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ABSTRACT
Vitamin D is a nutrient and a hormone with multiple effects on immune regulation and respiratory
viral infections, which can worsen asthma and lead to severe asthma exacerbations. We set up
a complete experimental and analytical pipeline for ATAC-Seq and RNA-Seq to study genome-
wide epigenetic changes in human bronchial epithelial cells of asthmatic subjects, following
treatment of these cells with calcitriol (vitamin D3) and Poly (I:C)(a viral analogue). This approach
led to the identification of biologically plausible candidate genes for viral infections and asthma,
such as DUSP10 and SLC44A1.
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To the editor

Vitamin D may prevent or attenuate severe asthma
exacerbations and viral respiratory infections
through epigenetic regulation of innate and adap-
tive immune mechanisms [1] through processes
such as chromatin folding. Genome-wide chroma-
tin accessibility assays such as ATAC-Seq (Assay
for Transposase Accessible Chromatin and high-
throughput sequencing) [2] can identify transcrip-
tionally active sections of chromosomes, thus help-
ing us define the binding status of transcription
factors, determine nucleosome occupancy, and
construct gene regulatory networks. We report
the use of ATAC-Seq and total RNA-Seq to eval-
uate the genome-wide effects of vitamin D, with
and without a viral analogue (Poly (I:C)) on asth-
matic bronchial epithelial cells.

Asthmatic (AHBEC) bronchial epithelial cells
were cultured and stimulated with sham (culture
media), calcitriol, poly (I:C) (to simulate viral infec-
tion), or both. ATAC-Seq was performed using one
sample per treatment to detect chromatin sections
open for transcription; the resultant DNA fragments
were purified, amplified, and sequenced. Sequencing

data was aligned to the reference genome with
Bowtie2 [3], and peaks were called with MACS2 [4]
and annotated with HOMER. Chromatin accessibil-
ity was quantified as read coveragewithin themerged
ATAC-Seq peak regions for each sample, and the
count matrix was normalized with library sizes and
transformed to counts per million (CPM) using
edgeR [5]. Pairwise fold-change of the chromatin
accessibility was then calculated based on CPM.
Pathway enrichment analysis was performed on
genes annotated to the differential peaks, using
Fisher’s exact test.

RNA-Seq was performed using the same condi-
tions as for ATAC-Seq. RNA-Seq was performed in
three biological replicates where cell line AHBEC
obtained from ATCC was cultured from different
passages and on different dates, and in one set of
three technical replicates to confirm that the open
chromatin determined by ATAC-Seq corresponds to
changes in gene expression. The RNA-Seq data was
further validated using real-time PCR of detected
genes using three biological and three technical repli-
cates. RNA-Seq reads were aligned to the reference
genome with STAR [6], and TPM (Transcripts Per
Kilobase Million) value was quantified for each gene
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in each sample using RSEM [7]. Bigwig files contain-
ing the read coverage information of every sequen-
cing sample were generated for the visualization in
the UCSC Genome Browser [8].

The quality of the ATAC-Seq data is shown in
Figures S1 and S2. The mapping rates were high
(>95%), and the average number of ATAC-Seq
peaks (accessible chromatin regions) was 17,125
(detected by MACS2 callpeak), but with wide varia-
tion depending on treatment protocol and library
size (Table S1).

Clustering analysis on the chromatin accessibility
indicated clustering of: Sham and Calcitriol treated
cells, Poly I:C and Calcitriol +Poly I:C treated sam-
ples (Figure S3). Differential peaks were identified
between six pairwise comparisons among the four
treatments for Asthma AHBEC (n = 616) (Figure 1)

with more than a three-fold absolute change on the
log2 transformation of CPM in any of the pairwise
comparisons. Among these differential peaks, 52
were highly correlated (absolute correlation >0.9) to
the expression of corresponding annotated genes
(Table S2). The top 4 correlated ATAC-Seq differen-
tial peaks and RNA-Seq genes are shown in Figure 2.
We used QRT-PCR to validate the top 4 genes from
RNA-Seq (Figure S5). We also performed analyses
for differential gene expression between each treat-
ment (Calcitriol, Poly I:C, and Calcitriol +Poly I:C)
versus Sham (Table S3) using the R package DESeq2.
We summarized the log fold-changes for the differ-
entially expressed genes from RNA-Seq using
adjusted p-value <0.05 and the corresponding differ-
ential peaks from ATAC-Seq that share the same
gene symbol annotations. For Calcitriol vs Sham,

Figure 1. Heatmap of chromatin accessibility in the differential peaks for AHBEC.
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there were no differentially expressed genes.We have
92 differentially expressed genes between Poly I:C vs.
Sham and 364 differentially expressed genes between
Calcitriol+PolyI:C vs. Sham. The corresponding
peaks from ATAC-Seq that share same gene annota-
tions (table S3) include 4 and 11 overlapped peaks
with corresponding genes between PolyIC vs. Sham
and Calcitriol+PolyIC vs. Sham, respectively. TBX3
gene has a log fold-change of 3.56 between PolyIC vs.
Sham. In addition, the peak annotated with SLC8A1
gene also has a relatively high log fold-change of 2.72.
For Calcitriol+PolyI:C vs. Sham, we can also notice
that the peaks annotated to TBX3 and SLC8A1 are
differential based on more than three-fold absolute
changes. Besides, the significant differential peak also
includes the one annotated to the ZCCHC2 gene. In
a genome-wide study of a gene by environment
interaction (GWIS) of depressive symptoms and
stressful life events, a single nucleotide

polymorphism (SNP) intronic to ZCCHC2
(rs17070072) was significant (p = 1.46 × 10−8) [9].

Large absolute log fold changes (near 3 or >3) for
differential peaks between PolyI:C vs. Sham (genes
SLC8A1 and TBX3) and Calcitriol+PolyI:C vs. Sham
(genes SLC8A1, TBX3 and ZCCHC2) and those for
the corresponding differentially expressed genes
annotated to them are shown in Figure S6.

Through pathway enrichment analysis of genes
annotated to the differential peaks, we identified 101
pathways significantly enriched (FDR < 0.05) by the
differentially accessible genes. The pathway analysis in
the asthma cell line ‘AHBEC’ showed enrichment in
cancer-related and metabolic pathways (Table S4).
Genes with the highest fold-change between treat-
ments included DUSP10, LOC101928304, TRMU,
and SLC44A1 (Table S2). Dual specificity phosphatase
10 (DUSP10), also known asMAPkinase phosphatase
5 (MKP5) is a key negative regulator of IL-33-induced

Figure 2. Scatter plots of top correlated ATAC-Seq differential peaks and RNA-Seq genes.
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cytokine production in Th2 cells [10]. Mkp5-deficient
cells produced greatly enhanced levels of pro-
inflammatory cytokines during innate immune
responses and exhibited greater T-cell activation
than their wild-type counterparts [11]. MKP5 was
shown to protect against sepsis-induced acute lung
injury [12]. Furthermore, deficiency of MKP5 results
in reduced influenza virus replication in the lung,
which is associated with increased type I IFN produc-
tion [13] while overexpression of MKP2 and MKP5
inhibited IFNβ promoter activity in response to LPS
or poly (I:C) stimulation [14]. DUSP10 negatively
regulates the inflammatory response to rhinovirus
through IL-1β signalling [15].

DUSP10 is a primary vitamin D target is
expressed in human peripheral blood mononuc-
lear cells (PBMCs) [16]. showed that changes in
the expression of DUSP10 and 11 other VitD
target genes in human PBMCs at the start and
the end of the 5 months vitamin D-intervention
(VitDmet study) were systematically correlated
with the alteration in the circulating form of vita-
min D3, 25-hydroxyvitamin D3 (25(OH)D3).
Furthermore, VDR target gene DUSP10 gene
expression appears to be the most comprehensive
biomarker for vitamin D₃ responsiveness of
human individual [17].

LOC101928304 is an uncharacterized non-coding
RNA, and TRMU (tRNA 5-methylaminomethyl-
2-thiouridylate methyltransferase) is a nuclear
gene that encodes a mitochondrial tRNA-
modifying enzyme. SLC44A1 (solute carrier family
44 members 1) also called Choline like transporter
family is proposed to supply choline for the synth-
esis of cell membrane phospholipids in an NA(+)-
independent manner. The physiological relevance
of SLC44A1 is indicated by its likely involvement
in membrane synthesis for cell growth or repair,
and also by its role in phospholipid production for
the generation of lung surfactant. In transfusion-
related acute lung injury, antibodies to SLC44A2
cause a deleterious aggregation of granulocytes [18].

In the analysis of differential gene expression
between each treatment (Calcitriol, Poly I:C, and
Calcitriol +Poly I:C) versus Sham, there were no
differentially expressed genes, based on the adjusted
p-value, for Calcitriol vs. Sham. We extracted the log
fold-change in ATAC-Seq for the top 5 differentially
expressed genes from the results of all the peaks (not

the 616 differential peaks we reported) between
PolyIC vs Sham and Calcitriol + PolyIC vs Sham.
For the genes with multiple peaks, we took the peak
with the largest absolute log fold-change (Table S5).

In comparing Poly IC vs Sham we identified
dual specificity phosphatase 4 (DUSP4), Activin
A receptor type 2B (ACVR2B) and T-Box3
(TBX3). DUSP4 belongs to the same family as
DUSP10, the top 1 gene we report in our correla-
tion analysis. It regulates corticosteroid sensitivity
via dephosphorylation of JNK1 and GR-Ser226 .
DUSP4 activation by formoterol restores impaired
corticosteroid sensitivity, indicating that DUSP4 is
crucial in regulating corticosteroid sensitivity, and
therefore might be a novel therapeutic target in
severe asthma [19]. ACVR2B, a member of the
transforming growth factor (TGF)-β superfamily
of secreted factors, is a potent negative regulator of
muscle growth. Systemic Blockade of ACVR2B
Ligands Protects Myocardium from Acute
Ischaemia-Reperfusion Injury [20]. T-box genes
encode transcription factors involved in the regu-
lation of developmental processes. TBX3 is the
earliest expressed member of the T-box transcrip-
tion factor family and is involved in the mainte-
nance and induction of pluripotency [21].

In comparing Calcitriol + PolyIC vs. Sham we
identified DUSP4, TBX3 and Macrophage
Migration Inhibitory Factor (MIF). MIF plays
a role in the regulation of macrophage function in
host defense through the suppression of anti-
inflammatory effects of glucocorticoids. MIF also
antagonizes glucocorticoid inhibition of T-cell pro-
liferation in vitro by restoring IL-2 and IFN-γ pro-
duction [22]. Furthermore, MIF overexpression
promotes the proliferation and migration of Airway
Smooth Muscle Cells (ASMCs) by upregulating the
activity of the ERK1/2 and FAK signalling and the
expression of matrix metalloproteinase (MMP)-2
[23]. In mouse models of allergic asthma, the lack
of MIF causes an almost complete abrogation of the
cardinal signs of the disease including mucus secre-
tion, eosinophilic inflammation, and airway hyper-
responsiveness. Additionally, blocking the expres-
sion of MIF in animal models leads to a significant
reduction of pathological signs of eosinophilic
inflammation [24].

We uploaded the bam and bigwig files to the
NSF-funded site CyVerse Discovery Environment
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(https://de.cyverse.org/de/) that supports free data
hosting and created custom tracks on UCSC
Genome Browser to visualize read coverage in
these matched ATAC-Seq and RNA-Seq samples
(http://genome.ucsc.edu/s/zhangr100/AHBEC_
VitD). Our chromatin accessibility patterns were
similar to the reference DNase I hypersensitivity
clusters in the ENCODE database. For instance,
integration of ATAC-Seq and RNA-Seq data indi-
cated the effect of chromatin accessibility on the
expression of DUSP10 (Figure S4).

Vitamin D is a hormone with multiple effects
on immune regulation and respiratory viral
infections, which may affect asthma morbidity.
We set up an experimental and analytical
approach to ATAC-Seq and RNA-Seq to study
genome-wide epigenetic changes in human
bronchial epithelial cells of asthmatic subjects,
following treatment of these cells with vitamin-
D and Poly I:C. This approach led to the identi-
fication of biologically plausible candidate genes
for viral infections and asthma (DUSP10)
a Vitamin D Receptor ‘VDR’ target gene is
a key negative regulator of IL-33-induced cyto-
kine production in Th2 cells [10]. For instance,
deficiency of MKP5 results in reduced influenza
virus replication in the lung, which is associated
with increased type I IFN production [13]. Type
I IFN signalling promotes the maintenance of
lung epithelial tight junctions during
S. pneumoniae infection thereby reducing the
passage of the pathogen from alveoli into the
lung parenchyma [25,26].

SLC44A1 gene is involved in phospholipid pro-
duction for the generation of lung surfactants.
Surfactant Proteins play a role in: (1) lowering
surface pressure of the alveolus [27], (2) enhancing
bacterial and viral clearance by opsonizing patho-
gens and facilitate their phagocytosis immune cells
such as macrophages and monocytes [28] and (3)
immunomodulation: studies have shown that sur-
factants proteins SP-A and SP-D bind directly to
allergens and particles such as pollen grains [29],
house dust mite allergen [30], and Aspergillus
fumigatus allergen [31], inhibiting specific IgE
binding to allergens and subsequently decreasing
allergen-induced histamine release.

Additional experiments are needed to validate
our findings, ideally on a larger set of cells from

subjects with asthma and matching control
subjects.
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