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ABSTRACT
The biological mechanisms through which adherence to Mediterranean Diet (MD) protects against
colon cancer (CC) are poorly understood. Evidence suggests that chronic inflammation may be
implicated in the pathway. Both diet and CC are related to epigenetic regulation.

We performed a nested case-control study on 161 pairs from the Italian component of the
European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, in which we looked
for the methylation signals in DNA extracted from leucocytes associated with both CC and MD in
995 CpGs located in 48 inflammation genes. The DNA methylation signals detected in this analysis
were validated in a subgroup of 47 case-control pairs and further replicated (where validated) in
95 new pairs by means of pyrosequencing.

Among the CpG sites selected a-priori in inflammation-related genes, seven CpG sites were
found to be associated with CC status and with MD, in line with its protective effect. Only two CpG
sites (cg17968347-SERPINE1 and cg20674490-RUNX3) were validated using bisulphite pyrosequen-
cing and, after replication, we found that DNA methylation of cg20674490-RUNX3 may be
a potential molecular mediator explaining the protective effect of MD on CC onset.

The use of a ‘meet-in-the-middle’ approach to identify the overlap between exposure and
predictive markers of disease is innovative in studies on the relationship between diet and cancer,
in which exposure assessment is difficult and the mechanisms through which the nutrients exert
their protective effect is largely unknown.
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Introduction

Epidemiological studies have unveiled a protective
association between Mediterranean diet (MD) and
incidence of cancer and of other major chronic dis-
eases [1,2]. In the Italian branch of the European
Prospective Investigation into Cancer and Nutrition
(EPIC) study, increasing values of the Italian
Mediterranean Index (IMI) were associated with
a decreased risk of colon cancer (CC) as well as rectal
cancer in both men and women [3]. A pooled ana-
lysis of three Italian case-control studies [4] and two

cohort studies [5,6] confirmed the favourable role of
MD in reducing CC incidence. The protective
mechanisms of MD have been attributed to a high
content of antioxidants, olive oil, fibres, and
a moderate alcohol intake [7]. The biological
mechanisms through which MD protects against
CC remain nonetheless poorly understood.

Adherence to MD has been previously hypothe-
sized to protect against abdominal adiposity [8],
and obesity is, in turn, a well-known risk factor for
chronic diseases, specifically CC [9]. In a previous
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study [10] we analysed adiposity as a potential
mediator of the association between adherence to
MD and CC, but we concluded that its reduction,
due to MD, does not explain the protective effect.

An alternative hypothesis suggests that the cau-
sal pattern of the association between MD and CC
could pass through chronic inflammation. In fact,
randomized control trials [11] and observational
studies [12] have shown that MD can attenuate the
level of systemic inflammation while chronic
inflammation has been shown to be itself
a possible causative factor for a variety of cancer
types, including CC. People with chronic inflam-
matory bowel diseases show indeed an increased
risk of CC [13] and chronic aspirin use seems to
reduce the risk of CC [14].

Both diet and CC are related to epigenetic reg-
ulation. Diet can perturb the way genes are con-
trolled by epigenetic signals, particularly DNA
methylation [15,16], which is, in turn, one of the
regulatory mechanisms of systemic and local
inflammation [17].

The aim of this investigation was to explore
methylation changes of inflammation genes asso-
ciated with both MD and CC status in peripheral
blood cells of members of an Italian epidemiolo-
gical cohort. Our purpose was to test the hypoth-
esis that DNA methylation could be a mediator of
the CC triggered by non-adherence to MD.

Methods

Study sample and discovery set

Data from the Italian component of the EPIC study
(EPIC-Italy) [18], a total of 42,894 volunteers
recruited from four centres in Italy (Varese, Turin,
Naples, and Ragusa) in 1993–1998 were considered.
Over a mean follow-up of 11.0 years (range
1.0–14.8), 313 cases of CC were diagnosed. Colon
cancers were primary incident cases, identified as
proximal (International Classification of Diseases
for Oncology, third Edition [ICD-O-3] codes
C18.0-C18.5; N = 121), distal (ICD-O-3 codes
C18.6-C18.7; N = 154), and over-lapping or unspe-
cified (ICD-O-3 codes C18.8-C18.9; N = 36) sites.

All participants in the study sample completed
a validated semiquantitative food-frequency

questionnaire at enrolment. Blood samples were col-
lected at recruitment and sent to local laboratories
for processing and aliquot preparation.

A nested case-control study was conducted
within EPIC-Italy cohort employing 169 incident
CC cases diagnosed within follow-up and 169
matched controls selected at random from the
participants at risk of CC at the time of the case
diagnoses.

Controls were matched to cases by sex, date of
birth (within 5 years), seasonality of blood sam-
pling (autumn-winter/spring-summer) and study
centre. Members of the cohort treated for diabetes
or with a diagnosis of intestinal polyps at baseline
were excluded from the case-control study, as well
as those with a prevalent diagnosis of cancer
(except non-melanoma skin cancer).

Epigenome-wide DNA methylation analysis

Genomic DNA was extracted from buffy coats using
the QIAsymphony DNA Midi Kit (Qiagen, Hilden,
Germany). Five hundred nanogram of DNA were
bisulphite-converted using the EZ-96 DNA
Methylation-Gold™ Kit (Zymo, California, USA)
and hybridised to Infinium HumanMethylation450
BeadChips (Illumina, California, USA). Each chip
was subsequently scanned using the Illumina
HiScanSQ system, and sample quality was assessed
using control probes on the microarrays. Raw inten-
sity data were finally exported from Illumina
GenomeStudio (version 2011.1). Each case-control
pair was arranged randomly on the same chip.

Data pre-processing was carried out using an
in-house software written for the R statistical com-
puting environment (see [19] for a short descrip-
tion of the procedure). One hundred and sixty-one
case-control pairs passed the pre-processing step
for the successive analysis. DNA methylation was
expressed as the ratio between the intensities of
methylated cytosines and the total intensities (ß-
values).

Main exposure and other variables

Italian Mediterranean Index (IMI), a summary
measure of adherence to the MD, was used as
a measure of the exposure [20]. Briefly, the
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computation of this index is based on the intake of
11 food items: intakes of the Mediterranean foods
pasta, Mediterranean vegetables (raw tomatoes,
cooked leafy vegetables, raw leafy vegetables,
onion or garlic, mixed salad, or mixed vegetables),
fruits, legumes, olive oil, and fish of four ‘non
Mediterranean’ foods (soft drinks, butter, red
meat and potatoes); and of alcohol. If consump-
tion of typical Mediterranean foods is in the third
tertile of the distribution, the person receives 1
point; all other intakes receive 0 points. If con-
sumption of non-Mediterranean foods is in the
first tertile of the distribution the person receives
1 point. Alcohol receives 1 point for intake up to
12 g/day; abstainers and persons who consume
>12 g/day receive 0 points. For the analysis, IMI
was categorized in the following three classes: 0–2
(low adherence to MD), 3–4 (middle adherence to
MD), and 5–11 (high adherence to MD).

We considered as further covariates: age, sex,
centre, smoking status (never, former and cur-
rent), total physical activity (inactive, moderately
inactive, moderately active and active [21]), level
of education (tertiles of the relative index of
inequality RII [22]), body mass index (BMI) and
cell types. The latter were estimated according to
Houseman method [23].

Selection of CpG sites

To study the methylation status of inflammation
genes, data obtained from the epigenome-wide study
were pruned selecting the CpGs located in a set of 48
inflammation genes (list in Supplementary Table 1).
Such genes were selected through an extensive litera-
ture review to identify those related to inflammatory
mechanisms involved in colon carcinogenesis.

Among the resulting 995 inflammation-related
CpGs, only those with a mean difference (both
positive and negative) in methylation percentage
between cases and controls higher than 1% were
considered in the association analysis (32 CpGs).
The cutoff of 1% was chosen to increase the prob-
ability that the difference in methylation reflected
an effective biological change.

A conditional logistic regression model with
elastic net penalties [24] was employed to select
the most important CpG sites among the 32 CpGs
related to CC. DNA methylation levels of the

CpGs were standardized to 1 standard deviation
computed on the control group. Elastic net (EN)
[25] is a regularization and variable selection
method, which retains the parsimony property of
Lasso regression method [26], but encourages at
the same time the grouping effect like Ridge
regression [27]. We applied the cyclic coordinate
descent algorithm [28], and we set the parameter
controlling the trade-off between Lasso and Ridge
penalties to 0.5. We used 10-fold cross-validation
(CV) for the choice of the regularization para-
meter that characterizes the best model. To assess
whether the associations found were stable in ran-
dom subsets of the sample, 1000 EN models were
fitted using each time 63.4% of the initial data. At
the end, we obtained a ranked list of probes based
on how many times they were included in models
based on data subsets.

The CpG sites considered for further detailed
analyses had to satisfy both the following criteria: i)
CpGs selected by EN, with an estimated coefficient
of the association with case-control status higher
than 0.15 in absolute value (median of the distribu-
tion of the estimated coefficients) and ii) CpGs in the
list of the most associated sites with a frequency
higher than 50%. A diagram illustrating the selection
of CpG for the analysis is shown in Figure 1.

Detailed analysis of the selected signals

For each selected CpG, a conditional logistic
regression model was fitted to estimate odds ratio
of CC with DNA methylation levels included as
independent variable (model A). A second model
(model B) was fitted including additional adjust-
ment for BMI, smoking status, total physical activ-
ity, level of education and IMI. The possible effect
of cell composition on the results was assessed by
further adding to model B the proportions of cell
counts (model C). Sensitivity analyses were per-
formed excluding cases where time elapsed
between blood collection and diagnosis of CC
was lower than 2 years or higher than 10 years.

The association between M-values of methyla-
tion (the logarithmic transform of ß-values, M =
log2(ß/(1- ß)) [29]) and IMI was evaluated in the
control group by fitting a linear mixed effect
model with chip as random effect and IMI, sex,
age, centre, BMI, smoking status, total physical
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activity, level of education and differential cell
types as fixed effects. Linearity of trends across
categories of IMI was tested by treating the cate-
gorical variable as continuous in the linear mixed
effect model.

Validation, replication and meta-analysis

A random selection of 47 case-control pairs from
EPIC-Turin (validation set) was performed for vali-
dation with the pyrosequencing methodology. The
CpGs for which adherence to MD conferred methy-
lation levels that were protective on CCwere selected
for validation. This means that among the CpGs
whose hypermethylation was protective on CC
(odds ratio<1 for 1 standard deviation increase in
methylation percentage) only those for which higher
methylation levels corresponded to higher adherence

to MD were validated. Similarly, CpGs whose hypo-
methylation was associated with decreased CC risk
and for which lower methylation levels were asso-
ciated with higher adherence to MD were validated.

Another nested case-control study (replication
set) was finally conducted employing 95 indepen-
dent case-control pairs from EPIC-Italy. The vali-
dated signals were replicated in this sample using
pyrosequencing.

Both in the validation and in the replication, the
associations with DNA methylation levels obtained
by pyrosequencing were analysed using models
similar to those employed in the discovery phase
(see details in the Tables). Additionally, a random
effects meta-analysis of the discovery and replica-
tion studies was performed on the validated
signals.

48 Inflammation 

Genes
995 CpGs

32 CpGs

16 CpGs

7 CpGs

2 CpGs

1 CpGs

Mean difference in methylation 

percentage between cases and controls > 

± 1% from epigenome wide DNA 

methylation analysis with Illumina

CpG selected with Elastic Net Penalties:

Estimated coefficient >0,15

Frequency>50%

CpGs associated with colon cancer status 

and with MD in line with its protective 

effect (CpG sites less methylated in cases 

with an increasing trend for higher IMI in 

controls, and vice versa)

Validated CpGs with pyrosequencing in a 

subset of 47 cases controls pairs (same 

subjects) with a different technique.

Replicated CpGs with pyrosequencing in 

95 new cases controls pairs with a 

different technique.

Figure 1. Diagram illustrating CpG selection.
Illumina = Infinium Human Methylation450 BeadChips IMI = Italian Mediterranean Index
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Details on the pyrosequencing methodology

Pyrosequencing assay was performed on a PyroMark
Q24 MDx system using PyroMark Gold Q24
Advanced reagents (Qiagen, Hilden Germany).
Primers were designed according to PyroMark
Assay Design software version 2.0 (Qiagen). PCR
reaction was performed in a total volume of 35 μl
using the PyroMark PCR kit (Qiagen) containing 1X
PCRMasterMix, 1X CoralLoad Concentrate, 0.2 μM
of each primer, and 1 μl of bisulphite-converted
DNA with the following cycling profile: 95°C for 10
min followed by 45 cycles of denaturation at 95°C for
30 sec, annealing at specific temperature for each
gene (55°C for RUNX3; 50°C for SERPINE1) for 30
sec, extension at 72°C for 1 min. Extension at 72°C
for 10 min was finally performed. The PCR product
(15 μl) was added to 19 μl of distilled water and
incubated under shaking with 40 μl of binding buffer
pH 7.6, containing 10mM Tris-HCl, 2 M NaCl,
1mM EDTA, and 1 μl of sepharose beads covered
by streptavidin. The PCR product was washed with
ethanol 70%, denatured with NaOH 0.2 M and re-
washed with Tris-Acetate 10 mM pH 7.6.
Pyrosequencing reaction was performed in a total
volume of 20 μl, including 19.85 μl of 20 mM Tris-
Acetate, 5 mMMgAc2 and 0.15 μl of 50 μM sequen-
cing primer. Assays were created according to man-
ufacturer’s instruction. The nucleotide dispensation
order was suggested by the software PyroMark Q24
Advanced version 3.0.0.

Methylation quantification was achieved using the
provided software, and expressed for each DNA locus
as percentage ratio of methylated cytosines of the sum
of methylated and unmethylated cytosines. Positive
controls for methylated [EpiTect Control DNA
(human), methylated (Qiagen)] and unmethylated
status [EpiTect Control DNA (human), unmethylated
(Qiagen)] were included in each pyrosequencing run.
Each sample was analysed twice in different runs and
the average of the two results was computed.
Adequacy of the results for each sample was achieved
when difference in methylation percentage between
runs was ≤2% and pyrograms resulted as ‘passed’.

Software for analysis

All statistical analyses were performed using
R Statistical Software (The R Foundation for

Statistical Computing, Vienna, Austria) version
3.2.3 (2015–12-10) and Stata version 13 (StataCorp,
College Station, TX, USA). A diagram illustrating the
data sets used in the different stages of the analysis is
shown in Figure 2.

Results

Table 1 shows the baseline characteristics of the
samples. Cases and controls showed differences
only with respect to BMI. For completeness, the
features of the validation and replication samples
are reported in the Supplementary materials. Cases
and controls showed differences in BMI and edu-
cational level in the validation set, while no differ-
ences were detected in the replication set.

The profile of parameter estimates plotted
against the value of the regularization parameter
and the CV curve of the EN conditional logistic
model in the discovery analysis are reported in
Supplementary Figures 1 and 2. In particular, the
CV error was minimized for a model with 26
predictors. Table 2 shows the 16 predictors with
an absolute value of the estimated coefficient
higher than 0.15. The mean differences in methy-
lation percentages were small for all these CpG
sites (<3%), except for cg12195446-IRS2 (7.6%)
and cg12252547-MAL2 (5.1%). Ten CpGs were
hypomethylated in cases. At least two probes
were detected for each gene except for RUNX1,
STAT3, RUNX3 and PTX3 for which only one
probe was found.

A detailed analysis of the seven CpG sites
selected for validation is reported in Table 3 (results
for the remaining CpG sites are reported in
Supplementary Table 4). Evidence emerged of an
association between all the CpGs and the case-
control status also after adjustment for cell types
and other confounding variables. In particular, for
all the CpGs except cg08053846-SERPINE1, hypo-
methylation was associated with CC and methyla-
tion levels were increased for higher IMI categories.

Considering the validation dataset, only
cg17968347-SERPINE1 and cg20674490-RUNX3
showed coherent associations with both CC and
IMI (Table 4 and Figure 1). Although these associa-
tions were at the limit of significance, their direc-
tion and magnitude were essentially the same. Of
the two validated CpG sites, only for cg20674490-
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RUNX3 the association with CC showed coherent
direction and similar magnitude in the replication
sample (OR = 0.80, 95% CI 0.57, 1.13 in the repli-
cation set versus OR = 0.59, 95% CI 0.29,1.19 in the
validation set; Tables 4 and 5, model B). For this
CpG the association with MD showed an increasing
trend in the replication sample not found in the
discovery and validation phases (Tables 3–5). The
meta-analysis strengthened the association of CC
with RUNX3 higher methylation levels (ORMETA =
0.72, 95% CI 0.57, 0.91, P-valueMETA = 0.006; see
Figure 3).

Discussion

The adherence to MD is known to have beneficial
effects on human health, and in particular,
a preventive effect on cancer. Several biological

mechanisms have been hypothesized to explain
such protective effect, but the specific cellular pat-
tern involved has not been experimentally
found yet.

DNA methylation is likely to play a major role
in carcinogenesis and it is probably influenced by
diet [15,16]. Since it has been previously shown
that MD may attenuate the level of chronic inflam-
mation, which in turn has been related to an
increased risk of CC, we hypothesized that the
protective effect of adherence to the MD in CC is
mediated by DNA methylation in genes that are
involved in inflammation.

To test this hypothesis, we used the ‘meet-in-the-
middle’ approach [30,31]. This approach is based on
the assumption that identifying biomarkers asso-
ciated with both a particular exposure and a certain
disease strengthens the causal links between such

Figure 2. Diagram illustrating the data sets used in the different stages of the analysis.
ca = casesco = controls Illumina = Infinium HumanMethylation450 BeadChips pyro = pyrosequencing.
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Table 1. Descriptive statistics of the case-control study nested in the EPIC-Italy cohort.
Variables Controls Cases all P-value*

N 161 161 322
Median of (IQR)
age, years 55 (9) 55 (9) 55 (9)
BMI, kg/m^2 25.01 (5) 26.42 (5) 25.85 (5) 0.0019
Counts of
Gender
Men 88 (55%) 88 (55%) 176 (55%)
Women 73 (45%) 73 (45%) 146 (45%)
Centre
Varese 64 (40%) 64 (40%) 128 (40%)
Ragusa 10 (6%) 10 (6%) 20 (6%)
Turin 87 (54%) 87 (54%) 174 (54%)
Educational level 0.078
1°tertile RII 51 (34%) 53 (36%) 104 (35%)
2°tertile RII 54 (36%) 37 (25%) 91 (30%)
3°tertile RII 45 (30%) 59 (39%) 104 (35%)
Total physical activity 0.801
Inactive 34 (22%) 37 (24%) 71 (23%)
moderately inactive 65 (42%) 69 (44%) 134 (43%)
moderately active 36 (23%) 29 (19%) 75 (21%)
Active 20 (13%) 20 (13%) 40 (13%)
Smoking status 0.828
never smokers 71 (46%) 67 (43%) 138 (44%)
former smokers 48 (31%) 53 (34%) 101 (33%)
current smokers 36 (23%) 35 (23%) 71 (23%)
Fasting status 0.360
Yes 119 (74%) 126 (78%) 245 (76%)
No 42 (26%) 35 (22%) 77 (24%)
Cell Types
CD8T 8.1% 7.1% 7.5% 0.129
CD4T 13% 14% 14% 0.528
NK 7.4% 7.5% 7.5% 0.851
Bcell 5.2% 5.4% 5.3% 0.777
Mono 7.4% 7.1% 7.2% 0.543
Gran 63.0% 63.9% 63.2% 0.791

BMI = Body Mass Index; RII = Relative Index of Inequality; NK = Natural Killer; Bcell = B lymphocytes; Mono = Monocytes;
Gran = Granulocytes.

*differences between cases and controls are assessed using Mann Whitney Test for continuous variables and Chi-Square Test
for categorical variables.

Table 2. CpG sites selected by EN with 10-fold CV with an estimated coefficient higher than 0.15 in absolute value in the case-
control study nested in the EPIC-Italy cohort.
Probe Name Estimated coefficient Gene Chromosome Location MAPINFO Delta Frequency

cg13104385 0.56 IL6 7 Body 22767384 0.020 62.4%
cg18773937 −0.37 IL1B 2 TSS1500 113594611 0.016 72.1%
cg12195446 0.37 IRS2 13 Body 110424497 0.076 64.6%
cg05265849 −0.34 IL6 7 Body 22767390 0.010 9.3%
cg02749784 −0.25 MAL2 8 TSS1500 120219927 0.018 72.4%
cg17968347 −0.23 SERPINE1 7 Body 100777740 0.012 55.7%
cg12252547 0.23 MAL2 8 TSS1500 120220032 0.051 57.3%
cg01265860 −0.23 RUNX1 21 Body 36256316 0.016 56.7%
cg24312520 −0.22 STAT3 17 Body 40489584 0.017 57.9%
cg16308790 −0.22 NFATC1 18 Body 77225973 0.011 51.2%
cg08053846 0.21 SERPINE1 7 TSS1500 100769605 0.018 64.4%
cg15363134 −0.20 NFATC1 18 Body 77161214 0.015 62.7%
cg20674490 −0.17 RUNX3 1 Body 25240932 0.019 50.9%
cg27026615 −0.17 PTX3 3 Body 157156326 0.021 43.6%
cg08510264 0.16 IRS2 13 First Exon 110438288 0.012 32.9%
cg06493806 0.15 NFATC1 18 Body 77278806 0.031 44.9%

Delta = mean absolute difference in methylation percentage between cases and controls.
Frequency = percentage of times the CpGs are selected when EN is applied on a random subset of the initial dataset.
The CpG sites with a frequency higher than 50% are indicated in red.
The CpG sites analysed in Table 3 (those with a frequency higher than 50% and an association with MD in the control group in line with its
protective effect) are indicated in grey.
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exposure and the disease. The approach involves to
combine, within a prospective study, a search for
biomarkers modified in subjects who develop the
disease and a search for links of such biomarkers to
past environmental exposures. In our study, we con-
sidered MD as the exposure, CC as the disease and
DNA methylation levels of inflammation genes as
the candidate molecular biomarkers. Among the 995
inflammation CpGs studied, we identified probes in
the IL1B, SERPINE1, RUNX1, STAT3, NFATC1 and
RUNX3 genes as good candidate molecular biomar-
kers. We implemented the discovery phase with an

epigenome-wide assay that is a powerful tool to
cover an increasing number of CpG sites but is
inherently imprecise and noisy [32]. To overcome
this problem we performed validation and replica-
tion using a locus-specific methylation technique.
Among the seven probes selected for validation,
only two were confirmed and only one of the two
showed associations in line with our hypothesis in an
independent sample (RUNX3).

The human runt-related transcription factor 3
(RUNX3) maps in chromosomal locus 1p36 in
a region that is frequently deleted in many types of

Table 3. Detailed analysis of the CpG sites Selected for Validation (those reported in Table 2 with a frequency higher than 50% and
an association with MD in the control group in line with its protective effect).

Association with colon cancer* Association with MD (only control group)**

IL1B ca co OR 95% CI p-value IMI category coef 95% CI P-value

cg18773937
model A 157 157 0.69 (0.53,0.89) 0.005 linear model 0–2 (20) reference
model B 134 134 0.61 (0.44,0.84) 0.003 3–4 (71) 0.25 (−0.13,0.63) 0.200
model C 134 134 0.59 (0.42,0.84) 0.003 5–11 (51) 0.46 (0.05,0.87) 0.029

SERPINE1 p-trend 0.025
cg17968347
model A 161 161 0.78 (0.62,0.98) 0.030 linear model 0–2 (22) reference
model B 138 138 0.64 (0.47,0.86) 0.003 3–4 (71) 0.04 (−0.09,0.18) 0.552
model C 138 138 0.58 (0.42,0.81) 0.001 5–11 (52) 0.12 (−0.03,0.28) 0.122
RUNX1 p-trend 0.089

cg01265860
model A 161 161 0.77 (0.61,0.98) 0.036 linear model 0–2 (22) reference
model B 138 138 0.72 (0.54,0.97) 0.030 3–4 (71) 0.11 (−0.06,0.27) 0.197
model C 138 138 0.57 (0.37,0.84) 0.006 5–11 (52) 0.13 (−0.05,0.31) 0.154
STAT3 p-trend 0.203

cg24312520
model A 161 161 0.78 (0.62,0.98) 0.037 linear model 0–2 (22) reference
model B 138 138 0.81 (0.62,1.07) 0.142 3–4 (71) −0.02 (−0.21,0.15) 0.762
model C 138 138 0.82 (0.61,1.12) 0.209 5–11 (52) 0.10 (−0.09,0.29) 0.323
NFATC1 p-trend 0.171

cg15363134
model A 161 161 0.82 (0.67,0.99) 0.043 linear model 0–2 (22) reference
model B 138 138 0.76 (0.59,0.98) 0.032 3–4 (71) 0.22 (0.04,0.41) 0.018
model C 138 138 0.74 (0.56,0.98) 0.038 5–11 (52) 0.05 (−0.15,0.25) 0.617
RUNX3 p-trend 0.738

cg20674490
model A 160 160 0.70 (0.55,0.91) 0.008 linear model 0–2 (22) reference
model B 137 137 0.66 (0.48,0.91) 0.012 3–4 (71) 0.15 (−0.10,0.20) 0.246
model C 137 137 0.64 (0.46,0.90) 0.009 5–11 (51) 0.09 (−0.19,0.38) 0.511

SERPINE1 p-trend 0.719
cg08053846
model A 134 134 1.28 (1.02,1.60) 0.037 linear model 0–2 (22) reference
model B 114 114 1.27 (0.95,1.70) 0.103 3–4 (71) −0.10 (−0.43,0.23) 0.548
model C 114 114 1.30 (0.96,1.74) 0.084 5–11 (51) −0.20 (−0.56,0.15) 0.262

p-trend 0.242

ca = cases; co = controls.
*Associations between DNA methylation and colon cancer are assessed using conditional logistic regression models with DNA methylation levels
included as an independent variable and standardized to 1 standard deviation.

model A = crude model (adjusted for study centre, sex, age and seasonality by design)
model B = model A adjusted also for BMI, smoking status, physical activity, level of education and IMI.
model C = model B adjusted also for differential cell types.
** Associations between the M-values of DNA methylation sites and IMI are assessed using a multivariate linear-mixed effect model with chip as
random effect and IMI, sex, age, centre, BMI, smoking status, total physical activity, level of education and the differential cell types as fixed effects.
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cancers. RUNX3 has important functions in innate
and adaptive immune cell types, in particular in
inactivating IL-23A transcription, and has been
associated with several immune-related diseases,
in particular with an increased risk of ulcerative
colitis [33] and Chron’s disease [34]. Recent stu-
dies demonstrated that the control of immunity
and inflammation exerted by RUNX3 influences
epithelial tumour development [35]. Furthermore,
RUNX3 is a tumour suppressor gene whose pro-
moter hypermethylation was shown to be a key

mechanism of its inactivation [36]. In a study per-
formed on 184 South Korean patients affected by
gastric cancer, Zhang at al. found an association
between the intake of different foods, in particular,
fruit and egg, and RUNX3methylation [37]. At the
opposite, no association among dietary items and
RUNX3 gene methylation has been found in
a sample of 276 USA healthy women enrolled in
a randomized controlled trial on breast cancer
prevention [38]. For this reason, we think that
RUNX3 is a good candidate mediator between

Table 4. Validation analysis: associations between colon cancer/MD and DNA methylation levels at SERPINE1 and RUNX3 CpG sites
obtained by pyrosequencing in the validation set.

Association with colon cancer* Association with MD (only control group)**

SERPINE1 ca co OR 95% CI P-value IMI category coef 95% CI P-value

cg17968347
model A 47 47 0.82 (0.59,1.15) 0.257 linear model 0–2 (6) reference
model B 42 42 0.69 (0.45,1.05) 0.080 3–4 (23) 0.30 (−0.08,0.69) 0.117
model C 42 42 0.80 (0.37–1.76) 0.588 5–11 (15) 0.39 (−0.02,0.80) 0.061
RUNX3 p-trend 0.091

cg20674490
model A 47 47 0.74 (0.47,1.16) 0.196 linear model 0–2 (6) reference
model B 42 42 0.59 (0.29,1.19) 0.144 3–4 (23) 0.39 (−0.20,0.98) 0.188
model C 42 42 0.40 (0.14–1.08) 0.071 5–11 (15) 0.09 (−0.52,0.72) 0.756

p-trend 0.627

ca = cases; co = controls.
*Associations between DNA methylation and colon cancer are assessed using conditional logistic regression models with DNA methylation levels
included as an independent variable and standardized to 1 standard deviation.

model A = crude model (adjusted for study centre, sex, age and seasonality by design).
model B = model A adjusted also for BMI, smoking status, physical activity, level of education and IMI.
model C = model B adjusted for differential cell types.
** Associations between M-values of DNA methylation sites and IMI are assessed using linear models adjusting for age, sex, centre, BMI, smoking
status, physical activity, level of education and differential cell types.

Table 5. Replication analysis: Associations between colon cancer/MD and DNA methylation levels at SERPINE1 and RUNX3 CpG sites
obtained by pyrosequencing in the replication set.

Association with colon cancer* Association with MD (only control group)**

SERPINE1 ca Co OR 95% CI P-value IMI category coef 95% CI P-value

cg17968347
model A 93 93 1.08 (0.82,1.42) 0.573 linear model 0–2 (17) reference
model B 87 87 1.12 (0.79,1.56) 0.522 3–4 (44) 0.005 (−0.22,0.23) 0.961

5–11 (27) 0.10 (−0.17,0.36) 0.431
RUNX3 p-trend 0.377

cg20674490
model A 92 92 0.80 (0.60,1.07) 0.132 linear model 0–2 (17) reference
model B 86 86 0.80 (0.57,1.13) 0.210 3–4 (44) 0.29 (−0.12,0.70) 0.162

5–11 (27) 0.38 (−0.09,0.85) 0.114
p-trend 0.133

ca = cases; co = controls.
*Associations between DNA methylation and colon cancer are assessed using conditional logistic regression models with DNA methylation levels
included as an independent variable and standardized to 1 standard deviation.

model A = crude model (adjusted for study centre, sex, age, year of recruitment and seasonality by design).
model B = model A also for BMI, smoking status, physical activity, level of education and IMI.
** Associations between M-values of DNA methylation sites and IMI are assessed using linear models adjusting for age, sex, centre, BMI, smoking
status, physical activity and level of education.
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MD and CC, but further functional studies are
needed to confirm this promising observation.

Few studies can be found in literature compar-
ing different DNA methylation assays for bio-
marker development [39,40]. These studies
show a good concordance between measure-
ments of the two arrays, but they consider
DNA methylation assessed in solid tissues or
specific cell lines. To our knowledge, in only
one study [41] based on DNA methylation of
blood leukocyte, a validation of Illumina 450K
array results with pyrosequencing technique is
performed, but only five samples were analysed.
In our study, we considered 94 samples for vali-
dation and 190 samples for replication. The fact
that only one signal was confirmed emphasizes
the importance of the validation and replication

phases employing an alternative methodology.
These phases are essential in order to exclude
technical errors and false-positive findings espe-
cially when the differences in methylation per-
centages are small most probably due to
background noise.

Despite some limitations, this study has several
strengths. First of all, we mention the use of the
‘meet-in-the-middle’ approach that we already
applied in a similar study suggesting oxidative
stress as the mediator in the association of air
pollution and cardiovascular diseases [42]. In
a study investigating the relation between diet
and cancer, exposure assessment is always difficult
and the specific mechanisms through which the
nutrients exert their protective effect is largely
unknown. By assessing the mediation role of

Figure 3. Results of the mixed effects meta-analysis of the discovery and replication studies on the validated signals.
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intermediate biomarkers we elucidated the biolo-
gical mechanisms explaining this association.

Secondly, DNA methylation levels were mea-
sured in peripheral blood, providing a valuable
source of information for low-grade inflammation.
However, we were aware that heterogeneity in
white blood cells could potentially confound
DNA methylation measurements [43]. To address
this problem we applied Houseman correction for
cell composition in the association analyses [23].

Finally, we performed a case-control study
nested in a prospective cohort, in which DNA
methylation was assessed in peripheral blood col-
lected at recruitment before the onset of cancer.
The analysis of blood sample drawn years before
the onset of disease prevents from reverse causality
biases.

Conclusions

In conclusion, our study is a first attempt to iden-
tify the biological mechanism behind the protec-
tion of MD on CC investigating the methylation
levels of genes in circulating lymphocytes years
before the onset of the disease. The results of the
study indicate that DNA methylation of RUNX3
gene may be a potential molecular mediator
explaining the protective effect of MD on CC.
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