinase signaling in the tumor cells,
resulting in metastatic dissemination in a dose-
dependent manner [44]. In addition to this, EVs are
also related to long-term recurrence. For instance,
breast cancer patients often develop recurrence,
even more than 10 years after resection of their
primary site, especially in the bone marrow [45–47].
Recurrence in the bone marrow indicates that cancer
cells survive for a long time in a dormant state and
migrate from the primary site to the bone marrow.
Ono et al. demonstrated the mechanisms of the
maintenance of dormancy in bone marrow via EVs
derived from bone marrow mesenchymal stem cells
(BM-MSCs), which transfer miR-23b to their target
gene, myristoylated alanine-rich C-kinase substrate

(MARCKS) [48]. Downregulation of MARCKS leads
to inhibition of cell cycling and motility. EVs also acts
as an oncogenic signal, which promotes an exit from
dormancy. The horizontal transfer of mitochondrial
DNA from EVs promoting an exit from dormancy of
therapy-induced cancer stem-like cells and leading to
endocrine therapy resistance in breast cancer [47].
These results indicate that EVs derived from cancer
cells play a crucial role in cancer survival. Another
example of induction of recurrence via EV, in glioma
cells, glioma-astrocyte interaction plays an important
role in tumor microenvironment remodeling. O6-
alkylguanine DNA alkyltransferase (MGMT) mRNA
in EVs released by reactive astrocyte is taken up by
MGMT-negative glioma cells, which induce
a temozolomide-resistant phenotype via the transla-
tion of MGMT mRNA in EV [49].

Of course, tumor derived EVs have ability to mod-
ulate immune systems to survive tumor cells. For
instance, EVs can interact with recipient cells through
ligand-receptor interactions. Specific EV proteins
activate downstream pathways in recipient cells [50–
52]. It has been shown that tumor cells evade
immune surveillance by upregulating the surface
expression of programmed death-ligand 1 (PD-L1),
which interacts with programmed death-1 (PD-1)
receptor on T cells to elicit the immune checkpoint
response [53]. EVs derived from melanoma cells car-
ried PD-1 on their surface, which suppressed the
function of CD8 T cells.

As we summarized above, intercellular communica-
tion via EVs contributes to various phases of tumor
progression or suppression through the transfer of
their components (Figure 2). These pathological roles
of EVs strongly indicate that EVs are potent agents for
cancer therapy. Although further research and develop-
ment are needed for implementation before clinical use,
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Figure 2. Communication in the tumor microenvironment via EVs.
Intercellular communication via EVs contributes to various phases of tumor progression through the transfer of their components, such as, miRNAs,
mRNAs, DNAs and proteins.
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we think EV-based therapy will be very powerful and
promising for cancer patients. EV research is develop-
ing quite rapidly, and more detailed elucidation of the
communication mechanisms between cancer cells and
microenvironmental cells via EVs will enable cancer
patients to be treated with EV-based therapy in the
near future. From next session, we introduce a few
examples of EV-based therapy.

4. EVs: potent agents for therapeutics

4.1. EVs as a vehicle for a drug delivery system
(DDS)/EV-based vaccination

Cancer therapy based on anticancer drugs is used for
many cancer patients after resection and sometimes in
progressed patients whose tumors cannot be removed
[54,55]. It is effective to some extent; however, there are
issues that anticancer drug treatment always causes side
effects, and the drug concentration is low in tumor sites
[56]. It is difficult to accumulate the drug in the tumor
sites, thus, it is impossible to avoid the influences on the
surrounding normal cells. DDS, which can accumulate
the drug at the tumor sites, has been focused. The advan-
tages of DDS are enhancement of efficacy, reduction of
side effects, improvement of safety, and reduction of
medical expenses, which can lead to improvements in
patient quality of life [57–60]. High binding capacity
inhibits the drug from reaching the deepest parts of the
tumor [61,62]. Recently, EVs as DDS agents have been
investigated [63,64]. Ohno et al. demonstrated that EVs
can efficiently deliver miRNA to the epidermal growth
factor receptor (EGFR)-expressing breast cancer cells
[65]. The GE11 peptide specifically binds to EGFR,
which is less mitogenic than EGF, was over-expressed
on the surface of EVs. These modified EVs could deliver
let-7a in an EGFR-expression-dependent manner. These
results suggested that EVs can be used therapeutically to
target EGFR-expressing cancerous tissues with nucleic
acid drugs. It has been shown that EVs can deliver
a variety of bioactive cargos including small molecules
[66–69], proteins [70], and siRNAs [71–73]. Srivastava
et al. demonstrated that nanosized cellular vesicles, such
as exosomes can transfer gold nanoparticle (GNP) ther-
apeutic complexes without causing any particle aggrega-
tion or immune response [74]. This system consists of
GNPs conjugated to the anticancer drug doxorubicin
(Dox) by a pH-cleavable bond that is physically loaded
onto the exosomes (Exo-GNP-Dox). The enhanced rate
of drug release under acidic conditions led to successful
uptake of this modified exosomes by the recipient cells.
Another example ofmodified exosomes, exosomes fusing
with liposomes by the freeze-thawmethodwas developed
[75,76]. It was shown that this method optimized the
properties of the exosome surface in order to decrease
its immunogenicity and increase its colloidal stability,
improving the half-life of exosomes in blood. In addition,

the properties of the exosome surface could be modified
using liposomes embeddedwith peptides or antibodies as
targetingmoieties or polyethylene glycol. Furthermore, it
was shown that these hybrid exosomes efficiently encap-
sulated large plasmids, such as the CRISPR–Cas9 expres-
sion vectors [77]. Kamerkar et al. demonstrated that
engineered exosome, called iExosome, which derived
fromnormalfibroblast-likemesenchymal cellswere engi-
neered to carry siRNA or shRNA specific to oncogenic
KRASG12D suppress pancreatic cancer [78]. In this study,
Alexa-Fluor 647 (AF647) tagged siRNA was electropo-
rated. Electroporation is one of the methods for siRNA
encapsulation, and quantification of AF647-tagged RNAi
containing exosomes isolated from the plasma of
24 hours post-injection was conducted. The signal of
AF647-tagged siRNA was detected about 60% of EVs
after 24 hours of injection. Compared with the electro-
poration treated siRNA alone without exosome,
iExosomes with siRNA significantly suppressed pancrea-
tic cancer and lead to the prolongation of overall survival
inmice.Now, Clinical trials using iExosome are currently
progressing to phase 2 [79]. There are many ongoing
clinical trials using EVs (https://clinicaltrials.gov/ct2/
results?cond=&term=exosome&cntry=&state=&city=
&dist=), thus, in the near future, we believe therapeutic
tools by EVs could be used for disease treatment.

As a drug delivery vehicle, bovine-milk-derived
EVs are a topic of study. Bovine-milk-derived EVs
are inexpensive, easy to collect in large amounts, and
low toxicity [80,81]. From these points of view,
a drug delivery system using bovine-milk-derived
EVs is promising; however, the low encapsulation
rate is the most significant issue. The methods of
encapsulate molecules into EVs; To apply EVs as
a DDS, it is important to include a ‘drug’ in the
EVs (by attachment or encapsulation), preserve the
EVs, and establish organ tropism. To the best of our
knowledge, no suitable methods of preserving EVs as
a DDS have been reported. Further development of
EV research for using EVs as a DDS carrier is needed.

Not only as a carrier of DDS, EV is also attracting
attention as vaccine. It is considered that EVs are power-
ful tools of cell free vaccination. Zitvogel et al. showed
that tumor peptide-pulsed dendritic cell-derived EVs
induced specific cytotoxic T lymphocytes activation and
leading to suppress growth of established murine tumors
in a T cell-dependent manner [82]. EVs could be
expressed specific molecules of the cells from which
they originate [83–87]. Inspired from the way that most
enveloped viruses invade a host cell membrane and sub-
sequently release by a budding process that requires cell
membrane scission. Zhang et al. showed that they geneti-
cally engineered viral antigen to harbor into cell mem-
brane, then form uniform spherical virus-mimetic
nanovesicles (VMVs). These nanoparticles resemble
EVs such as, in size, shape and specific immune function
to elicit robust immunogenicity [84]. VMVs are
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considered to be straightforward, robust and tunable
nanobiotechnology platforms for fabricating antigen
delivery systems against a wide range of enveloped
viruses, however, attention should be paid to the potential
toxicity and biocompatibility of VMVs before this strat-
egy may be translated into clinic.

4.2. EV components as diagnostic or prognostic
biomarkers

Currently, a biopsy is required for definite diagnosis of
many cancers. Biopsy imposes a heavy burden on
patients, and because of this burden, it is difficult to
perform biopsies many times. It is necessary to observe
the cancer phases and the response to treatment. Thus,
rapid, simple, and less invasive diagnostic methods are
needed. Liquid biopsy is a predictive diagnosis and treat-
ment method using body fluid samples, such as blood
[88,89]. EV-based liquid biopsy has some advantages
compared with conventional biopsy. One of them
is that, because EVs are secreted from almost all cells,
EVs are found in various body fluids, and easy to collect
[90]. Second, EVs have biomolecules on their surface that
might represent the status of the disease. In addition to
this, miRNAs in the serum EVs from cancer cells have
been observed [91]; therefore, the miRNAs, as well as
proteins, in EVs are expected to serve new biomarkers.
A recent study showed another component of EVs,
mRNA, also has the potential to provide biomarkers for
cancers. Yokoi et al. revealed that MMP1 mRNA in
ovarian-cancer-derived EVs is carried to the peritoneal
cavity through the ascites, and then, induction of apop-
tosis in themesothelial cells leads to the destruction of the
peritoneal mesothelium barrier [92]. In this report, it was
shown that the expression level of MMP1 mRNA from
ovarian cancer patient ascites is higher than that in
healthy donors. This result indicates that MMP1 mRNA
in ascitic EVs has potential utility as a risk indicator of
peritoneal metastasis. Furthermore, to evaluate mRNA
level in EVs, a configurable microwell-patterned micro-
fluidic digital bioassay chip was developed. This device
enables to detect absolute quantification of mRNAs in
tumor derived EVs with high sensitivity and specificity
[93]. Another example of liquid biopsy, androgen recep-
tor splice variant 7 mRNA expression in urinary EVs can
be reliably quantified in prostate cancer patients [94]
Absolute quantification using droplet digital polymerase
chain reaction provided sensitive detection of urinary
mRNA from intact EVs, which were prepared by label-
free, size-based enrichment using a centrifugal microflui-
dic device. Furthermore, tumor derived EVs contain
circulating orphan noncoding RNAs (oncRNAs), which
may also have a role in non-cell autonomous disease
pathogenesis [95]. These oncRNAs exerts its prometa-
static effects by acting as an inhibitor of RISC complex
activity and increasing the expression of the prometa-
static genes, NUPR1 and PANX2. As we havementioned

above, EV-based liquid biopsy is more convenient than
conventional tissue biopsy; however, as a clinical techni-
que, EV detection remains time consuming, and some
additional criteria must be met, including cost, high
sensitivity, high specificity, and correlation with the clin-
ical process of the disease. A recent study showed that EV
protein biomarkers on alternating current electrokinetic
chips enable rapid detection of pancreatic cancer in
patient blood [96]. This method enables users to distin-
guish pancreatic cancer patient samples with high sensi-
tivity (99%) and specificity (82%) within two hours, and
there is no need for any purification. There are various
methods to detect EVs, such as using EV surface-
anchored nucleic acid amplification [97], a label-free
electrochemical sensor [98,99], and others [100]. To
apply EV-based liquid biopsy, more improvement in
earlier detection is important for successful treatment.
Recently, we have established ExoScreen, which is
a new, ultrasensitive EV detection method [101]. In this
method, EVs are captured by two types of antibodies and
detected by photosensitizer-beads, which enable the
detection of EVs without sample purification in a small
volume of body fluids or conditioned medium. The
combination of antibody against EV specific marker
and antibody against cancer-specific marker enables
detection of the cancer-specific EV (Figure 3).

The development of new EV detection methods
enables EV detection from small amounts of sample,
such as clinical samples. In fact, CD147, which is
considered a biomarker for early-stage colorectal can-
cer, and CD9 double-positive EVs were also detected
in samples with early-stage colorectal cancer that had
invaded the submucosal layer by the ExoScreen assay
[101]. In this respect, the development of EV detec-
tion is also important for EV-based therapy. Recently,
circulating RNAs in EVs are utilized for cancer diag-
nosis. Sedlarikova et al. demonstrated that two-phase
biomarker study for lncRNA expression profiles in
EVs from peripheral blood serum of newly diagnosed
multiple myeloma (MM) patients, monoclonal gam-
mopathy of undetermined significance (MGUS)
patients or healthy donors were investigated [102].
Overall, MM and MGUS patients showed high
expression of lncRNA, called PRINS. These results
suggest that lncRNA, PRINS, might be a minimally
invasive marker of both MM and MGUS.

4.3. Strategy of EV-targeting therapy

As we have shown, intercellular communication via
EVs contributes to tumor progression through the
transfer of their cargo. Another important issue is
whether EVs from cancer cells can be therapeutic tar-
gets. EVs can progress cancer through pathways com-
pletely different from the molecules targeted by current
drugs. Thus, reduction of cancer-derived EV cargo
transmission may provide possibilities for new
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therapeutics for cancer patients and add additional
value to existing therapeutic methods. We have pro-
posed three potential EV-based therapeutic strategies;
inhibition of EV production, elimination of circulating
EVs, and disruption of the absorption of EVs.
Elimination of circulating EVs is a possible new ther-
apeutic strategy in cancer patients. For instance, anti-
bodies against CD9 and CD63, which are enriched on
EVs, were administered to human breast cancer xeno-
graft mouse models, and circulating administered EVs
tagged by anti-CD9 and -CD63 were internalized by
macrophages through phagocytosis, resulting in the
inhibition of cancer progression [103]. However, these
CD9 or CD63 antibodies cannot selectively bind
cancer-derived EVs; thus, further investigations to find
cancer-specific antigens on the surface of EVs are
needed. Indeed, another example strategy for eliminat-
ing EV using a cancer-specific antigen has been
reported [104]. This study used the cancer-specific EV
surface protein HER2. Because of this, the therapeutic
strategy for the removal of circulating EVs was success-
ful. The researchers developed the hemofiltration sys-
tem, which can specifically capture circulating cancer-
cell-derived HER2-positive EVs [104]. HER2-
expressing EVs have been shown to interfere with ther-
apy and are associated with cancer progression [105];
therefore, selectively eliminating HER-2-expressing
EVs could be a new strategy to treat breast cancer.

Several articles have described the effectiveness of
inhibiting EV production, which inhibits cancer

progression in vitro and in vivo. Kosaka et al. revealed
that knockdown of nSMase2, which is required for
the synthesis of ceramide, reduced EV secretion and
miR-210 transfer, resulting in suppression of angio-
genesis and metastasis in a xenograft mouse model
[106]. The lysosome-associated membrane protein-2
(LAMP-2) is associated with endocytosis [107],
knockdown of LAMP-2 improved the therapeutic
effect of sunitinib in pancreatic neuroendocrine
tumors [108]. In addition, it has been shown that
other molecules, such as RAB27A/B, TSG101,
TSAP6, which are related to EV secretion, are
involved in the EV secretion from cancer cells.
Although therapeutic strategies for targeting EVs
derived from cancer cells are effective, there are sev-
eral issues to apply before clinical use. These genes
have key roles in multiple cell biological phenomena,
thus, their downregulation in normal cells would
have deleterious effects on normal cell functions.
Therefore, identification of the genes related to can-
cer-specific EV secretion mechanisms is needed
before using EV-targeting therapy. It has also been
suggested that EV-targeting therapy may affect nor-
mal cells [103]. To identify ‘cancer-specific molecules’
is indispensable for the future development of EV-
targeting anticancer therapeutics. EV biogenesis is
still unclear, and some challenging issues remain;
however, the EV research field is developing rapidly.
Thus, we hope that EV-targeting therapy will become
a standard therapy for cancer patients.
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Figure 3. ExoScreen method is suitable for liquid biopsy.
In this method, EVs are captured by two types of antibodies and detected by photosensitizer-beads, which enable the detection of EVs without sample
purification in a small volume of body fluids or conditioned medium. The combination of antibody against EV specific marker and antibody against
cancer-specific marker enable to detect the cancer-specific EV.
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5. Conclusions

As we have mentioned above, EVs are a very power-
ful and promising tool for cancer therapy (Figure 4).
As medical technology advances, the aging society is
rapidly spreading all over the world, and the possibi-
lity of suffering from cancer is increasing remarkably.
To treat cancer efficiency, early detection is the most
important factor. As a biomarker, EVs are suitable for
their feature of encapsulation of various molecules,
which are specific for cancer types, and EV-based
liquid biopsy has many advantages. Liquid biopsy is
easy to access compared with conventional tissue
biopsy. At the same time, these cancer-specific mole-
cules can provide new therapeutic targets for cancer.
The pathways associated with cancer progression via
EVs are different from the targets of modern drugs.
Additional efficacy is expected when these pathways
are inhibited. Moreover, EVs are possible drug deliv-
ery vehicles, which can efficiently deliver various
bioactive agents to target cells. Although advances
in EV purification methods are developing remark-
ably, some issues remain to be solved before future
clinical use will be possible.

For instance, the precise mechanisms of EV absorp-
tion pathway have not been clearly understood. Thus, for
more efficient delivery, elucidating the precise mechan-
ism of EV absorptive pathways are desired. In addition,
the clinical use of EV-targeting therapy has also an issue
to be solved. Sincemost types of cells secrete EVs through
different pathways, EV-targeting therapy itself may affect
the normal physiological function of EVs secreted from
normal cells. Discovery of cancer-specific EV secretion

pathway and/or proteins can dramatically improve EV-
targeting therapy.

EV-targeting therapy has been significantly
advanced recently. Many companies developed the
technology of engineering EVs. Codiak® is one of
the companies established a methodology of EV engi-
neering. exoSTING® is composed of engineered EVs
loaded with a small molecule STING agonist. The
engineering of exoSTING® provides for selective, pre-
ferential STING delivery to antigen presenting cells
[109,110]. A clinical trial using this modified EVs is
ongoing. There is a need for a technology for purify-
ing EVs stably and in large quantities; however, we
believe that, in the near future, EV-based treatments
will be used for cancer patients, and EV-based ther-
apy will help to overcome cancer.
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