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Key messages

What is already known about this subject?
►► Previous DNA microarray gene expression 
studies have identified gene signatures 
involved in systemic lupus erythematosus (SLE) 
such as those linked to granulocytes, pattern 
recognition receptors, type I interferon and 
plasmablasts.

What does this study add?
►► A more comprehensive profiling of the ‘genomic 
architecture’ of SLE by combining genetic and 
transcriptomic analysis by next-generation RNA 
sequencing.

►► SLE has three distinct gene signatures: 
susceptibility, activity and severity signatures, 
the last best illustrated in nephritis which 
is enriched in ‘druggable’ granulocyte and 
plasmablast/plasma cell pathways.

►► Patients with SLE exhibit perturbed mRNA 
splicing in genes enriched in immune system 
and interferon signalling pathways.

►► Blood transcriptome discriminates SLE versus 
healthy individuals with high accuracy and can 
distinguish active versus inactive/low disease 
activity states.

►► DNA polymorphisms that confer susceptibility 
to SLE regulate gene expression not only in the 
blood but also in multiple other tissues, which 
may explain the multiorgan involvement in SLE.

How might this impact on clinical practice?
►► Characterisation of the ‘genomic architecture’ 
of SLE provides additional clues to the 
understanding of the systemic nature of the 
disease, its marked heterogeneity and novel 
targets of therapy and biomarkers for diagnosis/
monitoring.

Abstract
Objectives  Systemic lupus erythematosus (SLE) 
diagnosis and treatment remain empirical and the 
molecular basis for its heterogeneity elusive. We explored 
the genomic basis for disease susceptibility and severity.
Methods  mRNA sequencing and genotyping in blood 
from 142 patients with SLE and 58 healthy volunteers. 
Abundances of cell types were assessed by CIBERSORT 
and cell-specific effects by interaction terms in linear 
models. Differentially expressed genes (DEGs) were used 
to train classifiers (linear discriminant analysis) of SLE 
versus healthy individuals in 80% of the dataset and 
were validated in the remaining 20% running 1000 
iterations. Transcriptome/genotypes were integrated by 
expression-quantitative trail loci (eQTL) analysis; tissue-
specific genetic causality was assessed by regulatory trait 
concordance (RTC).
Results  SLE has a ’susceptibility signature’ present in 
patients in clinical remission, an ’activity signature’ linked 
to genes that regulate immune cell metabolism, protein 
synthesis and proliferation, and a ’severity signature’ 
best illustrated in active nephritis, enriched in druggable 
granulocyte and plasmablast/plasma–cell pathways. 
Patients with SLE have also perturbed mRNA splicing 
enriched in immune system and interferon signalling 
genes. A novel transcriptome index distinguished active 
versus inactive disease—but not low disease activity—
and correlated with disease severity. DEGs discriminate 
SLE versus healthy individuals with median sensitivity 
86% and specificity 92% suggesting a potential use in 
diagnostics. Combined eQTL analysis from the Genotype 
Tissue Expression (GTEx) project and SLE-associated 
genetic polymorphisms demonstrates that susceptibility 
variants may regulate gene expression in the blood but 
also in other tissues.
Conclusion  Specific gene networks confer susceptibility 
to SLE, activity and severity, and may facilitate 
personalised care.

Introduction
Genome-wide expression analyses provide an unbi-
ased approach to investigate complex diseases such 
as systemic lupus erythematosus (SLE). Previous 
microarray studies have identified gene signatures 
involved in SLE pertaining to granulocytes, pattern 
recognition receptors, type I interferon (IFN) and 

other cytokines, and plasmablasts.1–5 Notwith-
standing, these results have not been associated with 
clinically defined disease outcomes or correlated with 
genetic data in a systematic way.

We combined genotype and RNA-sequencing data 
to comprehensively profile the blood transcriptome in 
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142 patients compared with healthy individuals, after controlling 
in silico for cellular heterogeneity. We define distinct ‘suscepti-
bility’, ‘activity’ and ‘severity’ disease signatures, enriched in drug-
gable pathways. Also, patients with SLE have perturbed mRNA 
splicing in immune system and interferon signalling genes. Based 
on transcriptome differences, we discriminate SLE versus healthy 
individuals with high accuracy and distinguish active versus inac-
tive/low disease activity states. Finally, by integrating genotypes 
from our SLE cohort and using expression-quantitative trait loci 
(eQTLs) from the Genotype Tissue Expression (GTEx) project,6 
we demonstrate that SLE-susceptibility polymorphisms regulate 
gene expression in the blood and also in other tissues.

Methods
See also online supplementary methods.

Experimental design and patient characteristics
We conducted a cross-sectional study of SLE and age/sex-matched 
healthy individuals recruited from the participating Rheuma-
tology and Blood Transfusion Units, respectively. History of biop-
sy-proven nephritis, classification criteria, serum autoantibodies, 
disease activity (physician global assessment, SLEDAI-2K7), defi-
nitions of Lupus Low Disease Activity State and remission,8 Lupus 
Severity Index (LSI)9 and use of medications were evaluated by 
standardised protocol. Participants gave informed consent and all 
procedures were approved by the local institutional review boards. 
All assays were performed in whole blood (PaxGene RNA tubes for 
mRNA extraction, EDTA tubes for DNA extraction), and patients 
withdrew lupus medications for 12 hours prior to sampling.

Genotyping
Individuals were genotyped with the Illumina HumanCore-
Exome-24 array, phased with SHAPEIT10 and imputed to the 
1000 Genomes Project Phase III using IMPUTE2,11 yielding ~6.9 
million variants.

RNA sequencing, mapping, quantifications and quality control
RNA libraries were prepared with the Illumina TruSeq kit and were 
sequenced on Illumina HiSeq2000. Paired-end reads (49 bp) were 
mapped to the GRCh37 reference human genome using GEM 
mapper.12 Exon quantification was performed on GENCODEv15. 
After quality control (online supplementary figure S1), we obtained 
quantifications for ~21 000 genes in 142 patients and 58 healthy 
volunteers (online supplementary table S1).

Differential gene expression and pathway enrichment analysis
DESeq213 was used to call differentially expressed genes (DEGs) 
including GC content, RNA integrity, study centre, insert size 
mode, age, gender, amount of RNA to construct the library and 
plate number as technical covariates. Statistical significance was 
set at 5% false discovery rate (FDR; Benjamini-Hochberg). We 
correlated gene expression with the SLEDAI-2K assigning −1 
value for healthy individuals. Functional enrichment gene-set anal-
ysis for KEGG (Kyoto Encyclopedia of Genes and Genomes) path-
ways and GO (Gene Ontology) terms was performed.14

Cell type estimation-deconvolution
We used CIBERSORT15 to estimate the proportion of blood 
immune cell subsets for each individual. Cell-specific DEGs were 
identified by introducing as additional covariates the estimated 
cell proportions and the disease×cell proportion interaction 
term, and obtaining p values for every gene for the interac-
tion term. For every cell type, we estimated the proportion of 

true positives from the enrichment of significant p values (π1 
statistic).16

Disease classification
Linear discriminant analysis (LDA) was performed introducing 
DEGs as features. We divided our dataset into training (80%) 
and validation (20%) and run 1000 iterations. For each itera-
tion, we identified DEGs between SLE and healthy individuals 
in the training set, which were used to build the LDA classifier. 
Each classifier was tested for its sensitivity and specificity to 
discriminate SLE versus healthy in the validation set.

Effect of genetic variation on gene expression
Genotypes obtained from our cohort were assessed for their 
effect on blood gene expression by eQTL mapping.17 18 Genetic 
ancestry was accounted by using the first three principal compo-
nents (PCs) obtained from EIGENSTRAT (online supple-
mentary figure S1E).19 To measure the impact of SLE GWAS 
(genome-wide association study) polymorphisms on SLE blood 
gene expression and across different tissues, we used eQTL data 
from our SLE cohort and GTEx.6 Co-localisation was assessed 
by the Regulatory Trait Concordance (RTC) score (>0.9)20 and 
calculated the shared probabilities (>0.9) that a SLE GWAS 
polymorphism and the eQTL tag the same functional variant.21

Results
Patients with SLE demonstrate widespread transcriptome 
perturbations
We found 6730 DEGs in SLE versus healthy individuals (online 
supplementary figure S2A, online supplementary table S2). 
Novel and previously identified pathways were implicated such 
as the IFN and NOD-like receptor signalling (online supplemen-
tary figure S2B–D, online supplementary figure S3A). Our DEGs 
overlapped significantly with DEGs in paediatric SLE versus 
healthy counterparts2 (p=10−165, Fisher’s exact test) (online 
supplementary figure S3B), denoting marked aberrancies in SLE 
blood transcriptome.

IFN signature is robust in SLE and is present across various 
immune cell types
We used CIBERSORT15 to estimate the proportions in the blood 
of different immune cells and confirmed previously reported 
differences in SLE versus healthy individuals (figure 1A).22–26 By 
controlling for these data, we defined a global signature inde-
pendent of cell variation that comprised 1613 DEGs (online 
supplementary table S3). The IFN and other pathways such as 
p53 signalling were prominent and independent of cell composi-
tion (figure 1B–C), underscoring a critical role in disease patho-
genesis. By interrogating the interferome database,27 we found 
both type I and type II IFN response.

We next explored cell-specific gene perturbations by a statis-
tical model that fits the proportions of immune cells as covari-
ates and a (SLE vs healthy)×proportion interaction term for 
every cell type. We tested for the significance of the interac-
tion term and quantified for every cell type the proportion of 
true positives estimated from the enrichment of significant p 
values (π1 statistic) (figure 2A).16 In naive and memory B cells, 
CD4+ memory resting T cells, CD8+ T cells and neutrophils, 
π1 exceeded zero indicating that varying proportions of these 
cells correlate with divergent effects on gene expression in 
SLE versus healthy individuals. By introducing treatment with 
corticosteroids as an additional covariate, π1 for neutrophils 
decreased from 0.067 to 0.034, still the distribution of p values 
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Figure 1  Blood transcriptome deconvolution in systemic lupus erythematosus (SLE) and enriched pathways independent of cell composition. (A) 
Estimated proportions of different immune cell subsets in healthy and SLE individuals. For every cell type, the Mann-Whitney U test p value comparing 
healthy vs SLE individuals is displayed on top. (B) Pathway enrichment analysis with all differentially expressed genes (SLE vs healthy) after correcting 
for the proportion estimates of cell types. (C) Mechanistic map of the biological regulation (GO terms enrichment) in SLE after correcting for cell type 
proportion estimates.
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Figure 2  Cell-specific gene expression perturbations in patients with systemic lupus erythematosus (SLE). (A) Histogram of p values for the disease 
(SLE vs healthy)×proportion interaction term reveals cell type–specific gene expression effects for SLE. For every cell type, the proportion of estimated 
true positives (π1) and the number of significant genes at 5% false discovery rate (FDR) is shown. (B) Disease (SLE vs healthy) by estimated neutrophil 
proportion interaction for the gene GTPBP2. x-axis indicates the estimated proportion of circulating neutrophils while y-axis indicates the normalised 
GTPBP2 expression. Red dots indicate patients with SLE while blue dots indicate healthy individuals. (C) Disease (SLE vs healthy) by estimated CD4+ 
T-cell memory resting proportion interaction for the gene CD1c. x-axis indicates the estimated proportion of circulating CD4+ T-cell memory resting 
cells while y-axis indicates the normalised CD1c expression. Red dots indicate patients with SLE while blue dots indicate healthy individuals.
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Figure 3  Blood transcriptome variation in systemic lupus erythematosus (SLE) vs healthy individuals and differential mRNA splicing. (A) Principal 
component analysis (PCA) of whole transcriptome between healthy and active SLE individuals. The two first principal components (PC1, PC2) are 
plotted. PC2 can differentiate the two groups implying differences in gene expression. (B) PCA between healthy and inactive SLE individuals. PC2 
can differentiate the two groups indicating that even in disease remission, the transcriptome of patients with SLE is different compared with healthy 
individuals. (C) PCA between active and inactive patients with SLE. The first two PCs do not differentiate the two groups suggesting the absence of 
significant differences in gene expression between them. (D) We characterised alternative splicing events by focusing on intron excisions. A cluster 
is defined as set of overlapping spliced junctions or introns. For each cluster, we calculated the PSI (percentage splicing intron) coverage and then 
normalised it as a fraction of the total counts. Each splicing event is plotted as a line connecting its start and end coordinates of the intron with a 
thickness proportional to the displayed normalised count value. Differential splicing is measured in terms of the difference in the per cent spliced in 
dPSI. Illustratively, in the case of TIMM10, the splicing event ‘a’ is more frequent in healthy (88%) as compared with SLE (73%) individuals; therefore, 
the difference in PSI (SLE vs healthy; dPSI) is −0.202.

was left-skewed suggesting the existence of neutrophil-spe-
cific effects (online supplementary figure S4). Illustratively, 
increasing neutrophils correlated positively with GTPBP2 in 
SLE but not in healthy individuals (figure 2B). The same trend 
was observed for the correlation between CD4+ memory T cells 
and CD1c (figure 2C). Notably, GTPBP2 regulates type I IFN 
production,28 and CD1c mediates the presentation of modified 
peptides to T cells.29

Distinct transcriptional signatures define susceptibility to SLE
Remission of disease activity is a therapeutic target in SLE,8 
but whether this is mirrored by transcriptome changes remains 
unknown. We determined a ‘susceptibility’ signature that 
persists in the absence of disease activity following treatment. 
Principal component analysis (PCA) discriminated transcrip-
tome in clinically active, inactive (clinical SLEDAI-2K=0) 
patients and healthy individuals (figure  3A–C). Inactive SLE 
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Figure 4  Transcriptomic index correlates with systemic lupus erythematosus (SLE) activity and severity. (A) Principal component analysis (PCA) 
of 3690 differentially expressed genes (DEGs) significantly correlated with the SLEDAI-2K index (modified to include a fixed score of −1 for healthy 
individuals). The first two PCs are plotted. PC1 captures SLE activity states, thus separating different groups of individuals namely healthy individuals, 
patients with SLE at remission, low disease activity (LDA) state and active disease. (B) Jitter plot of PC1 weights according to SLE activity states. For 
each group, the median value is plotted. The regression line is plotted in red (p=5.86×10−17). (C) Jitter plot of PC1 weights according to SLE severity. 
Patients with SLE were stratified into three equal-sized groups based on the distribution of Lupus Severity Index scores (lowest to 33rd percentile 
score; 33rd to 66th percentile score; 66th to highest score), thus creating three distinct groups of increasing disease severity (DS1 to DS3). For each 
group, the median value is plotted. The regression line is plotted in red (p=1.02×10−23). (D) KEGG pathway enrichment analysis of 3690 DEGs (inset 
on the right side of the plot) with prominent oxidative phosphorylation and cell cycle pathways. Functionally grouped networks of GO terms are 
shown on the right. Multiple biological aberrations are captured by differences in gene expression based on different levels of SLE activity/severity.

were differentiated from healthy but not from active SLE, 
denoting persistently deregulated gene expression despite remis-
sion. We next took the intersection of DEGs in healthy versus 
active SLE (online supplementary table S4) and healthy versus 
inactive SLE (online supplementary table S5) that are not DEGs 

in active versus inactive SLE (online supplementary table S6), 
to reach 2726 DEGs which comprise the ‘susceptibility’ disease 
signature. These genes were enriched in regulation and response 
of the immune system processes (online supplementary figure 
S5A–C) suggesting persistence of immune activation. We also 
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Figure 5  Transcriptome analysis of lupus nephritis reveals prominent neutrophil and humoral response signatures. (A) Principal component analysis 
(PCA) of blood gene expression between active lupus nephritis and lupus nephritis in remission. PC1 and PC2 are plotted on x-axis and y-axis, 
respectively. PC2 is differentiating the two groups. (B) PC2 and PC3 are plotted on x-axis and y-axis, respectively. PC3 is also differentiating the two 
groups suggesting that PC2 and PC3 capture different transcriptome/biological aberrations involved in active lupus nephritis. (C) Comparison of 
neutrophil gene signature with data from a paediatric systemic lupus erythematosus (SLE) study (Banchereau and Pascual; Cell 2016). Fisher’s exact 
p values of overlap are plotted in accordance with the ORs denoted as heatmap. (D) Pathway enrichment analysis of the intersection of differentially 
expressed genes (DEGs) in active nephritis vs inactive SLE with those in active vs inactive SLE. (E) Functionally grouped networks of enriched GO term 
categories were generated for the 136 DEGs (5% false discovery rate) between patients with SLE with active nephritis vs those with activity from 
other organs. The main enriched terms are granulocyte activation and antimicrobial humoral response.
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Figure 6  Systemic lupus erythematosus (SLE)-susceptibility variants regulate gene expression in blood and non-blood tissues. (A) Splicing QTL 
example for the gene IRF7. Individuals with SLE carrying the TT genotype show higher contribution of the same splicing event to the intron cluster 
compared with individuals carrying the GG genotype. (B) To address the impact of SLE GWAS (genome-wide association study) polymorphisms on 
gene expression across different tissues, we used the eQTL data in 44 tissues from GTEx6 and calculated the tissue-sharing probabilities of eQTLs and 
the probabilities that a SLE GWAS polymorphism and the eQTL tag the same functional effect. On the primary y-axis, the enrichments-over-the-null 
per tissue are plotted as bars; on the secondary y-axis, the number of SLE GWAS variants that colocalise with eQTLs per tissue are plotted as dotted 
line. The horizontal black line indicates the null. On top of each bars are the −log10 Benjamini-Hochberg–corrected p values for the enrichments.

quantified alternative mRNA splicing events and found 84 
genes with differential splicing (5% FDR) between SLE and 
healthy individuals (figure 3D, online supplementary table S7), 
enriched in immune system and type I interferon signalling 
pathways. Twenty-six out of 84 genes were also differentially 
expressed between SLE and healthy individuals after correcting 
for cell counts (online supplementary table S8). By comparing 
patients with clinically inactive SLE but evidence for serolog-
ical activity (high anti-dsDNA, low complement) against those 
who are clinically and serologically inactive, we found no DEGs, 

corroborating clinical studies showing comparable prognosis for 
these two groups.30

SLE activity signature is enriched in oxidative 
phosphorylation
Active disease in SLE may result in organ damage.31 We selected the 
DEGs from the inactive versus active SLE comparison that are not 
in the ‘susceptibility’ signature. A total of 365 DEGs were identi-
fied, which were enriched for oxidative phosphorylation, consistent 
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with the alterations in mitochondrial mass and membrane poten-
tial in lupus T cells32 and the enhanced oxidative stress.33 Other 
enriched pathways included ribosomes and cell cycle. Together, 
active SLE is linked to perturbed expression of genes regulating 
metabolism, protein synthesis and proliferation of blood immune 
cells. The ‘activity’ signature persisted after controlling for sero-
logical activity/autoantibodies or treatments, therefore suggesting 
it could be of potential use for monitoring patients with SLE, 
although further validation in longitudinal studies will be required. 
To further corroborate this, we found significant overlap (p=10−5, 
online supplementary figure S3B) between our DEGs (inactive vs 
active disease) with the respective DEGs in paediatric SLE.2

Blood transcriptome as a biomarker of SLE severity
Patients with SLE demonstrate marked variability in clinical 
outcome and there is an unmet need for biomarkers that reflect 
disease severity and the underlying molecular mechanisms. 
We assessed transcriptome according to varying degrees of the 
SLEDAI-2K index.7 By performing PCA (figure 4A) on the identi-
fied 3690 DEGs (online supplementary table S9), we defined PC1 
(explaining 23% of the transcriptome variance) as a new variable 
summarising the expression properties of genes that recapitulate 
SLE activity (figure 4B) and severity (LSI-defined) (figure 4C). PC1 
clustered closely patients with clinical remission and low disease 
activity, consistent with evidence that both these states have a 
favourable outcome.8 Pathway analysis showed enrichment in 
oxidative phosphorylation and cell cycle (figure 4D), similar to the 
‘activity’ signature. Network enrichment revealed signatures of 
protein ubiquitination, electron transport chain, protein phosphor-
ylation, cell cycle, defence response and regulation of response to 
stress (figure 4D), all of which have been linked to SLE.33–35 These 
results suggest that multiple molecular pathways determine SLE 
progression/severity; in this context, blood transcriptome may 
serve as biomarker for clinically defined outcomes.

Neutrophil activation and humoral response signatures 
correlate with renal involvement in SLE
SLE can affect multiple tissues, but the molecular basis of this 
heterogeneity remains elusive. Comparison of active versus inactive 
patients with nephritis revealed extensive gene expression differ-
ences with 1496 DEGs (figure 5A–B). To discern the transcriptome 
basis for kidney disease, we compared patients with active nephritis 
versus those with activity from other organs (online supplemen-
tary table S10) and found 136 DEGs (online supplementary table 
S11) enriched in granulocyte activation and antimicrobial humoral 
response (figure 5E), consistent with the role of neutrophils36–38 
and of plasmablasts/plasma cells.39 40 We aligned our results with 
those in paediatric lupus nephritis and confirmed the presence 
of neutrophil gene signature (p=5×10−39) (figure 5C). Next, we 
took the intersection of DEGs in active nephritis versus inactive 
SLE (1375 DEGs) with those in active versus inactive SLE (377 
DEGs); 305 genes were common, suggesting a stepwise progres-
sion of transcriptome alterations from inactive to active non-renal 
and active renal SLE. These genes were enriched in oxidative phos-
phorylation, ribosome, proteasome (online supplementary table 
S12), cell cycle and pyrimidine metabolism pathways (figure 5D).

Gender differences in gene expression in patients with SLE 
patients
SLE exhibits a striking gender bias with women affected more 
frequently than men, yet the latter suffering from more severe 
disease.41 We examined for gender-biased gene expression specif-
ically in SLE by taking the non-overlapping DEGs in male versus 

female SLE (Bonferroni significant) and male versus female healthy 
(90% FDR threshold to increase specificity) individuals. Six genes 
had perturbed gender-biased expression in SLE (online supplemen-
tary figure S6A), two of which (SMC1A, ARSD) escape X-chro-
mosome inactivation. SMC1A42 demonstrated the strongest gender 
difference (online supplementary figure S6A–B), and this was 
confirmed in purified CD14+ monocytes (online supplementary 
figure S6C). Although preliminary, these results provide candidate 
genes for further studies.

Blood transcriptome discriminates SLE versus healthy 
individuals
SLE diagnosis can be challenging especially at early stages.43 We 
asked whether we could classify individuals based on their gene 
profile by LDA using DEGs as features. We divided our cohort into 
training (80%) and validation (20%) and run 1000 iterations. By 
sampling different individuals in each iteration, we inserted pertur-
bations in our model therefore building multiple LDA classifiers 
to account for SLE heterogeneity. Using a median 5438 DEGs, we 
obtained a median diagnostic accuracy of 87.5% (85.7% sensi-
tivity, 91.7% specificity) in the validation set (online supplemen-
tary figure S7). This finding needs further confirmation and testing 
against lupus-like control diseases.

SLE genetic causality may arise from blood and non-blood 
tissues
Considering the extended genomic perturbations in patients with 
SLE, we asked to what extent they may be genetically determined 
by combining RNA-seq with genotype data and mapping eQTLs 
in our dataset. We found 3142 cis-eQTLs with highly signifi-
cant eQTLs clustering close to the transcription start site of the 
genes (online supplementary figure S8A–B), in accordance with 
their putative regulatory effects. Approximately 17.5% of the 
DEGs (SLE vs healthy) had an eQTL. Co-localisation analysis 
(RTC method)20 21 with GWAS SLE variants revealed nine genes 
where both the GWAS and the eQTL tag the same variant, namely 
UBE2L3, HLA-DRB5, RP11-356I2.3, BLK, FAM167A, NADSYN1, 
RP11-660L16.2, ALDH2 and ALDH18A1, thus implicating them 
in SLE pathogenesis.

To detect disease-specific eQTLs, we compared our SLE eQTLs 
with those from a larger blood RNA-seq study (n=384 healthy) 
to gain statistical power.44 SLE and control eQTLs replicated well 
(π1=0.89, online supplementary figure S8C), suggesting the lack 
of disease specificity. Although it is possible that many of the SLE 
eQTLs are common eQTLs found also in healthy individuals, this 
result could be due to insufficient power and/or the need to assay 
cell subtypes. We analysed active and inactive patients with SLE 
and found 1072 and 539 eQTLs, respectively. The replication rate 
between the two groups was 0.854 and 0.921 (π1 measurement), 
respectively, again suggesting no specificity according to the disease 
status.

We next performed splicing-QTL analysis for the SLE indi-
viduals by calculating intron excision ratios,45 and found 777 
splicing-QTLs. Notably, 13 of the 26 genes with both perturbed 
expression and splicing in SLE (online supplementary table S8) had 
a splicing-QTL, suggesting underlying genetic effects (figure 6A).

Finally, we examined whether SLE-associated genetic varia-
tion may regulate gene expression in non-blood tissues. We used 
SLE GWAS signals and eQTLs from 44 tissues,6 and employed 
the RTC method21 to normalise the GWAS-eQTL probabilities 
with the tissue-sharing estimates of the eQTLs to determine rele-
vant tissue(s). Notably, SLE-associated polymorphisms regulated 
gene expression not only in the blood but also in other tissues, 
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particularly the liver followed by basal ganglia and adrenal gland 
(figure 6B), suggesting that SLE genetic susceptibility may affect 
multiple tissues. The finding of liver as a causal tissue concords 
with our result that disease activity correlates with changes in 
metabolism genes.46

Discussion
Our study provides a comprehensive characterisation of gene 
signatures in adult SLE associated with susceptibility and clini-
cally relevant outcomes. Moreover, we explore the genetic regu-
lation of transcriptome and provide novel insights regarding SLE 
pathogenesis.

By transcriptome deconvolution, we estimated the proportions 
of blood immune cell subsets. We confirmed previously reported 
perturbations in the abundancies of various cells in SLE,22–26 which 
collectively accounted for 75% of blood DEGs. Type I IFN and 
p53 signalling represented two robust signals unaffected by the 
cell composition, suggesting their critical involvement in disease 
pathogenesis.

Our analysis for cell-specific effects in gene expression might 
provide unique insights regarding perturbed molecular and/or 
genetic mechanisms in SLE. Illustratively, it can be hypothesised 
that there is a molecular mechanism that keeps GTPBP2 levels 
stable across increasing peripheral blood neutrophils in healthy 
individuals, but this is disturbed in SLE (figure 2B). Alternatively, a 
genetic mechanism such as a disease-specific eQTL might operate 
in neutrophils and regulate GTPBP2. Together, differences in SLE 
blood transcriptome may be driven by both altered abundances of 
circulating cells and cell-specific gene regulation.

Our data revealed a ‘susceptibility’ signature pertaining to regu-
lation and response of the immune system that persists even when 
the disease has remitted. This emphasises the role of immune cell 
activation in SLE but also implies that existing therapies fail to 
restore immune aberrancies. Notably, patients with SLE exhibited 
perturbed splicing pattern in several genes implicated in immune 
system and interferon signalling, raising the possibility that 
proteins with aberrant amino acid sequence and/or function are 
produced.47 We also defined an ‘activity’ signature enriched in cell 
metabolism/oxidative phosphorylation genes. These data corrobo-
rate studies implicating mitochondrial function and aerobic glycol-
ysis in regulation of immune cells relevant to SLE48 and could be 
explored therapeutically.

SLE typically follows a waxing–waning course, necessitating 
patient monitoring to optimise outcomes. We generated a novel 
transcriptome index that correlates with SLE activity and severity 
(figure  4A–C). Notably, this index distinguished patients with 
active disease versus remission or low disease activity,8 and could 
be further exploited as biomarker.

Lupus nephritis represents a distinct disease subset with increased 
morbidity and treatment complications. We detected extensive 
transcriptome perturbations in active nephritis with prominent 
granulocyte and plasmablasts/plasma cell signatures, a finding 
confirmed in paediatric patients with SLE.2 Notably, blockade of 
neutrophil extracellular traps formation,49 and of plasma cells by 
proteasome50 or Bruton’s tyrosine kinase51 inhibitors have shown 
evidence of efficacy in murine lupus nephritis.

SLE diagnosis is often based on the acumen of experienced 
physicians due to its clinical heterogeneity.41 43 We found that 
blood transcriptome had high specificity and sensitivity in discrim-
inating SLE versus healthy individuals, suggesting it might serve as 
a diagnostic aid. Further studies including also control diseases are 
required to support these findings.

We assessed how genetic variation correlates with gene expres-
sion in SLE by integrating genotype and RNA-seq data. We found 

numerous cis-eQTLs which, however, were not disease specific. 
Moreover, our splicing-QTL data corroborate previous results,52 
further emphasising the genetic contribution to the disease. Besides 
immune activation, the function of tissues may be critical in deter-
mining disease outcome. To this end, we used SLE GWAS data and 
eQTLs from the GTEx tissues. Top causal tissues included liver 
followed by basal ganglia, adrenal gland and whole blood. Inter-
estingly, mTORC1-dependent liver mitochondrial dysfunction has 
been implicated in murine lupus46 although further mechanistic 
studies are needed to disentangle these findings.

Our study has also certain limitations. First, the lack of longi-
tudinal data to assess intra-individual changes in transcriptome. 
Second, although our sample size was adequate to characterise 
subgroup differences, still it lacked sufficient power to detect 
SLE-specific eQTL signals. Finally, as we studied predominantly 
Caucasians, our findings may not be generalised to other ethnic 
groups.

Conclusively, by studying transcriptome differences in SLE and 
healthy individuals, we describe distinct susceptibility and activity/
severity signatures. Our data further illustrate the molecular 
heterogeneity of the disease and may facilitate the development of 
novel biomarkers and therapies.
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