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ABSTRACT
Endocrine-disrupting compounds are associated with altered epigenetic regulation and adverse
health outcomes, although inconsistent results suggest that people have varied responses to the
same exposure. Interpersonal variation in response to environmental exposures is not identified
using standard, population-based methods. However, methods that capture an individual’s
response, such as analyzing stochastic epigenetic mutations (SEMs), may capture currently missed
effects of environmental exposure. To test whether polybrominated biphenyl (PBB) was associated
with SEMs, DNA methylation was measured using Illumina’s MethylationEPIC array in PBB-exposed
individuals, and SEMs were identified. Association was tested using a linear regression with robust
sandwich variance estimators, controlling for age, sex, lipids, and cell types. The number of SEMs
was variable (range: 119–18,309), and positively associated with age (p = 1.23e-17), but not with
sex (p = 0.97). PBBs and SEMs were only positively associated in people who were older when they
were exposed (p = 0.02 vs. p = 0.91). Many subjects had SEMs enriched in biological pathways,
particularly in pathways involved with xenobiotic metabolism and endocrine function. Higher
number of SEMs was also associated with higher age acceleration (intrinsic: p = 1.70e-3; extrinsic:
p = 3.59e-11), indicating that SEMs may be associated with age-related health problems. Finding
an association between environmental contaminants and higher SEMs may provide insight into
individual differences in response to environmental contaminants, as well as into the biological
mechanism behind SEM formation. Furthermore, these results suggest that people may be
particularly vulnerable to epigenetic dysregulation from environmental exposures as they age.
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Introduction

Endocrine-disrupting compounds (EDCs) are
a class of chemicals that interfere with the endo-
crine system by disrupting the synthesis, binding,
or transport of hormones [1]. They are common
in the industrialized world and are present in
pesticides, personal care products, electronics, fab-
rics, and household dust [2,3]. In human popula-
tions, increased exposure to EDCs has been linked
to reproductive, hormonal, and developmental
health problems [4–8]. However, studies of the
health effects of EDC exposure have reported

inconsistent results, with some studies finding an
association between the same EDC and the same
health outcome, and others not finding an associa-
tion [9–11]. While some of this inconsistency is
due to differences in study design, population,
specific exposures, and dose, it is also known that
there are differences in how individuals respond to
and metabolize xenobiotics [12]. Therefore, it is
reasonable to expect interindividual differences in
the health consequences even among people with
similar chemical exposures.
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Exposure to EDCs has also been linked to epi-
genetic variation, both in cell lines and human
cohorts, and these variations in epigenetic features
have been suggested to be potential mediators
between exposure to EDCs and the development
of adverse health outcomes [13–19]. However,
previous studies on the effect of EDCs on DNA
methylation have relied on differences in either
mean global DNA methylation differences (as
measured by methylation of Alu, LINE, or other
repetitive elements) or in the mean methylation at
a particular site in the genome. For an association
to be detected in these types of studies, the differ-
ences in methylation levels have to be shared by
a large proportion of the cohort. While this
approach is useful and effective and has found
associations between exposure to EDCs, particular
biological pathways, and health outcomes, it does
not fully explain why people are susceptible to
different health problems from the same environ-
mental exposure.

It is possible that, in addition to affecting epi-
genetic marks in a way shared by a population,
EDCs can also act randomly throughout the gen-
ome, altering different epigenetic marks in suscep-
tible people and promoting distinct health
outcomes. If this were so, these epigenetic differ-
ences would be missed by traditional analysis
methods. Evaluation of rare stochastic epigenetic
mutations (SEMs) would provide a measure of
random differences in an individual. SEMs are
defined as an individual having an extreme methy-
lation value at a site when compared to the rest of
the population. SEMs, by nature, are not shared
among a population and do not have a substantial
influence on the mean methylation level. However,
despite their stochasticity, SEMs have been linked
to cancer progression, ageing, and age-dependent
X-inactivation skewing [20,21]. Therefore, they
may be an important mediator between environ-
mental exposures and health outcomes that could
help explain the interpersonal variation in
response to EDC exposure.

To investigate the association between exposure
to environmental EDCs and SEMs, we utilized
data collected as part of the Michigan PBB
Registry. The Michigan PBB Registry includes
approximately 7,000 individuals who were exposed
to an EDC when an agricultural accident in the

1970s introduced polybrominated biphenyl (PBB)
into the food supply. Individuals in this cohort
were exposed to high levels of PBB during the
nearly year-long period when contaminated food
was distributed. Forty years later, a majority of
participants still have higher PBB blood levels
than 95% of the general United States [22].
Previous studies in this cohort have linked PBB
exposure to earlier age of menarche, genitourinary
conditions in males, thyroid dysfunction, and
increased risk for certain types of cancer, particu-
larly among those were exposed to PBB at
a younger age [23–27]. Additionally, previous epi-
genetic research has found that higher PBB expo-
sure is associated with methylation proportion at
1890 CpGs across the genome, and the effect that
PBB has on the epigenome is suggestive of estro-
gen signalling and immune dysfunction [28].
However, it is not clear whether environmental
stimuli, like PBB, would act randomly on the epi-
genome and thus associate with the number of
SEMs. It is also not known if SEMs would depend
on the age when they were first exposed to PBB or
if they are sex-specific (like other previous
research on the health effects of PBB), and it is
not known if SEM count would associate with
other age-related health outcomes like epigenetic
age acceleration measures.

Results

Study population demographics

The study population was composed of 658 peo-
ple, many of who were highly exposed to PBB
(range: 0.01–236.73 ppb; Table 1). There were
more female participants than male participants
in this population (381 v. 277; p = 6.87e-05).
A majority of the cohort (97%) was of White/Non-
Hispanic ancestry, which is representative of the
population of rural Michigan in the 1970s. Higher
levels of PBB were associated with both being male
(ln(PBB) in men vs women: −0.99 vs. −0.36, p =
4.54e-07) and older age (r = 0.25, p = 3.96e-11).
PBB level and total lipid levels were not correlated
in this cohort (r = −0.07, p = 0.06). Additionally,
age of exposure was highly correlated with current
age (r = 0.98; p < 2.2e-16), because most of the
study population was exposed during the
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contamination event. Half of this study population
was exposed before age 13.

SEM calculation and characteristics

SEM values were highly variable in this cohort,
with a range of 119 to 18,309, and were not
normally distributed (Figure S1A). Therefore,
the natural log of the number of SEMs was used
for all regression analyses (Figure S1B). SEMs
were present in 12.75% of probes (Figure S2). In
the participants who had multiple samples, the
SEM calls were highly correlated within the long-
itudinal pair, and not correlated with the other
samples (r = 0.55–0.77; p < 2.2e-16; Figure 1),
indicating that SEM calls can be replicated within
individuals. The number of SEMs in these sample
pairs also increased between sampling for
a majority of participants (mean difference in
SEMs between the later time point and the earlier
time point: 22.14 ± 47.64).

Similar to other SEM studies [20], SEMs were
positively associated with current age, both when
unadjusted (z = 7.11; p = 1.15e-12) and when
adjusted for sex and cell type composition (z =
8.54; p = 1.23e-17) (Figure S3). Both the mean and
the variance in the number of SEMs were higher in
people who were older when they were exposed to
PBB (Figure S4). Higher proportions of CD8T
cells, B cells, monocytes and NK cells were asso-
ciated with an increased number of SEMs while
a higher proportion of CD4T cells and granulo-
cytes were associated with decreased number of

SEMs. While age was also associated with many
of these covariates, the association between these
covariates and number of SEMs is independent of
their association with age (Table S1).

Higher number SEMs associates with higher PBB
level

Current PBB levels had a positive, but non-
significant association with the number of SEMs,
once age, sex, lipid level, and cell type proportion
were adjusted for (z = 1.57; p = 0.11; Figure S5).
This association was largely consistent when the
number of SEMs and each congener of PBB were
analyzed individually (p = 0.003–0.16; Figure S6).
However, because SEMs were more common in
older individuals, and many PBB-associated health
problems have been specific to people exposed at
younger ages [9], we also tested whether PBB and
age of exposure interacted to predict SEM count.
PBB exposure occurred primarily during a 10-
month period in 1973, making it possible to esti-
mate the age of exposure to PBBs. Further analysis
showed that there was a significant interaction
between age at exposure to PBB and current PBB
level to predict the number of SEMs (z = 2.27; p =
0.02). Stratifying the analysis by median age of
exposure showed that there was an association
between PBB level and SEM count, but only in
the participants who were older when they were
exposed to PBB (t = 2.22, p = 0.02 vs. z = 0.10, p =
0.91; Figure 2).

Table 1. Characteristics of the members of the Michigan PBB Registry with epigenetic data.
Study population demographics

Total Cohort
(N = 658)

Exposed when youngerd

(N = 329)
Exposed when olderd

(N = 329) P-value

Number malea 277 (42.09%) 97 (29.48%) 180 (54.71%) 2.90e-11
Current age (years)b 54.28 ± 12.74 43.88 ± 6.12 64.69 ± 8.41 < 2.2e-16
Age when exposed (years) b 15.18 ± 11.55 5.71 ± 4.02 24.65 ± 8.43 < 2.2e-16
Total PBB level (ppb)c 0.48 (4.71) 0.33 (4.81) 0.68 (4.24) 3.21 e-9
Total PBB level (ng per g lipids) c 73.09 (4.95) 50.79 (5.01) 105.16 (4.48) 3.44e-9
Number of SEMs c 471.99 (1.87) 418.15 (1.74) 532.77 (1.94) 5.79e-7
Race/Ethnicitya 0.64

White/Non-Hispanic 638 (96.96%) 318 (96.65%) 320 (97.26%)
White/Hispanic 20 (3.03%) 11 (3.34%) 9 (2.73%)

aFrequency and percentage.
bMean and standard deviation.
cGeometric mean and geometric standard error.
dCompared to the median age when exposed (13 years).
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SEMs by sex

SEM count was not different between men and
women, once age and cell type proportions were
adjusted for (z = −0.03, p = 0.97, Figure S7). There
was also no interaction between sex and PBB level
to predict SEM count (z = 1.06, p = 0.28). When
the population was stratified by sex, the associa-
tion between PBB and number of SEMs was non-
significant in both males (z = 1.23, p = 0.21) and
females (z = 0.63, p = 0.52).

SEMs are enriched in biological pathways

To test whether SEMs were more likely to be in
certain biological pathways, and thus identify possi-
ble biological mechanisms behind SEM formation,
an enrichment test was conducted with biological

pathways defined by KEGG on the probes with
SEMs. Of the 331 pathways tested, the CpGs with
the most SEMs were significantly enriched in 94 of
them (FDR < 0.05; Table S2). Of these 94, 55.3% are
directly related to signalling pathways, and many
others are related to cell cycle regulation and
autophagy.

Next, to test whether the SEMs were randomly
distributed across the genome of each participant
or if some participants had clusters of SEMs in
particular biological pathways, enrichment tests
were conducted with biological pathways defined
by KEGG. Of the 658 participants, 129 participants
had SEMs enriched in at least one KEGG pathway,
while 529 participants had no enrichment of their
SEMs in any pathway tested. Participants whose
SEMs were enriched in any KEGG pathway had

Figure 1. SEMs can be replicated in longitudinal repeats. Because DNA methylation levels were measured in longitudinal repeats for
14 individuals, with the first sample taken in 2004, and the second sample taken between 2012 and 2015 (designated below by the
Subject ID followed by 1 or 2 to indicate the first or second sample), SEMs were calculated in both of these samples to see if they
could be replicated. The SEM calls were highly correlated within the longitudinal pairs (r = 0.55–0.77) and not correlated within
samples that were non-longitudinal pairs (r = 0.00–0.10), indicating that SEMs are not just the result of technical error, and can be
replicated. In a majority of individuals (64.28%), the number of SEMs increased between samples (mean: 22.1447.64).
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a higher number of SEMs (geometric mean: 783.67
vs. 423.16; p-value < 2.2e-16), and a higher level of
PBB (geometric mean: 0.68 vs. 0.44 ppb; p-value =
0.03) compared to the participants who had no
enrichment (Figure S8). Men and women were
equally likely to have pathway enrichment (p =
0.22). Participants whose SEMs were enriched in
at least one KEGG pathway were also older com-
pared to those whose SEMs were not enriched in
any KEGG pathway (mean: 57.68 vs. 53.45 years;
p-value = 0.002).

Of the 331 KEGG pathways tested, 85 pathways
were enriched in at least one participant (Table S3).
A majority (51.7%) were only enriched in one per-
son, emphasizing the interpersonal variation of
SEMs. However, there were 10 pathways that were
enriched in more than 30 of the 129 participants
(Figure S9). All of the pathways that were enriched
in more than 30 participants were involved in endo-
crine function or xenobiotic metabolism. However,
only one of these pathways was more likely to be
enriched in people with high PBB level (compared to
the median) (Table 2). Many of these pathways were
more likely to occur in male participants compared

to female participants (Table 2), indicating that
SEMs formation and susceptibility may be under
sex-specific influences. Participants with a higher
number of SEMs (compared to the median) were
not more likely to have enrichment of the common
biological pathways (p = 0.42–1; Table S4), suggest-
ing that the association between higher PBB expo-
sure or sex and enrichment in these KEGG pathways
was not due to the association between higher PBB
exposure or sex and higher SEM exposure. These
common pathways were not enriched for the path-
ways found enriched in the probes with SEMs (OR:
0.30, 95% CI: 0.01–1.69, p = 0.19).

SEM count associates with other
well-characterized biomarkers of age

To test for potential health outcomes associated
with higher SEM count, we tested the association
between SEM count and two measures of age
acceleration. Age acceleration was chosen because
it associates with many health conditions and life-
style factors [29–42], and because it is known from
previous research that SEM count associates with

Figure 2. Higher SEM count associates with higher exposure to PBB in those exposed when they were older. The interaction
between age of exposure and current total PBB level is associated with the number of SEMs (z = 2.27; p = 0.02). The association
between total PBB and SEMs was only significant in participants who were exposed when they were older (black triangles, solid line)
(z = 2.22; p = 0.02). For participants exposed to PBB when they were younger, the association between PBB and SEM count was not
significant (grey circles, dashed line) (t = 0.20; p = 0.91). Figure was plotted on a log10 scale for ease of interpretation, but the
statistical analysis was done as described in methods.
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age and age-related conditions [20]. SEM count
was positively associated with both intrinsic age
acceleration (z = 3.13, p = 1.70e-3, Figure 3(a))
and extrinsic age acceleration (z = 6.61, p = 3.59e-
11, Figure 3(b)).

Discussion

While the association between environmental con-
taminants, including PBB, and DNA methylation
levels shared by a population has been demon-
strated before [13–15,28,43–46], this is the first
study to show that increased exposure to endo-
crine-disrupting compounds associates with an
increased number of stochastic epigenetic muta-
tions in individuals. This study utilized samples
from the Michigan PBB Registry, a cohort of peo-
ple who were highly exposed to PBB due to an
agricultural accident and still have PBB levels well
above the national average. Increased level of PBB
associated with increased number of SEMs in peo-
ple who were exposed when they were older, even
when controlling for age, sex, lipid levels, and
estimated cell type proportions. These results sug-
gest that the number of random SEMs throughout
a person’s genome may depend not only on age, as
has been shown before, but also on exposure to
environmental contaminants [20].

The finding that PBB and SEM count only
associated in the people who were exposed when
they were older was the opposite of what was
expected, given that many of the health conse-
quences associated with PBB exposure, like earlier
age of menarche, increased risk of spontaneous
abortions, and offspring with genitourinary condi-
tions, were in participants exposed in utero or in
early childhood [23,24,47]. This could suggest that
the mechanisms of SEM formation and the
mechanisms for endocrine-related health problems
are distinct and that populations exposed to dif-
ferent developmental time-points may differ in
their risk for each. Additionally, this could be
a reason that there are fewer health problems
statistically associated with PBB exposure in peo-
ple exposed as adults since each person may have
different epigenetic marks affected and thus differ-
ent health outcomes [9].

Because age at exposure and current age are
highly correlated, finding an association withTa
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SEM count in older people could also suggest that
people are more vulnerable to SEM formation
from environmental exposure as they age. If vul-
nerability increases with age, people who were
exposed when they were younger may become
more susceptible to health conditions from envir-
onmental exposures as they age and gain more
SEMs. This would indicate that some of the con-
sequences of environmental contaminants like
PBB would not be seen for decades and would be
difficult to identify with standard epidemiological
approaches. Unfortunately, while this cohort is
unique in that the age when they were exposed
to PBB can be estimated because the age at expo-
sure and their current age are so correlated, these
two possibilities cannot be separated.

We also analyzed whether any of the partici-
pants’ SEMs were enriched in any biological path-
way or whether they were all randomly distributed
throughout the genome. While a majority of par-
ticipants did not have any biological pathway
enriched, 19.6% of participants had SEMs enriched
in at least one biological pathway. Participants
with higher numbers of SEMs and higher PBB
were more likely to have their SEMs enriched in
at least one biological pathway. While pathways
related to immune function, xenobiotic metabo-
lism, and estrogen signalling have been suggested
by previous epigenetic studies in this population
[28], and many of the pathways enriched in this

analysis are related to xenobiotic metabolism and
hormone signalling, most of these 85 pathways
enriched in participants have not previously been
implicated in epigenetic analyses in these partici-
pants. These participants may be more likely to
have adverse health effects since the epigenetic
dysregulation accumulated within a biological
pathway. It is also possible that the extreme differ-
ence in epigenetic regulation in certain biological
pathways is compensatory. This would indicate
that these participants are upregulating certain
biological pathways in response to PBB.
However, given the diversity of pathways affected
in the participants, both of these possibilities are
difficult to test with standard statistical methods.

There were several people who had SEMs
enriched in biological pathways related to xeno-
biotic metabolism and endocrine function, even
though most of these pathways were not more
likely to have high SEM formation. We found
that people with higher levels of PBB compared
to the median were only more likely to have SEMs
in one biological pathway (neuroactive ligand–
receptor interaction), and people with higher
numbers of SEMs were not more likely to have
SEMs in any of these biological pathways.
Enrichment of these pathways in multiple partici-
pants of the Michigan PBB Registry (especially
since they are the only pathways enriched in mul-
tiple participants) is of interest because

Figure 3. Higher number of SEMs is associated with age acceleration. The number of SEMs is positively associated with two
measures of age acceleration (intrinsic: z = 3.13, p = 1.70e-3, Part A; extrinsic: z = 6.61, p = 3.59e-11, Part B), even when adjusted for
age, sex, and estimated cell type proportions. Figure was plotted on a log10 scale for ease of interpretation, but the statistical
analysis was done as described in methods.
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cytochrome 450 was observed to be upregulated in
rats after they were exposed to PBB [48–50], and
altered steroid hormone levels and endocrine dis-
ruption was found to be associated with PBB
exposure, both in animal models [51–53] and in
epidemiological studies [23,24,54,55]. Even though
there was no enrichment of these pathways in
people with increased exposure compared to
other people in this study, part of this could be
because of the extremely high PBB exposure in this
population (median exposure is 27 times higher
than the national average), thus making it
a comparison of high exposure to higher exposure
[22]. Because most people in this study have high
PBB exposure, it is still possible that these path-
ways are upregulated following exposure to PBB,
and this upregulation makes them more vulner-
able to epigenetic mutations. While it has not been
tested whether SEMs are more likely to form in
active regions of the genome, these pathways have
been associated with PBB exposure previously.
Enrichment of biological pathways among our
results could support the presence of an under-
lying biological mechanism by which SEMs con-
tribute to health problems.

While SEMs were enriched in some biological
pathways in multiple people, it is important to
note that a majority of SEMs are randomly dis-
persed in different genomic locations in different
people. Not all participants had the same pathways
enriched, with only 129 of the 658 participants
having enrichment of SEMs in any biological path-
way and 44 of the 85 enriched pathways only being
present in one person. The diversity and number
of pathways enriched may help explain the indivi-
dual susceptibility to different diseases following
exposure to PBB, where individuals with epimuta-
tions in one biological pathway would have differ-
ent health outcomes than individuals with
epimutations in other biological pathways.

Beyond associations with environmental expo-
sure, this study investigated associations with SEM
formation and with sex. We found that SEM
count, the association of PBB with SEM count,
and the odds for enrichment of any biological
pathways did not differ by sex. However, the
enrichment of SEM in those common pathways
involved in xenobiotic metabolism and hormonal
regulation was more likely to occur in men

compared to women. This could indicate distinct
mechanisms behind SEM formation for men and
women. It could also suggest that men may be
more vulnerable to epigenetic dysregulation fol-
lowing exposure to PBB. While sex-specific epige-
netic effects have not been studied with PBB
exposure, epigenetic studies of the structurally
related polychlorinated biphenyl (PCB) in other
populations have reported that men are more vul-
nerable to epigenetic effects from EDC expo-
sure [56].

We found that the CpGs with SEMs called
were more likely to be in biological pathways
directly involved with signalling, cell cycle regu-
lation, and autophagy. This could indicate areas
of the genome that are active and involved in
signal transduction and cell division are more
likely to have an error in their epigenetic regula-
tion that leads to an SEM. While this would be
consistent with the finding of xenobiotic metabo-
lism and hormone signalling pathways enriched
in members of the Michigan PBB Registry (since
these pathways are expected to be upregulated
following exposure to PBB), again, this has not
directly been tested. More research is needed to
investigate whether these pathways replicate in
other studies of SEMs as well as to test mechan-
isms behind SEM formation.

This study also found that an increased number
of SEMs was associated with age acceleration (as
measured by both intrinsic age acceleration and
extrinsic age acceleration) [34]. This is the first
report of the association between SEM count and
more established measures of age acceleration, but
it is consistent given that SEM count is associated
with older age and age-related health problems
like cancer [20,21]. This could also mean that the
same mechanisms that lead to the ageing process
also lead to SEM formation. Additionally, because
age acceleration has been associated with a myriad
of adverse health outcomes, such as cancer, cardi-
ovascular disease, and all-cause mortality
[36,39,57,58], this could also indicate that an
increase in SEM count from environmental expo-
sure to EDCs could increase the risk for health
problems later in life. However, more research is
needed to test whether this association between
SEM count and age acceleration replicates in
other cohorts, as well as to test whether increased
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SEM count leads to increased age acceleration, or
if an increase in age acceleration leads to more
epigenetic dysregulation.

The findings from this study should be inter-
preted in light of its limitations. First, DNA
methylation was only measured in blood samples,
and therefore, it is not known if environmental
exposure would associate with increased SEM
count in other tissues. Also, it is not known if
population-level exposure to other endocrine-
disrupting compounds would also associate with
number of SEMs, because only PBB levels were
tested. Finally, while other studies have found an
association between number of SEMs and health
conditions, such as X-inactivation skewing and
cancer progression [20,21], there were not enough
participants with SEMs enriched in the same bio-
logical pathways for this to be directly tested in
this cohort. Therefore, it is not known whether
SEMs would mediate health conditions associated
with PBB exposure in this cohort.

However, this study does have several strengths.
We were able to implement a very stringent quality
control pipeline by both removing probes with poten-
tial SNPs and implementing a lower detection p-value
so that we could be more confident in our SEM calls.
Additionally, because exposure to PBB occurred as
part of a unique environmental contamination event,
the age at which people were first exposed to PBB can
be inferred from the available data, which allowed for
the interaction between age at exposure and PBB level
to be tested. In addition, in this study population, we
were able to show that technical replicates were highly
correlated, that the longitudinal pairs were highly
correlated with themselves and uncorrelated to other
samples, and that SEM calls in multiple tissues from
the sameperson had very low correlation – supporting
that SEMs are biological, epigenetic mutations that
can be replicated and are not just the result of technical
noise or underlying genetic variation. We were also
able to replicate other studies finding that SEM count
had a strong, positive association with increasing age,
further supporting that these SEMs are biological,
epigenetic mutations.

In conclusion, PBB exposure level is associatedwith
increased number of SEMs, but only in people
exposed when they were older. To our knowledge,
this is the first report of environmental exposures
associating with the number of rare, random,

epigenetic mutations. It is also the first report of
these SEMs being enriched in many biological path-
ways, especially in male participants. In addition, we
found that SEMs are more common in signalling
pathways, which may give insight into how SEMs are
formed and which regions are more susceptible to
SEM formation. We also found that SEM count is
associated with increased age acceleration, which has
not been shown before in previous studies. These
SEMsmay be important for understanding the variety
of adverse health outcomes that are associated with
EDC exposure and may mediate downstream effects
on an individual’s health risks. More studies are war-
ranted to test whether the adverse health outcomes
reported by this population associate with the epige-
netic mutations in their genome, and whether other
environmental exposures associate with the formation
of SEMs in particular biological pathways.

Methods

Participant selection

Participants were selected from the Michigan PBB
Registry. The Michigan PBB Registry was started
by the Michigan Department of Community
Health (MDCH) after the cause of the agricultural
accident was identified as PBB. The MDCH
recruited individuals that lived on farms quaran-
tined because of PBB contamination, obtained
food from quarantined farms, and chemical work-
ers and their families. This registry has recently
been transferred to Emory University and has
continued to enroll participants, collect biological
samples, and survey health outcomes (http://
pbbregistry.emory.edu/). For the current analyses,
participants were selected from the registry if they
met the following criteria: 1) they were exposed to
PBB prior to being 50 years old, 2) they had
a recent (2004-present) buffy coat or whole blood
sample available for DNA extraction, and 3) they
had current PBB and lipid level measurements in
their serum. Informed consent was obtained from
each individual before participation and study pro-
tocols were approved by the Institutional Review
Board at Emory University. A total of 666 partici-
pants met these criteria and were selected for this
study, including 14 participants with blood sam-
ples from two time points.
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Exposure assessment

Two hundred and nine possible congeners of PBB
exist and are defined based on the number and
position of the bromine molecules around the
biphenyl rings [59]. In the technical mixture of
PBBs that was added to the food supply in
Michigan, the primary congener was PBB-153
[59–61]. Exposure to four congeners of PBB
(PBB-153, PBB-101, PBB-77, and PBB-180) was
previously assessed in members of this registry
using gas chromatography-tandem mass spectro-
metry [62]. The limits of detection (LOD) were 2
pg/mL for PBB-153, 4.5 pg/mL for PBB-77, 3.9 pg/
mL for PBB-101, and 5.6 pg/mL for PBB-180. The
extraction recovery ranged from 83.2% to 99.2%.
The accuracy ranged from 89% to 119% and the
precision ranged from 2.8% to 8.5%.

For the purposes of this study, the value for
congeners below the LOD in a sample was
imputed as the LOD divided by the square root
of 2 [63]. The congeners were then summed to
give a total PBB value per person. This was trans-
formed using a natural log so that the distribution
was less skewed. For analyses using single conge-
ners, if the congener was detected in more than
90% of the samples, then the transformed expo-
sure level was used in analyses. If it was detected in
fewer than 90% of samples, the exposure was
dichotomized for analyses (detected in sample
or not).

Lipid measurement

An Abnova Triglyceride Quantification Assay Kit
(Abnova Corporation) was used to measure the total
triglyceride content in serum, and a Caymen
Cholesterol Assay Kit (Caymen Chemical Company)
was used to measure total cholesterol content in
serum. Both were done according to manufacturer’s
instructions. Total lipid amount was calculated based
on these components as described elsewhere [64,65].

MethylationEPIC array

Peripheral blood samples were collected from par-
ticipants as part of the ongoing Michigan PBB
Registry between 2004 and 2015. Blood was spun
at 3,000 rpm to separate the plasma from the buffy

coat. Buffy coats were aliquoted and stored at −80°
C. DNA was extracted from buffy coat samples
using the QIAamp DNA Blood Mini Kit
(QIAGEN, Hilden, Germany). DNA was extracted
from the same samples the exposure levels were
assessed on in order to limit confounding.

Methylation levels were measured from these
DNA samples at >850,000 sites using the
Infinium MethylationEPIC BeadChip (Illumina,
San Diego, CA) [66]. Briefly, 1 µg of DNA from
participants’ buffy coats was bisulfite converted,
amplified, fragmented, and hybridized to the
BeadChip array according to the manufacturer’s
instructions. Samples were randomized into 8
plates and 88 chips by age, sex, and PBB level in
order to limit confounding. DNA from a stable
lymphoblast line was used as a technical replicate,
which was included randomly on the plates and
chips (one replicate per half plate) so that technical
replicates occurred in multiple positions on the
chips. Samples with low signal intensity (detection
p-value >1e-10) or missing data in >10% of
probes, and probes with <3 beads or missing data
in >10% of samples were removed using the
wateRmelon package [67,68]. Two samples and
21,103 probes were removed for missing data.
Forty-four thousand two hundred and ten pre-
viously identified cross-reactive probes, 19,681
probes on the X or Y chromosomes, and 18,100
probes with a common SNP within 5 base pairs of
the assessed CpG (MAF > 1% in European popu-
lations from the Thousand Genomes Project) were
also removed from the dataset [69,70]. To remove
potential SNPs present in this population but not
marked in the Thousand Genomes Project, probes
with gaps (5%) in their methylation proportions in
samples were identified using Gaphunter and also
dropped [71]. Dye-bias correction and normaliza-
tion were performed using ssNOOB, and
ComBAT was used to adjust for chip-to-chip
batch effects [72,73]. Six samples that were mis-
matched for self-reported sex, genetically identical
to other samples, or had a higher number of
Mendelian errors were removed. This resulted in
a final dataset of 672 samples (from 658 partici-
pants, with 14 participants having two samples)
and 769,042 probes. For each individual sample
at each probe, the methylation proportion (β) at
that site was calculated from the methylated (M)
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and unmethylated (U) signal as β = M/(U + M).
Cell type proportion was estimated for each sam-
ple using Houseman’s method for estimating cell
type proportion with methylation signals from
CpGs that are distinct in blood cell types [74].
This data is publicly available at NCBI Gene
Expression Omnibus (GSE116339).

SEM calculation

Samples were considered to have an SEM at a locus if
their methylation level at that locus was either
greater than three times the interquartile range
above the third quartile or less than three times the
interquartile range below the first quartile (either <
or Q1� ð3� IQRÞ or >Q3þ 3� IQRð ÞÞ. This
definition of SEMs is consistent with the approach
described and validated by Gentilini and colleagues
[20,21,75]. To do this, the IQR for each of the
769,042 probes that passed QC was calculated.
Then, a new data matrix was annotated to determine
whether each sample’s methylation proportion was
an extreme outlier for each probe. The count of all
the SEMs per sample was then calculated from the
new data matrix. SEMs were also identified and
counted in 15 technical replicates from cell lines
derived from a single CEPH sample to assess the
level of technical noise that could be due to batch
effects (Figure S10). Additionally, to investigate the
potential effect that genetic variant could have on
SEM calls, SEMs were calculated in a publicly avail-
able dataset (GSE78743) [76], that contained 148
samples (11 different tissues taken from 16 different
people) (Figure S11).

DNA methylation age

Two measures of DNA methylation age were calcu-
lated. Intrinsic age was calculated as the linear com-
bination of the beta values of 353 CpGs that have
been previously shown to predict chronological age
in multiple tissues by Horvath [34]. Extrinsic age
was calculated similarly, but from 71 CpGs that have
previously shown to predict chronological age in
whole blood by Hannum, et. al [77]. Extrinsic age
acceleration was designed for use in blood samples,
and so may not be well suited for other tissues.
Intrinsic age acceleration, because it was developed

in multiple tissues, is independent of age-related
changes in blood cell composition. For this study,
intrinsic and extrinsic age were calculated from the
background-corrected beta values using Horvath’s
publically available online calculator (https://dna
mage.genetics.ucla.edu/home). Both measures first
calculate a DNA methylation-based age, and then
calculate the age acceleration from the residuals of
the regression of DNA methylation age on chron-
ological age.

Statistical analysis

The similarity between SEM calls called in the
longitudinal pairs, the technical replicates, and
the multiple tissues from the same people was
assessed using a Pearson’s correlation coefficient
for the presence/absence of all loci considered as
part of these analyses. Linear regression models
were used to determine the association between
PBB serum level (as the independent variable)
and the total sum of SEMs for a participant (as
the dependent variable) in an analysis of the most
recent blood sample from the 658 participants.
Age, sex, total lipid levels, and estimated cell type
proportions were included as covariates [78].
Because the number of SEMs was more variable
in participants who were older or had higher
exposure to PBBs, robust sandwich variance esti-
mators were calculated for each of the cross-
sectional analyses. Interaction between PBB and
age of exposure was evaluated by the inclusion of
an interaction term (age at exposure × total PBB
level) in the model with main effects for PBB level,
current age, sex, total lipid level, and cell type
estimates. The study population was then stratified
into participants who were exposed when they
were younger (age of exposure less than the med-
ian age of exposure) and participants who were
exposed when they were older (age of exposure
greater than the median age of exposure). The
association between current PBB level and SEM
count was then tested in each subset separately,
with the same covariates as before. As a sensitivity
analysis, the association between each of the four
detected PBB congeners was also assessed using
the same covariates. The association between
SEM count and sex was assessed with the same
model as above, but with just age and cell types as
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a covariate. Interaction between PBB and sex was
evaluated by the inclusion of an interaction term
(sex × total PBB level) to the model with PBB level,
current age, sex, total lipid level, and cell type
estimates. The study population was then stratified
into male participants and female participants, and
the association between PBB and SEM count was
assessed in each sex separately, with age, lipid
levels, and cell type proportions as covariates.
The association between each age acceleration
measure was also assessed via the same model,
with age, sex, and estimated cell type proportions
as covariates.

Enrichment analysis

MissMethyl was used to assess whether an individual’s
SEMs were enriched in particular biological pathways
(defined by KEGG) or were randomly distributed
throughout the genome [79]. This analysis was con-
ducted in each sample separately. The false discovery
rate (FDR) was controlled at 5% in each analysis. For
pathways identified in more than 30 participants,
a chi-square test was used to determine if the partici-
pants with the highest levels of PBB (based on
a median split), highest number of SEMs (based on
a median split) or who were male were more likely to
have each of the common biological pathways
enriched. Additionally, usingMissMethyl, we assessed
whether the probes with SEMs were enriched in any
biological pathways.
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