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Purpose: The use of radiomic features as biomarkers of treatment response and outcome or as corre-
lates to genomic variations requires that the computed features are robust and reproducible. Segmen-
tation, a crucial step in radiomic analysis, is a major source of variability in the computed radiomic
features. Therefore, we studied the impact of tumor segmentation variability on the robustness of
MRI radiomic features.
Method: Fluid-attenuated inversion recovery (FLAIR) and contrast-enhanced T1-weighted
(T1WICE) MRI of 90 patients diagnosed with glioblastoma were segmented using a semiautomatic
algorithm and an interactive segmentation with two different raters. We analyzed the robustness of
108 radiomic features from five categories (intensity histogram, gray-level co-occurrence matrix,
gray-level size-zone matrix (GLSZM), edge maps, and shape) using intra-class correlation coefficient
(ICC) and Bland and Altman analysis.
Results: Our results show that both segmentation methods are reliable with ICC ≥ 0.96 and standard
deviation (SD) of mean differences between the two raters (SDdiffs) ≤ 30%. Features computed from
the histogram and co-occurrence matrices were found to be the most robust (ICC ≥ 0.8 and
SDdiffs ≤ 30% for most features in these groups). Features from GLSZM were shown to have mixed
robustness. Edge, shape, and GLSZM features were the most impacted by the choice of segmentation
method with the interactive method resulting in more robust features than the semiautomatic method.
Finally, features computed from T1WICE and FLAIR images were found to have similar robustness
when computed with the interactive segmentation method.
Conclusion: Semiautomatic and interactive segmentation methods using two raters are both reliable.
The interactive method produced more robust features than the semiautomatic method. We also found
that the robustness of radiomic features varied by categories. Therefore, this study could help moti-
vate segmentation methods and feature selection in MRI radiomic studies. © 2019 American Associa-
tion of Physicists in Medicine [https://doi.org/10.1002/mp.13624]
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1. INTRODUCTION

Radiomic analysis consists of the high-throughput mining of
quantitative features from standard-of-care medical imaging1

and is becoming a powerful tool for treatment planning, out-
come prediction, and personalized therapy.2–4 Radiomic mod-
els are often built using features obtained from baseline or
follow-up computed tomography (CT) or positron emission
tomography (PET) images.1,4–6 Recently, there has been an
increased interest in performing radiomic studies using MR
images.7–13 Using radiomics with MRI is favorable for some
tumor types, such as brain tumors, for which MRI is the stan-
dard-of-care imaging modality. Also, MRI provides unique
characteristics that differ from PET or CT features, providing
additional information for prognostication and outcome pre-
diction. In brain, MR images such as contrast-enhanced T1-

weighted images (T1WICE) and fluid-attenuated inversion
recovery (FLAIR) images can be used to identify different
structures such as edema, tumor infiltration, and necrosis.
Radiomic models constructed from these images have been
shown to predict overall survival,11,14 identify distinct molecu-
lar subtypes of glioblastoma (GBM),15 and identify patients
likely to most benefit from antiangiogenic therapy,16 or used as
a guide for intensification of postoperative radiation therapy.17

MRI diffusion tensor imaging (DTI) provides noninvasive and
reproducible biomarkers that can help with the classification
of low- and high-grade glioma, metastasis, and meningioma,
and consequently assist with decision-making for the choice of
treatment.18–20 Multiparametric MRI has also shown an ability
to determine the grade, spatial extent, and heterogeneity of
brain tumors and consequently help to improve the manage-
ment of patients with GBM.21
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Radiomic analyses that involve the extraction of features
may be impacted by variability from two main categories: (a)
controllable variability that stems directly from the computa-
tional methods used, such as histogram normalization, the
quantization level, and three-dimensional (3D) versus two-di-
mensional (2D) analysis; and (b) uncontrollable (or less con-
trollable) variability that originates from image acquisition,
reconstruction, and tumor segmentation processes. The
responsible use of any radiomic model should: (a) describe
how the radiomic features were extracted, including all the
preprocessing steps performed and (b) acknowledge the vari-
ability of the selected features due to uncontrollable sources.

Although the robustness of radiomic features with respect
to acquisition, reconstruction, or segmentation methods and
test–retest reproducibility have been well described in PET
and CT, these results cannot be directly extrapolated or trans-
ferred to MR images.22 To the best of our knowledge, there is
only one study that has investigated the interobserver agree-
ment of one radiomic feature (entropy from the co-occurrence
matrix) in diffusion weighted MRI.23

In this study, we investigated the reliability of the segmen-
tation of glioblastoma tumors using two segmentation meth-
ods (semiautomatic and interactive with manual corrections)
obtained with two raters (medical physicists with knowledge
in radiology) and analyzed the robustness of classically used
MRI radiomic features based on segmentation reliability.
Consequently, this study should help to identify the set of
radiomic features that are generally robust and guide the
selection of appropriate segmentation techniques for radiomic
analyses.

2. MATERIALS AND METHODS

2.A. Patients

From the 262 patients of The Cancer Genome Atlas
Glioblastoma Multiforme (TCGA-GBM) collection
(n = 262) of The Cancer Imaging Archive (TCIA),24 136
were excluded due to motion artifacts, huge surgical cavities,
or absence of FLAIR/T1WICE images. Ninety patients were
randomly selected prior to analysis from the remaining 126
patients. Inclusion criteria consisted of patients with both
T1WICE and FLAIR images, and without motion artifacts, or
surgical cavities. We analyzed both T1WICE and FLAIR
images as the former is commonly used to describe enhanc-
ing tumor extent, while the latter has been shown to describe
nonenhancing tumor extent despite confounding brain
edema.25–27 Image characteristics, including image resolu-
tion, are summarized in Table I.

2.B. Image segmentation

The first method implemented a semiautomatic segmenta-
tion on the FLAIR images based on the work of Veeraragha-
van and Miller 2011.28 Starting from user-drawn brush strokes
on 2–3 slices to identify the tumor and background regions,
the algorithm learns a model using a support vector machine

(SVM) classifier. This method adds to the competitive region-
growing technique known as the “GrowCut” method that is
popular in 3D Slicer29—the main difference being that this
method uses a SVM classifier trained on the user’s brush
stroke inputs to further refine the GrowCut segmentations.

The second method implemented an interactive segmenta-
tion with manual corrections (IMC). This method adds to the
competitive region-growing GrowCut with SVM refinement.
To further improve the segmentation, this method incorpo-
rates an interactive mode where regions that are difficult to
segment are automatically identified by the algorithm and
presented as queries to the user to indicate whether those
regions correspond to tumor or background. Following user
inputs, the SVM is retrained until there are no more regions
for querying or the user terminates the algorithm. Postpro-
cessing using standard morphological open–close (by 3 pix-
els to capture the center and the immediately adjacent pixels)
and hole filling are performed to derive smooth segmentation
contours in 3D. This method includes algorithm prompting
and subsequent user corrections that are lacking in the first
method. After the algorithm terminates, the user checks and
manually edits the segmentation. Examples of results given
by these two segmentation methods are presented in Fig. 1.

2.C. Radiomic feature extraction

The images analyzed in this study presented large in-plane
(0.4–1 mm) and between-plane (3–5 mm) differences in res-
olution. For this reason, following the segmentation and prior
to radiomic feature extraction, images were resampled with
linear interpolation to obtain isotropic voxels of 1 mm3

allowing for the extraction of radiomic features in 3D. In
addition, the MR intensities in all images were binned to
Q = 128 values using:

VQ xð Þ ¼ round
Q� 1ð Þ: x� Vminð Þ

Vmax � Vmin
þ 1

� �
(1)

with Vmin and Vmax as the minimum and maximum intensity
values in the segmented tumor volumes. These binned
images were used to compute texture features [Grey Level
Co-occurrence Matrix (GLCM) and Grey Level Size Zone
Matrix (GLSZM)], while histogram and shape features were
computed from the original images. No additional image pre-
processing was performed.

TABLE I. Image characteristics.

Image characteristics n = 90 (%)

Resolution (x,y) mm

[0.4–0.7] 29 (32%)

[0.7–1] 61 (68%)

Slice thickness

3 mm 18 (20%)

5 mm 64 (71%)

other 8 (9%)
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Additionally, Gabor (with four orientations: h = 0°, 30°,
45°, 90°, and two frequencies: f = 2, 2√2),30 Sobel31 and
Laplacian of Gaussian (LoG)32 filtering were applied to
extract edge maps from the images.

A total of 108 features were extracted from the FLAIR and
T1WICE images: (a) 20 features from the intensity histogram;
(b) 26 from the GLCM using 13 directional offsets (3D) and
a distance of 1 between the voxels. One co-occurrence matrix
was produced by combining the contributions from all offsets
into one and used to calculate the aforementioned features;
(c) 15 from the GLSZM using one matrix describing zones in
the 3D tumor volume; (d) seven shape features; and (e) four
intensity histogram features (mean, standard deviation, skew-
ness, and kurtosis) from ten different edge maps obtained
with the filtered FLAIR and T1WICE images.

All investigated features were obtained using the CERR
software,33 which is compliant with the Image Biomarkers
Standardization Initiative (IBSI).34 The choice of the investi-
gated features was made using the most common radiomic
feature categories and based on features that we used in a pre-
vious GBM study.11

2.D. Statistical analysis

The interobserver reliability of the two segmentation
methods (semiautomatic and IMC) was measured using Bland
and Altman analysis35 and the interobserver agreement was
quantified by calculating the intraclass correlation coefficient
(ICC) using a two-way random effects model and the mean
differences of the two raters.36 The reliability limits were

FIG. 1. Tumor segmentation for two different patients. (a) User-drawn brush strokes used to initiate the two segmentation methods; (b) Semi-automatic segmenta-
tion; (c) Interactive segmentation with manual corrections (IMC). The two left columns and two right columns are the results obtained with rater 1 and rater 2,
respectively. [Color figure can be viewed at wileyonlinelibrary.com]
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defined as the mean differences � 1.96 standard deviation
(SD) of the differences. The 95% confidence intervals (CIs)
were reported for these limits, the mean differences, and the
ICCs. The Shapiro–Wilk test37 was used to evaluate the nor-
mality of the distribution of differences for the two raters.
The effect of voxel size on reliability measurements was
investigated using a Mann–Whitney U test.38 For this test, the
patient cohort was split into two groups based on low or high
resolution [x,y voxel resolution (0.4–0.7) or (0.7–1) mm2,
respectively—see Table I].

The same statistical tests were used to analyze the robustness
of the MRI radiomic features due to the reliability of the segmen-
tation method used. All these tests were performed with the
Rstudio software (v1.1.453) and P-values < 0.05 were consid-
ered statistically significant. Bland and Altman results were
reported with the absolute difference value and with the mean
percentage difference according to the following formula:

ur1 � ur2ð Þ=ur1 þ ur2

2
� 100 (2)

where /r1 and /r2 are the values of a feature obtained with the
segmentation from raters 1 and 2, respectively. The robustness
of the MRI radiomic features was evaluated using a six-level
scale (going from 0 to 5) and based on a combination of ICCs
and SD of the mean percentage differences between the two
raters, named SDdiffs in the manuscript. On this scale, we set
level 0 to correspond to features with the highest (or very high)
robustness with an SDdiffs ≤ 10% and an ICC ≥ 90% and
level 5 to correspond to features with the lowest (or very low)
robustness with an SDdiffs > 100% and an ICC < 70%. This
scale is described in the legend of Fig. 2. Our six-level scale
consists of very low (level 5), low (4), limited (3), medium (2),
high (1), and very high (0) robustness.

From this scale, we computed a category robustness ϒO to
summarize the robustness by feature category across the seg-
mentation methods and the image sequences (FLAIR,
TIWICE):

!X ¼ 1�
P

i2X Sui

5 � Card Xð Þ (3)

where Sui
is the level value on the scale described above

for the robustness of feature i and Ω is the feature category
(or all the features together). This formula gives values
between 0 and 1, with a higher value corresponding to a
higher robustness.

2.E. Data availability

The segmentations generated and analyzed during this
study are available from the corresponding author upon rea-
sonable request.

3. RESULTS

3.A. Segmentation reliability

Table II contains a summary of the reliability results for
the tumor volume obtained by the two raters for the two seg-
mentation methods. The highest differences were found for
the semiautomatic method with a mean difference of
8.2 � 30.4% and an ICC of 0.96. The IMC method gave the
best reliability with a mean difference of 1.5 � 21.5% and an
ICC of 0.99.

The tumor volumes generated by both semiautomatic
and IMC methods using the two rater inputs were highly
similar for patients with voxel resolutions (x,
y) < or ≥ 0.7 mm2 the Mann–Whitney U test gave P-values
0.28 and 0.24 for the semiautomatic and IMC methods,
respectively (see Fig. 3).

3.B. Robustness of the MRI radiomic features
against the segmentation method

Table III summarizes the results of the robustness of MRI
radiomic feature categories for both segmentation methods.
Figure 2 shows the results of the robustness of individual
MRI radiomic features for both segmentation methods.

3.B.1. FLAIR images

The histogram feature category extracted from the volume
of interest (VOI) had a robustness of ϒhistogram = 0.80 and
ϒhistogram = 0.83 for the semiautomatic and IMC methods,
respectively. Individual histogram features had high to very
high robustness except for skewness and kurtosis (very low
robustness for both methods), minimum (low robustness for
both methods), and energy (medium robustness for the semi-
automatic method and high robustness for the IMC method).

The GLCM feature category had a robustness of
ϒGLCM = 0.90 and ϒGLCM = 0.92 for the semiautomatic and
IMC methods, respectively. Individual GLCM features had

TABLE II. Reliability results of volume segmentation using the semiautomatic and interactive with manual corrections (IMC) methods between the two raters.

Method Differencesa LRL [95% CI] Mean � SD [95% CI] URL [95% CI] ICC [95% CI]

Semiautomatic cm3 �40.4 [�48.7 to �32.1] 4.5 � 22.9 [�0.3 to 9.3] 49.4 [41.1 to 57.7] 0.96 [0.94, 0.98]

percentage �51.5 [�62.5 to �40.4] 8.2 � 30.4 [1.8 to 14.6] 67.8 [56.8 to 78.9]

IMC cm3 �27.0 [�32.1 to �22.0] 0.3 � 14.0 [�2.6 to 3.3] 27.7 [22.6 to 32.8] 0.99 [0.98, 0.99]

percentage �40.6 [�48.4 to �32.8] 1.5 � 21.5 [�3.0 to 6.0] 43.7 [35.9 to 51.5]

ICC, intraclass correlation coefficient; IMC, interactive with manual corrections; LRL, lower reliability limit; URL, upper reliability limit.
aDifferences have a non-normal distribution according to the Shapiro–Wilk test.
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high to very high robustness for both methods with the excep-
tion of cluster shade (very low robustness for both methods)
and Haralick correlation (medium robustness for the semiau-
tomatic method and high robustness for the IMC method).For
most of the individual GLCM features, robustness was higher
for the IMC method compared with the semiautomatic
method.

The edge feature category had a robustness of
ϒedge = 0.67 and ϒedge = 0.76 for the semiautomatic and
IMC segmentation methods, respectively. Mean and standard
deviation features from the edge maps showed high to very
high robustness irrespective of the segmentation method.
Skewness computed from the edge maps showed very low to
low robustness except for those computed from Sobel and
Laplacian of Gaussian (LoG) edge maps. Kurtosis showed
medium robustness for the semiautomatic method and high
robustness for IMC method.

The GLSZM feature category had a robustness of and
ϒGLSZM = 0.72 and ϒGLSZM = 0.76 for the semiautomatic
and IMC segmentation methods, respectively. Individual
GLSZM features exhibited mixed robustness ranging from
low to very high robustness. The most robust features for this
category were: small zone emphasis, gray-level nonunifor-
mity normalized, size zone nonuniformity normalized, zone
percentage, small zone high gray-level emphasis and gray-
level variance. These features were generally less robust than
features of a different feature category regardless of the seg-
mentation method.

In addition to the summarized results from Table III and
Fig. 2, the full results including the lower and upper reliabil-
ity limits together with the 95% CI of these limits, mean dif-
ferences and ICCs, and absolute value of the differences are
reported in Tables S1 and S2.

3.B.2. T1WICEimages

The histogram feature category had a robustness of
ϒhistogram = 0.72 and ϒhistogram = 0.81 for the semiautomatic
and IMC methods, respectively. Irrespective to the segmenta-
tion method, skewness and kurtosis histogram features

showed very low robustness while minimum showed limited
robustness. All the other features showed medium to very
high robustness and for many of these features, robustness
increased by one level between the semiautomatic and IMC

segmentation methods.
The GLCM feature category for T1WICE images had a

robustness of ϒGLSZM = 0.81 and ϒGLSZM = 0.88 for the
semiautomatic and IMC methods, respectively. Individual
GLCM features also showed similar robustness to that of
GLCM features computed from FLAIR images, where all
features except cluster shade, cluster prominence, Haralick
correlation, and energy showed high to very high robustness.

The edge feature category had a robustness of
ϒedge = 0.71 and ϒedge = 0.81 for the semiautomatic and IMC

methods, respectively. All individual edge features had high
to very high robustness with the exception of skewness com-
puted from the Gabor edge maps (very low to low robust-
ness).

The GLSZM feature category had a robustness of
ϒGLSZM = 0.61 and ϒGLSZM = 0.77 for the semiautomatic
and IMC methods, respectively. Grey Level Size Zone Matrix
features exhibited mixed robustness ranging from low to very
high robustness. The most robust features for this category
were small zone emphasis, gray-level nonuniformity normal-
ized, and size-zone nonuniformity normalized.

In addition to the summarized results from Table III and
Fig. 2, the full results including the lower and upper reliabil-
ity limits together with the 95% CI of these limits, mean dif-
ferences, and ICCs, and absolute value of the differences are
reported in Tables S3 and S4.

3.B.3. Shape features

The shape feature category had a robustness of
ϒshape = 0.74 and ϒshape = 0.89 for the semiautomatic and
IMC methods, respectively. The highest robustness was found
for spherical disproportion and sphericity with IMC segmenta-
tion (Fig. 2, Table III). For additional details, the full results
are reported in Tables S5 and S6.

3.B.4. Overall results

Overall, features had a category robustness ϒoverall ranging
between 0.72 to 0.76 for the semiautomatic method and 0.82
to 0.83 for the IMC method. On FLAIR images, category
robustness was ϒoverall = 0.76 and ϒoverall = 0.82 for the
semiautomatic and IMC segmentation methods, respectively.
When using T1WICE, the category robustness for the features
improved from ϒoverall = 0.72 for the semiautomatic to ϒover-

all = 0.83 for the IMC segmentation method.

4. DISCUSSION

In this study, we investigated the inter-rater robustness of
MRI-radiomic features. We also studied the reliability of seg-
mented tumor volumes when using two raters and obtained
using semiautomatic and IMC segmentation to achieve a close

TABLE III. Robustness of each feature category across segmentation tech-
niques (SA = semiautomatic; IMC = interactive with manual corrections)
and image sequences (FLAIR and T1WICE) according to Eq. (3).

FLAIR T1WICE

Feature category SA IMC SA IMC

Histogram 0.80 0.83 0.72 0.81

Shape 0.74 0.89 0.74 0.89

GLCM 0.90 0.92 0.81 0.88

GLSZM 0.72 0.76 0.61 0.77

Edge features 0.67 0.76 0.71 0.81

All 0.76 0.82 0.72 0.83

FLAIR, Fluid-attenuated inversion recovery; GLCM, Grey level co-occurrence
matrix; GLSZM, Grey level size zone matrix.
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FIG. 2. Robustness of the radiomic features obtained on FLAIR and T1WICE images using semiautomatic segmentationwith raters 1 and 2 (columns ‘SA’) and using interac-
tive segmentationwithmanual correctionswith raters 1 and 2 (columns ‘IMC’). FLAIR, Fluid-attenuated inversion recovery. [Color figure can beviewed at wileyonlinelibrary.-
com]
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approximation of the tumor extent. Prior studies have shown
that semiautomatic methods lead to more reproducible seg-
mentations and radiomic features than those computed using
manual delineations.39–41 Consequently, we looked at the
utility of adding machine learning to a semiautomatic, com-
petitive region-growing or GrowCut segmentation with SVM
learning in two different modes. In one mode, called the
semiautomatic method, the algorithm simply uses the user
inputs as brush strokes and derives a segmentation. In the
second mode, called the interactive mode with manual cor-
rections (IMC), the algorithm queries back the user based on
the uncertainty derived from the machine learning method to
appropriately adjust its segmentation. In other words, the
algorithm queries are directed only toward areas that are hard
to segment by the algorithm with the goal of reducing time-
consuming slice-by-slice user verification. Recent works on
segmentation of brain tumors allow automatic detection of
tumors and achieve closer-to-expert manual segmentations
than those obtained with the semiautomatic method used
here.42–45 Clearly, more advanced and fully automated deep
learning methods43,46,47 could lead to more accurate tumor
segmentations and speed up the workflow for automated
radiomic analysis. Results from the BRATS challenge can be
used for selecting the best deep learning methods.48 However,
one major drawback of these methods is their interpretability.
Furthermore, deep learning methods would still require man-
ual correction even if it were so for fewer cases and slices
than the interactive method. This is simply because any
machine learning method is optimized for its training set that
is based on one or utmost a few experts. As a consequence,
it is generally impossible to get perfectly accurate

segmentations on a completely different testing set. For these
two reasons, we used the interactive method with manual cor-
rections to obtain a reasonable representation of radiomic fea-
ture robustness across raters.

The semiautomatic algorithm has the advantage that
once initiated through user-drawn brush strokes, no addi-
tional inputs are necessary, and it demonstrated a high
segmentation reliability between the two raters with an
ICC of 0.96. However, this method led to less accurate
segmentations in some tumors adjacent to the skull due to
segmentation leakage into small portions of the skull. This
can adversely impact the reliability of the MRI features
obtained from these volumes and result in a misleading
interpretation of the utility of these features as biomarkers
of treatment response or outcome. On the other hand, IMC

segmentation allowed for the correction of these obvious
mistakes in the segmentation. This method showed a high
reliability with an ICC of up to 0.99.

Although our results showed that the volumes generated
between the two raters were not normally distributed given
their skewed distributions, the original work by Bland and
Altman validates the application of this method to our data.35

The segmentation was generated from FLAIR images and
the segmented volumes were then utilized on T1WICE. We
chose to segment on FLAIR because we found that the inclu-
sion of the FLAIR hyperintense tumoral and peritumoral
lesion (usually larger than the contrast enhanced lesion) helps
the radiomic features quantify the strength of tumor edges on
T1WICE.

11 Moreover, texture matrices used for the extraction
of radiomic features were computed using the 3DVOI as is
commonly done with PET/CT images.

FIG. 3. Bland and Altman plots for (a)—semiautomatic, (b)—interactive with manual corrections segmentation (IMC). Results report the mean difference between
the two raters in cm3 with 95% CI and the lower and upper reliability limits with 95% CI. CI, confidence interval. [Color figure can be viewed at wileyonlinelib
rary.com]
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In our study, we identified that the IMC segmentation
method led to more robust features compared with the semi-
automatic method. We believe that the increased robustness
using the IMC method may result from their reliance on accu-
rate tumor segmentation especially close to the boundaries of
the tumor, which are discernable to the human eye and can be
corrected.

Similar to the results obtained on the tumor volume, most
of the considered features were not normally distributed and
the reliability limits and 95% CIs reported should be used
with caution. Images were resampled to obtain isotropic vox-
els of 1 mm3 in order to compute radiomic features in 3D,
which reduced the impact of wide differences between in-
plane and between-plane resolutions. Such resampling tech-
niques have been shown to be useful for outcome studies,
especially when using multi-institutional patient scans that do
not share the same resolution.

The 6-point scale used in this manuscript was made in
order to summarize the results on easy-to-read table and fig-
ures, but thresholds may not be adapted for all situations (an-
nexes contain the full raw results). The feature robustness
metrics considered in this study gives an indication of the
degree by which features may be impacted by the segmenta-
tion method of choice. Nonetheless, the robustness values
themselves should not be interpreted as a means for selecting
features. Instead, low robustness indicates that the threshold
levels used to distinguish outcomes using a particular mea-
sure should be stringent on the number of outliers allowed to
distinguish classes. For instance, skewness of the Gabor edge
maps was found to have a very low robustness in this study.
Yet in a previous study, high negative skewness of Gabor
edges was identified as a biomarker to differentiate patients
with GBM by survival,11 and with a threshold of �0.49 it
misclassified only <3% of the patients in this study, using
IMC segmentation. Similarly, high robustness should not be
used as a criterion to select features. Some of the features
included in this study, such as the ones derived from Sobel
and LoG edge maps, were found to be robust to inter-rater
segmentation variations but to our knowledge have never
been described as useful predictors of outcome or therapy
response in GBM patients. In other words, robustness can be
a motivation for feature exclusion but not for feature inclu-
sion. Inclusion must be realized using feature selection tech-
niques such as LASSO49 and/or knowledge of the pathology.
In GBMs, studies often describe histogram, Gabor edge,
GLSZM, and GLCM features from T1WICE and FLAIR
images as predictors of patient survival,11,50,51 MGMT methy-
lation status52,53 or chemoradiation response.54

This study suffers from some limitations: First, despite
isotropic resampling, the lack of 3D MR acquisitions can
limit the relevance of the radiomic features computed in 3D.
Secondly, results presented here are valid for GBM and even
if the images we analyzed show variabilities in terms of sizes
and compactness (volume: median = 76 cm3, interquartile
range = 83 cm3; sphericity: median = 0.75, interquartile
range = 0.16), other cancer models with smaller tumor vol-
umes or lower compactness may lead to less robust features.

As a result, the reported values for radiomic features should
be similar to other cancer models with similar tumor volume
and compactness since the segmentation methods showed
comparable reliability.

5. CONCLUSION

This study reports applied semiautomatic and interactive
segmentation with manual corrections (IMC) methods to com-
pute MRI-radiomic features. Our results show that both meth-
ods produce reliable volumes from inter-rater inputs and
reasonably robust radiomic measures. In particular, the
GLCM textures were robust, and a subset of GLSZM features
was robust through interactive segmentation.
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SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Table S1: Reliability results of the radiomics features
obtained on FLAIR images using semi-automatic
segmentation with raters 1 and 2.
Table S2: Reliability results of the radiomics features
obtained on FLAIR images using interactive + manual
corrections segmentation (IMC) with raters 1 and 2.

Table S3: Reliability results of the radiomics features
obtained on T1WICE images using semi-automatic
segmentation with raters 1 and 2.
Table S4: Reliability results of the radiomics features
obtained on T1WICE images using interactive + manual
corrections segmentation (IMC) with rater 1 and 2.
Table S5: Reliability results of the shape features obtained
using using semi-automatic segmentation with raters 1 and 2.
Table S6: Reliability results of the shape features obtained
using interactive + manual corrections segmentation (IMC)
with rater 1 and 2.
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