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Purpose: Automated synthetic computed tomography (sCT) generation based on magnetic reso-
nance imaging (MRI) images would allow for MRI-only based treatment planning in radiation ther-
apy, eliminating the need for CT simulation and simplifying the patient treatment workflow. In this
work, the authors propose a novel method for generation of sCT based on dense cycle-consistent gen-
erative adversarial networks (cycle GAN), a deep-learning based model that trains two transformation
mappings (MRI to CT and CT to MRI) simultaneously.
Methods and materials: The cycle GAN-based model was developed to generate sCT images in a
patch-based framework. Cycle GAN was applied to this problem because it includes an inverse trans-
formation from CT to MRI, which helps constrain the model to learn a one-to-one mapping. Dense
block-based networks were used to construct generator of cycle GAN. The network weights and vari-
ables were optimized via a gradient difference (GD) loss and a novel distance loss metric between
sCT and original CT.
Results: Leave-one-out cross-validation was performed to validate the proposed model. The mean
absolute error (MAE), peak signal-to-noise ratio (PSNR), and normalized cross correlation (NCC)
indexes were used to quantify the differences between the sCT and original planning CT images. For
the proposed method, the mean MAE between sCT and CT were 55.7 Hounsfield units (HU) for 24
brain cancer patients and 50.8 HU for 20 prostate cancer patients. The mean PSNR and NCC were
26.6 dB and 0.963 in the brain cases, and 24.5 dB and 0.929 in the pelvis.
Conclusion: We developed and validated a novel learning-based approach to generate CT images
from routine MRIs based on dense cycle GAN model to effectively capture the relationship between
the CT and MRIs. The proposed method can generate robust, high-quality sCT in minutes. The pro-
posed method offers strong potential for supporting near real-time MRI-only treatment planning in
the brain and pelvis. © 2019 American Association of Physicists in Medicine [https://doi.org/10.1002/
mp.13617]
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1. INTRODUCTION

Magnetic resonance imaging (MRI) has superior soft tissue
contrast over computed tomography (CT), allowing for
improved organ-at-risk segmentation and target delineation
for radiation therapy treatment planning.1–3 Since dose calcu-
lation algorithms rely on electron density maps generated
from CT images for calculating dose, MRIs are typically reg-
istered to CT images and used alongside the CT image for
treatment planning.4,5 However, the CT/MRI registration pro-
cess has inherent errors, for example, a geometrical uncer-
tainty of approximately 2 mm is present in cranial MRI.6–8 A
potential treatment planning process with MRI as a sole
imaging modality could eliminate systematic CT/MRI co-
registration errors, reduce medical cost, minimize patient

radiation exposure, and streamline clinical workflow.2,9 How-
ever, the main challenge in substituting CT with MRI is that
MRI cannot provide the key electron density information that
is needed for accurate dose calculation. Additionally, daily
patient setup for radiotherapy is based on either cone-beam
CT or orthogonal planar x-ray images which are then com-
pared to planning CTs or digitally reconstructed radiographs
(DRRs) generated from the planning CT. This setup process
inherently relies on a CT image taken at the beginning of the
treatment planning process.

Since electron density information and CT images are vital
to the treatment-planning workflow, methods which generate
electron density and CT image from MRIs, called synthetic
CT (sCT) generation, have been investigated recently.10–12

Atlas-based methods are typically used to generate sCT
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images. These rely on a deformable image registration to
bring the sCT atlas to the current MRI.13–16 These methods
are inherently limited by the performance of deformable reg-
istration. Another approach relies on specialized MRI
sequences, such as ultra-short echo time (UTE) sequences,
that allow for enhanced bony anatomy visualization.17,18 sCT
images can then be generated via postprocessing. However,
the current image quality of UTE sequences is inadequate for
accurate delineation of blood vessels from the bone.19,20

Moreover, the use of nonstandard MRI sequences may intro-
duce additional scanning time to the existing MRI scanning
workflow and may increase the patient discomfort, leading to
motion artifacts.

With the development of machine learning in the medical
imaging field, more sophisticated methods for sCT generation
have been proposed. The machine learning-based model
relies on learning the relationship between MRI and CT
images for several representative sets of CT/MRI pairs, called
a training set. After training, sCT images can be generated by
feeding new MRIs into the model. Such sCT images will
share the same structural information with MRI, but the
intensity values will be scaled to typical Hounsfield units
(HU) seen on a CT scan. The electron density can then be
derived from this sCT image. Based on different training
models, these methods can be broadly classified into three
categories: dictionary learning-based methods,21–24 random
forest-based methods,25–29 and deep learning-based meth-
ods.30–37 Dictionary learning-based methods rely on the simi-
larity between different MRIs. When a new patient’s MRI is
put into the model, the similarity between the new MRI and
training MRIs in the dictionary is calculated. An sCT image
is then synthesized from a linear combination of the most
similar paired CT images, with the weights calculated based
on the MRI similarity. These methods are sensitive to MRI
intensities which can vary as a function of scanning parame-
ters for a given tissue. They also rely on a large base dataset,
and the accuracy of the method is inherently dependent on
the representing accuracy of an overcomplete dictionary. Ran-
dom forest-based methods train a set of decision trees. Each
decision tree learns the optimal way to separate a set of train-
ing paired MRI and CT patches into smaller and smaller sub-
sets to predict the CT intensity. When a new MRI patch is put
into the model, the sCT intensity is estimated as the combina-
tion of the predicted results of all decision trees. However,
these methods can lead to ambiguous results when the deci-
sion trees do not learn a one-to-one mapping from the source
image to the target image.

Since deep learning-based methods can provide a more
complex nonlinear mapping from input to output image
through a multilayer and fully trainable model, these methods
are becoming popular for the task of image synthesis.30–37 In
contrast with dictionary learning-based and random forest-
based methods, whose accuracy and robustness are sensitive
to hand-crafted features extracted from MRI patches, deep
learning-based methods have potential to learn which features
are the best representation of the MRI patch. Li et al.30 first
applied a convolutional neural network (CNN), a deep

learning-based method to generate PET attenuation correc-
tion map from the MRI of the same subject. Nie et al.31 pro-
posed to train a patch-to-patch relationship from an MRI to a
CT image by using three-dimensional (3D) fully convolu-
tional neural network (FCN), a variation of the conventional
CNN. Different from patch-based deep learning, Han apply
the FCN to learn a direct image-to-image mapping between
MRIs and their corresponding CTs.32 A limitation of the
CNN-based methods is that slight voxel-wise misalignment
of MRI and CT images may lead to blurred synthesis.34 Gen-
erative adversarial networks (GAN) have been used in the
generation of sCT by introducing an additional discriminator
to distinguish the sCT from real CT, improving the final sCT
imaging qualities in comparison to the previously deep learn-
ing-based methods.35 These models incorporate an adversar-
ial loss term in addition to the conventional synthesis error,
with the objective of producing more realistic CT data.33,35,36

GAN-based methods still require the training pairs of MRI
and CT images to be perfectly registered, which can be diffi-
cult to carry out with the high levels of accuracy needed for
image synthesis.34 If the registration has some local mis-
match between the MRI and CT training data, that is, soft tis-
sue misalignment after bone-based rigid registration, GAN-
based methods would produce a degenerative network,
decreasing their accuracy. Wolterink et al.34 show that train-
ing with pairs of spatially aligned MRI and CT images of the
same patients is not necessary for cycle GAN-based sCT gen-
eration method. However, due to computational limitations,
the cycle GAN-based method images in a slice-by-slice fash-
ion, that is, the cycle GAN-based method is applied to two-
dimensional (2D) images. This approach is limited because it
relies on a 2D model to generate 3D images, leading to dis-
continuous output signals over a continuous input space. To
solve this challenge, we propose a dense cycle GAN-based
method to train patch-to-patch translation CNNs. In this
framework, a CNN is trained to translate an MRI patch to an
sCT patch. We also train an additional CNN to translate the
sCT patch back to the MRI patch. The difference between
this reconstructed sCT image and the original CT image is
added to help regularize the training.

The purpose of this work is to develop a deep learning-
based method to generate patient-specific sCT from routine
anatomical MRI for MRI-only radiotherapy treatment plan-
ning. The method is applied to both the brain and pelvic
regions. The contributions of the paper are as follows: (a) In
order to cope with local mismatches between MRI and CT
after rigid registration as well as to capture more useful infor-
mation for MRI patch representation, a dense cycle GAN is
applied. Unlike traditional cycle GAN, where the generator is
composed of residual blocks, dense blocks are used to cap-
ture multiscale information to solve the significant differ-
ences in image property between the MRI and CT modalities.
(b) A novel distance loss function is proposed to optimize the
dense cycle GAN to overcome the blur and misclassification
issues that occur when applying more commonly used dis-
tance functions, such as mean absolute distance and mean
squared distance.
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The paper is organized as follows: We first provide an
overview of the proposed deep learning-based sCT generation
framework, followed by a detailed description of the 3D cycle
GAN, dense block, and then loss function. We evaluated the
method’s sCT synthesis accuracy via comparison to random
forest-based,27 GAN-based,35 and 2D cycle GAN-based34

synthesis methods. Finally, we discuss the limitations and
future applications of the proposed method.

2. MATERIALS AND METHODS

2.A. Overview

The proposed sCT generation algorithm consists of a train-
ing stage and a synthesizing stage. For a given pair of MRI
and CT images, the CT image is used as a deep learning-
based target of the MRI. Intra-subject registration is per-
formed to align each image pair. Because local mismatches
between MRI and CT remain even after rigid registration and
the images have fundamentally different properties, training
an MRI-to-CT transformation model is difficult. To cope with
this challenge, a novel dense cycle GAN is introduced to

capture the relationship between CT to MRIs while supervis-
ing an inverse MRI-to-CT transformation model. A 3D image
patch [with voxel size (64, 64, 64)] is input to the proposed
model to contain more spatial information. Unlike residual
blocks used in Wolterink’s cycle GAN architecture34 dense
blocks38 are used to construct our proposed dense cycle GAN
(DCG) architecture. Figure 1 outlines the workflow sche-
matic of our proposed method.

In the training stage, extracted patches of training MRI are
fed into the generator (MRI-to-CT) to get equal-sized syn-
thetic CT, which is called the sCT. The sCT is then fed into
another generator (CT-to-MRI), creating a synthetic MRI
which we term the cycle MRI. Similarly, in order to enforce
forward-backward consistency, extracted patches of training
CT are fed into the two generators in the opposite order first
to create a synthetic MRI and cycle CT. Then two discrimina-
tors are used to judge the realistic of synthetic and cycle
images.

Typically, the l2 -norm or l1 -norm distance, that is, the
mean absolute distance (MAD) or mean squared distance
(MSD), are used as generator loss function between the syn-
thetic image and the original image. However, the use of an

FIG. 1. Schematic flow chart of the proposed algorithm for MRI-based synthetic computed tomography generation. The upper part of this figure shows the train-
ing stage of our proposed method, which consists of four generators and two discriminators. The middle part (yellow) shows the synthesizing stage. In synthesiz-
ing stage, a new MRI is fed into the well-trained DCG model to get an sCT image. The lower part shows the detailed structures for each network. MRIs;
magnetic resonance imagings; sCT, synthetic CT. [Color figure can be viewed at wileyonlinelibrary.com]
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MSD loss function in the network tends to produce images
with blurry regions.39 In order to solve this problem, we
introduce a lp -norm (P = 1.5) distance, termed mean P dis-
tance (MPD), to measure the distance between synthetic and
original images. We also integrate an image gradient differ-
ence (GD) loss term into the loss function, with the aim of
retaining the sharpness in the synthetic images.35 A weighted
summation of these two metrics forms the compound loss
function for the proposed method. The generator loss is com-
puted by the combination of compound loss between syn-
thetic and real images, called adversarial loss, and compound
loss between cycle and real images, called cycle loss. The dis-
criminator loss is computed by MAD between the discrimina-
tor results of input synthetic and real images. To update all
the hidden layers’ kernels, the Adam gradient descent method
was applied to minimize both generator loss and discrimina-
tor loss.

In synthesizing stage, the patches of the new MRI are fed
into the MRI-to-CT generator to obtain the sCT. Then, the
final sCTwas obtained by patch fusion.

2.B. Image acquisition and preprocess

We retrospectively analyzed the MRI and CT data
acquired during treatment planning for 24 brain patients and
20 pelvis patients who received radiation therapy. For the
brain images, standard T1-weighted MRI was captured using
a GE MRI scanner with Brain Volume Imaging sequence
(BRAVO) and 1.0 mm 9 1.0 mm 9 1.4 mm3 voxel size
(TR/TE: 950/13 ms, flip angle: 90°) and CT was captured
with a Siemens CT scanner with 1.0 mm 9

1.0 mm 9 1.0 mm3 voxel size with 120 kVp and 220 mAs.
For the pelvis images, MRI was acquired using a Siemens
standard T2-weighted MRI scanner with 3D T2-SPACE
sequence and 1.0 mm 9 1.0 mm 9 2.0 mm3 voxel size
(TR/TE: 1000/123 ms, flip angle: 95°) and CT was captured
with a Siemens CT scanner with 1.0 mm 9 1.0 mm
9 2.0 mm3 voxel size with 120 kVp and 299 mAs. Mag-
netic resonance imaging data were first resampled to match
the resolution of CT data. For each patient, all training MRI
and CT images were first rigidly registered by an intra-sub-
ject registration using a commercial software Velocity AI
3.2.1 (Varian Medical Systems, Palo Alto, CA).

2.C. Dense cycle GAN

Magnetic resonance imaging and CT images may have
some local mismatches after the above registration process.
Inspired by recent cycle GAN study,34 we introduced a
dense cycle GAN in our sCT generation algorithm because
of its ability to mimic target data distribution by incorpo-
rating an inverse transformation that converts CT to MRI
(CT-to-MRI transformation). Traditional GAN-based meth-
ods use loss functions that depend solely on the quality of
the synthesized image. In the context of image synthesis,
this may lead to CT images that look real but do not
reflect patient anatomy. The proposed method employs a

cycle GAN which eliminates this problem by incorporating
an inverse transformation to enforce a one-to-one map-
ping.34 The sCT is generated by a network that maps from
a source domain (MRI) to target domain (CT) such that
the distribution of sCT is indistinguishable from the CT
image using an adversarial loss (called an MRI-to-CT gen-
erator). Then, we couple the mapping network with an
inverse mapping network (CT-to-MRI generator), and intro-
duce a cycle consistency loss such that the distribution of
the cycle MRI is indistinguishable from the original MRI
(and vice versa). By introducing MRI- and CT-discrimina-
tors that work in opposition to the generators, the whole
network’s performance is enhanced through additional eval-
uations of real and synthetic CT and MRI. Typically, the
generator’s training objective is to increase the judgement
error of the discriminative network (i.e., "fool" the discrim-
inator network by generating synthetic or cycle image that
was very similar to the input training images). The discrim-
inator’s training objective is to decrease the judge error of
the discriminator network and encourage generator to pro-
duce synthetic images that share similar features with real
images. Back-propagation is applied in both networks so
that the generator performs better, while the discriminator
becomes more skilled at determining whether an image is
synthetic or real.

The major difficulty in modeling the MRI-to-CT transfor-
mation is the location, structure, and shape of the MRI and
CT image can vary significantly among different patients. In
order to accurately predict each voxel in the anatomic region
(air, bone, and soft-tissue), inspired by densely connected
CNN,38 we introduced several dense blocks to capture multi-
scale information (including low-frequency and high-fre-
quency) by extracting features from previous hidden layers
and deeper hidden layers. As is shown in generator architec-
ture of Fig. 1, after two down-sampling convolutional layers
to reduce the feature map sizes, the feature map goes through
nine dense blocks, and then two deconvolutional layers and a
tanh layer to perform the end-to-end mapping. The end-to-
end mapping denotes the mapping which has equal size input
and output. The tanh layer works as a nonlinear activation
function and makes it easy for the model to generalize or
adapt to a variety of data and to differentiate between outputs,
such as determining whether a voxel on a boundary is bony
tissue or air. The dense block is implemented by five convo-
lution layers, a concatenation operator, and a convolutional
layer to shorten the feature map size.

2.D. MPD loss function

During training, all the networks are trained simultane-
ously with discriminators trying to correctly differentiate
between real and synthetic data, while generators are trying
to generate synthetic images that are very similar to real
images to confuse discriminators. Supposing we use the dis-
criminators DMR and DCT to discriminate the real and syn-
thetic MRI and CT image patch, the discriminators should be
optimized subjected to:
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where GCT�MR and GMR�CT denotes the generator trained
from CT to MRI domain and from MRI to CT domain,
respectively, 0 is a same-shape patch with all elements set to
zero, 1 is a same-shape patch with all elements set to one.
MAD �ð Þ denotes the MAD calculating operator.

The loss function of each generator is composed of two
losses: (a) the adversarial loss used for distinguishing real
images from synthetic images; (b) the distance loss measured
between real images and synthesis image.35 The accuracy of
the generator directly depends on how suitable the loss func-
tion is designed. Supposing we use the generator G to obtain
a synthetic image GðXÞ ¼ Z from original image X to target
image Y . The generator G is optimized subjected to
G ¼ argmin

G
kadvLadvðZÞ þ kdistanceLdistanceðZ; YÞf g. kadv and

kdistance are balancing parameter. Normally, the adversarial
loss function is defined as LadvðZÞ ¼ MAD D Zð Þ; 1ð Þ in cycle
GAN-based method.40

For distance loss LdistanceðZ; YÞ, in order to not only solve
the blur and misclassification issues mentioned previously but
also maintain the sharpness of synthetic images, we use a
compound loss function composed of MPD and GD. This GD
loss function minimizes the difference of the magnitude of the
gradient between the synthetic image and the original planning
CT. In this way, the sCTwill try to keep zones with strong gra-
dients, such as edges, effectively compensating for the distance
loss term. The generators are optimized as follows:

where �k kpp denotes the lp -norm, and GD �ð Þ denotes the
GD loss function.35 kcycleMPD, kcycleGD , kfakeMPD, kfakeGD , kcycleMPD, kcycleGD ,
kfakeMPD, k

fake
GD are regularization parameters for different regu-

larization.

As is known that the lp-norm regularization has fewer
solutions than l2-norm optimization, which means some
over-smoothing results (i.e. blur region in MSE loss opti-
mization) are reduced. Going the other way, we can also
see that the optimization solution under lp-norm regular-
ization has more solutions than l1-norm optimization.
This means some misclassification situations (the solution
on �1) are minimized by averaging several solutions
obtained by similar MRI/CT patches (the solution around
�1).

2.E. Validation and evaluations

We performed leave-one-out cross validation to evaluate
the proposed method. We chose one of the patients from
the patient dataset as the test, or new arrival patient. The
proposed method was trained on the other patients, and
the test patient was used to generate a sCT. This proce-
dure was repeated on all patients’ datasets. These sCT
images were then compared with the original planning CT
images, which served as ground truth for validation. The
mean absolute error (MAE), peak signal-to-noise ratio
(PSNR), and normalized cross correlation (NCC) indexes
were used to quantify the absolute difference, relative dif-
ference, and image similarity within the body outline,
respectively.

2.F. Comparison with existing methods

To demonstrate the advantages of the proposed method,
we compare it to a random forest (RF)-based method

DMR;DCTð Þ ¼ arg min
DMR;DCT

MAD DMRI GCT�MRIðICTÞð Þ; 0ð Þ þMAD DMRI IMRIð Þ; 1ð Þf þMAD DCT GMRI�CTðIMRÞð Þ; 0ð Þ
þMAD DCT ICTð Þ; 1ð Þg

(1)

GCT�MRI;GMRI�CTð Þ ¼ arg min
GCT�MRI;GMRI�CT

kadvMAD DMRI GCT�MRIðICTÞð Þ; 1ð Þ þ kcycleMPD GMRI�CT GCT�MRIðICTÞð Þ; ICTk kpp
n

þkcycleGDLGD GMRI�CT GCT�MRIðICTÞð Þ; ICTð Þ þ kfakeMPD GCT�MRIðICTÞ; IMRIk kpp
þkfakeGDLGD GCT�MRIðICTÞ; IMRð Þ þ kadvMAD DCT GMRI�CTðIMRÞð Þ; 1ð Þ

þkcycleMPD GCT�MRI GMR�CTðIMRÞð Þ; IMRk kppþkcycleGDLGD GCT�MRI GMRI�CTðIMRÞð Þ; IMRIð Þ
þkfakeMPD GMRI�CTðIMRIÞ; ICTk kppþkfakeGDLGD GMRI�CTðIMRIÞ; ICTð Þ

o

(2)

GD Z; Yð Þ ¼
X
i;j;k

Zi;j;k � Zi�1;j;k

�� ��� Yi;j;k � Yi�1;j;k

�� ���� ��2
2þ Zi;j;k � Zi;j�1;k

�� ��� Yi;j;k � Yi;j�1;k

�� ���� ��2
2

n

þ Zi;j;k � Zi;j;k�1

�� ��� Yi;j;k � Yi;j;k�1

�� ���� ��2
2

o (3)
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previously published by our group.29 We also compare it to a
GAN-based method, a recent deep learning-based method
proposed by Nie et al.33, and a recent cycle GAN-based
method.34 GAN-based methods incorporate an adversarial
learning strategy into an end-to-end FCN to train nonlinear
mapping from MRI patches to CT image patches. Consider-
ing the tradeoff between computational cost and spatial infor-
mation, the patch size in the RF-based method was set to
15 9 15 9 15, the patch size in the GAN-based method was
set to 32 9 32 9 32. All the comparing algorithms were per-
formed using their optimal parameter settings. Paired two-
tailed t tests between the proposed method and comparison
methods were performed to quantify the statistical difference
between each of the evaluated metrics above. All the deep
learning-based algorithms were implemented in Tensorflow
with Adam optimizer, and were trained and tested on 2 NVI-
DIA Tesla V100 with 32 GB of memory for each GPU. The
RF-based method was implemented in python Scikit-learn
toolbox and was trained and tested on Intel Xeon(R) CPU
E5-2623 v3 @ 3.00GHz 9 8.

3. RESULTS

3.A. Comparison between the dense block and the
residual block

In order to test the influence of the dense block, we com-
pared sCT results generated by a 3D cycle GAN-based
method with nine residual blocks method as recommended in
Ref. [34] to the proposed method, in which nine dense blocks
are used. Figure 2 shows axial views of MRI (a1–f1), corre-
sponding CT (a2–f2), sCT (a3–f3) images generated by cycle
GAN with nine residual blocks, and sCT images generated
by the proposed method. The inserts (b1–b4), (d1–d4), and
(f1–f4) show zoomed-in views of the region of interests
(ROIs) outlined in inserts (a1–a4), (c1–c4), and (e1–e4),
respectively. These ROIs are highlighted because they contain
large anatomic variations between air, soft tissue, and bone,
and because there are some local mismatches between MRI
and CT images within these ROIs. The cycle GAN with nine
residual blocks method captures the gross anatomy and pre-
serves the structural details in soft tissue. However, it distorts
structural details in regions with large anatomical variation,
especially in the ROIs marked by the highlighted rectangles
in Figs. 2(a3), 2(c3), 2(e3). By introducing dense blocks,
which combine both structural and textural information, the
proposed method improves the estimation of sCT intensity
and better preserves the tissue structural details. The zoomed-
in views in [Figs. 2(b4), 2(d4)] demonstrate the superior
accuracy of the proposed method with less bias around bony
anatomy. The zoomed-in views in insert (f4) demonstrate the
superior accuracy of the proposed method with less bias
around soft tissue anatomy in nasal cavity, further shown by
the line profiles in Fig. 3. It is important to note that bony
anatomy has a larger effect on radiation dose calculations
than other tissue types, so accurate bone intensity estimation
in sCT images can have significant clinical impact.

3.B. Comparison of the loss function

Mean p distance was added to the compound loss function
Eq. (2) to deal with blur and misclassification issues. We
demonstrate the benefit of incorporating this loss function
into the proposed method by comparing with networks opti-
mized using traditional loss functions such as MAD and
MSD. Figures 5 and 6 depict the brain and pelvis sCT images
generated by applying MAD, MSD, and the proposed MPD
loss functions.

Figure 5 shows axial views of brain MRI (a1), correspond-
ing CT image (a2), and sCT (a3–a5) images generated by
using MAD, MSD, and MPD loss functions, respectively.
The insets (b1–b5) show zoomed-in views of the ROIs out-
lined in insets (a1–a5). The ROI as shown in Fig. 4(b1) was
chosen at the site of rapid anatomic changes from soft tissue
to air and then to the bone. Thus, the ROIs are challenging
for sCT generation. By using the MAD loss function, some
air voxels in the sCT image (b3) were misclassified as soft
tissue voxels, some bone voxels were misclassified as soft tis-
sue voxels. With the MSD loss function, some regions within
the ROI in the sCT image (b4) were blurry and smooth. In
contrast, the sCT image generated by the MPD loss function
has more definitive tissue boundaries. The inset (c1) shows
the line profile corresponding to the red lines in the CT
images. As shown in (c1), the generated sCT intensities using
MPD loss function outperform the intensities estimated by
using other comparing loss functions.

Figure 5 depicts axial views of pelvis MRI (a1), corre-
sponding CT image (a2), and sCT (a3–a5) images generated
by using MAD, MSD, and MPD loss functions, respectively.
The insets (b1–b5) show zoomed-in views of the ROIs out-
lined in insets (a1–a5), where bony structure varies in CT and
MRIs. For sCT images generated by using MAD loss func-
tion (b3), the soft tissue voxels were misclassified as air as
marked by yellow arrows. In inset (b4), the sCT image within
the ROI was smooth and the bone intensity appears to lower
as compared to the original CT. In contrast, the sCT genera-
tion based on MPD loss function (b5) outperforms the results
from MAD (b3) and MSD (b4) by more accurately predicting
bony intensities. Inset (c1) shows the line profile drawn on
each CT image. The MPD-generated sCT nearly reflects the
original CT along the entire profile, while the other two meth-
ods produce more intensity errors.

We also perform numerical comparisons of sCT images
generated by using MAD, MSD, and the proposed MPD on
both sites. The quantitative results are listed in Table I, indi-
cating that the proposed MPD significantly outperforms other
comparing loss functions on MAE metric. Specifically, our
MPD gives an average MAE of 57.5 and 49.4 HU on the
brain and pelvic site, which are smaller than the MAE
obtained by MAD and MSD loss functions.

3.C. Comparison with state-of-art methods

Figures 6–8 shows the axial, sagittal, and coronal views of
an exemplary patient for comparing different methods of
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(a1)

(b1)

(c1)

(d1)

(e1)

(f1) (f2) (f3) (f4)

(e2) (e3) (e4)

(d2) (d3) (d4)

(c2) (c3) (c4)

(b2) (b3) (b4)

(a2) (a3) (a4)

FIG. 2. A comparison between the cycle GAN with residual blocks and the proposed method. (a1, c1, e1) are MRI shown in axial planes, the zoomed in insets
below each image (b1, d1, f1) highlight regions of interest. (a2, c2, e2) are corresponding original CT images, and (b2, d2, f2) show the highlighted regions in
greater detail. (a3, c3, e3) are sCT images generated by cycle GAN with nine residual blocks method. (b3, d3, f3) show the highlighted region in greater detail.
(a4, c4, e4) are sCT images generated by the proposed method. (b4, d4, f4) show the highlighted region in greater detail. The red lines on each image correspond
to the line profiles shown in Fig. 3. The display windows are [0, 500] for MRI and [�1000 1000] for CT images. GAN, Generative adversarial networks; MRIs;
magnetic resonance imagings; sCT, synthetic CT. [Color figure can be viewed at wileyonlinelibrary.com]
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generating sCT images. These specific slices were selected
because they represent some of the most challenging sites of
accurate sCT generation in the brain.

Figure 6 shows the axial plane containing the mandible,
which can have large geometric variation and HU variation
between patients. Inset (a1) shows an original CT image in
the axial plane, (b1) shows the highlighted region in greater
detail CT image, (c1) is the corresponding MRI, and (d1)
shows the highlighted region of the MRI in greater detail.
Insets (a2–a5) are sCT images generated by RF-, GAN-, and
cycle GAN-based methods, and the proposed method, respec-
tively, (b2–b5) show the highlighted ROIs in greater detail.
Insets (c2–c5) are difference images between original CT
images and sCT images, and (d2–d5) show the highlighted
ROIs in greater detail. This specific region is challenging for
generation of accurate sCT images owing to the local
misalignment between MRI and CT images. In addition,
many patients have dental fillings which create artifacts in
the training CT images. The presence of image artifacts will
degenerate sCT estimation performance in this region. As is

FIG. 3. Line profile comparison between cycle-GAN with residual blocks
and the proposed method. (a) and (b) are plot profiles of red lines in
[Figs. 4(b2)–4(b4) and 4(d2)–4(d4)]. [Color figure can be viewed at wileyon
linelibrary.com]

FIG. 4. A comparison of different loss functions in brain images. (a1) is MRI shown in axial plane, (b1) shows the highlighted region in greater detail. (a2) is the
corresponding original CT image, (b2) shows the highlighted region in greater detail. (a3–a5) are sCT images generated by using MAD, MSD, and MPD loss
functions, respectively, and (b3–b5) show the highlighted region in greater detail. The line profile corresponding to the red line drawn on the CT images is shown
in (c1). The display windows are [0, 500] for MRIs and [�1000 1000] for CT images. MAD, mean absolute distance; MPD, mean P distance; MSD, mean
squared distance; MRIs; magnetic resonance imagings. [Color figure can be viewed at wileyonlinelibrary.com]
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shown in inset (b3–b5), the image quality of the sCT gener-
ated by our method is better than the other techniques in
terms of fine structural details and contrast. Specifically,
while the RF-based method (b3) has good contrast between
the teeth and the surrounding soft tissue, it fails to predict the
fine structures within the teeth. The GAN-based method (b4)
has limited prediction capability in dental regions. The cycle
GAN-based method underestimates the dental intensities.
The insets in row (d) show that within the ROI, the proposed
method generates the most accurate sCT image, both in terms
of HU number and in structural shape. For further evaluation,
the line profiles corresponding to the red lines drawn on
insets (a1)–(a5) are shown in inset (e1). Although no methods
perfectly match the original CT, the proposed method most
closely reflects the shape and magnitude of the original CT.

Figure 7 shows a sagittal view of the same patient shown
in Fig. 6, containing various complex head and neck struc-
tures of the nasopharynx and oropharynx. The layout of
Fig. 8 is the same as Fig. 6, with the first row showing CT or
sCT images, the second row showing their corresponding
ROIs, the third row showing the MRI and error images, and
the fourth row showing their ROIs. Finally, the line profile
corresponding to the red line on the CT or sCT images is

shown in (e1). As is shown by the insets (b2–b5), the
zoomed-in sCT image generated by RF-based method has
some noisy regions. Figure 8 shows a coronal view of the
same patient shown in Fig. 6. The sCT images generated by
GAN-, and cycle GAN-based method is closer to the original
CT image, but still are blurry. The image quality of the sCT
generated by the proposed method is superior to the other
techniques in terms of fine structural details and contrast.

Figure 9 shows a comparison between the proposed
method with the RF-based, GAN-based, and cycle GAN-
based methods in the pelvis. Inserts (a1–b1) show MRIs
shown in axial and coronal planes. Inserts (a2–b2) show the
corresponding CT image. Inserts (a3–b3), (a4–b4), and (a5–
b5) show the generated sCT images of RF-based, GAN-
based, and cycle GAN-based methods, and the proposed
method, respectively. As can be seen from this figure, the
proposed method shows sharper tissue boundaries than the
comparing methods. In addition, the bone shape is closest to
the original CT image.

We also conduct a numerical comparison of sCT image
generated by all methods described above for each brain and
pelvis case. The quantitative results are listed in Table II, indi-
cating that the proposed method outperforms the other

(a1) (a2) (a3) (a4) (a5)

(b1)

(c1)

(b2) (b3) (b4) (b5)

FIG. 5. A comparison of different loss functions for a pelvis case. (a1) is MRI shown in the axial plane and (b1) shows the highlighted region in greater detail.
(a2) is the corresponding original CT image and (b2) shows the highlighted region in greater detail. (a3-a5) are sCT images generated by using MAD, MSD, and
MPD loss functions, respectively, and (b3–b5) are their corresponding zoomed-in insets. (c1) shows the line profile drawn in red on each CT image. The display
windows for (a1–b1) are [0, 500]. The display windows are [0, 500] for MRIs and [�500 500] for CT images. MAD, mean absolute distance; MPD, mean P dis-
tance; MSD, mean squared distance; MRIs; magnetic resonance imagings. [Color figure can be viewed at wileyonlinelibrary.com]
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methods. Specifically, our method gives an average MAE of
55.7 and 50.8 HU on the brain and pelvic site, which is lower
than the average MAE of 69.8 and 69.7 HU, 66.9 and
74.7 HU, and 59.0 and 65.4 HU obtained by RF-based
method, GAN-based method, and cycle GAN-based method,

respectively. We further performed two-tail paired t test to
validate whether the improvement of our proposed method
compared to the previous methods is significant or not. The
experimental results in Table III show the statistically signifi-
cant improvement (P < 0.05).

(a1)

(b1)

(c1) (c2) (c3) (c4) (c5)

(d5)(d4)(d3)(d2)(d1)

(e1)

(b2) (b3) (b4) (b5)

(a2) (a3) (a4) (a5)

FIG. 6. A comparison of different sCTgeneration methods in the brain in the axial plane. The first row shows the original CT (a1) and the sCT images produced by
the RF-method (a2), the GANmethod (a3), the cycle GANmethod (a4), and the proposedmethod (a5). The second row (b1–b5) highlights the region of interest out-
lined by the green box on each corresponding CT. The corresponding MRI and ROI are shown in (c1) and (d1), respectively. Insets (c2–c5) show the error image,
with the planning CT taken as the ground truth, for each sCT, and their ROIs are shown below (d2–d5). The line profile corresponding to the red line drawn on the
CT images is plotted in (e1). The display windows are [0, 500] for MRIs and [�10001000] for CT images. [Color figure can be viewed at wileyonlinelibrary.com]
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We also used the other 10 brain and 10 pelvic data as inde-
pendent testing data to evaluate the performance. The training
data for the 10 brain MRIs were the previous 24 brain patient
images. The training data for the 10 pelvic MRIs was the pre-
vious 20 pelvic MRIs. The MAE, PSNR, and NCC of our
proposed method on the additional 10 brain images were
57.7 � 8.4 HU, 27.00 � 2.77 dB, and 0.963 � 0.007,
respectively. The MAE, PSRN, and NCC of our proposed
method on the additional 10 pelvic images were
42.3 � 8.4 HU, 23.89 � 2.01 dB, and 0.930 � 0.026,
respectively. These metrics demonstrate the consistent perfor-
mance on other data. For all test data, we also evaluated the
Dice similarity coefficient (DSC) for air and bone region.
The air and bone regions were defined within body outline
and were dictated by CT HU values: [�∞, �400) corre-
sponds to air and [300, +∞] is bone. The DSC of air region
was 0.90 � 0.12 for brain site and 0.75 � 0.06 for pelvic
site, respectively. The DSC of bony structure was
0.83 � 0.06 for brain site and 0.81 � 0.05 for pelvic site,
respectively.

We evaluated the surface distance of body outline and
bone for all test brain and pelvic data. For body outline, we
first used threshold �500 HU to get the binary mask of CT
and sCT images, and then we used dilate, fill holes and erode
operation to get the CT and sCT body outlines. For bony
structure, we regarded intensities of CT and sCT which are
larger than 300 as bone intensities. For body outline, the 95%
Hausdoff distance, mean surface distance and residual mean-
square error were 3.55 � 1.38 mm, 0.28 � 0.07 mm, and
1.71 � 0.93 mm for brain site and were 5.64 � 3.92 mm,
0.72 � 0.37 mm, and 1.78 � 1.36 mm for pelvic site,
respectively. For bony structure, the 95% Hausdoff distance,
mean surface distance and residual mean-square error were
2.43 � 1.69 mm, 0.25 � 0.11 mm, and 1.35 � 0.65 mm
for brain site and were 5.74 � 4.35 mm, 0.74 � 0.42 mm,
and 2.65 � 1.81 mm for pelvic site, respectively. The mainly
impact of local misalignment on accuracy of sCT is it enlarge
the MAE around bone region. We evaluated the MAE within
intersection set of sCT and CT bone region, and the union set
of sCT and CT bone region. It is shown that the MAE within
intersection set of sCT and CT bone region was
97.1 � 38.3 HU for brain site and 85.6 � 36.8 HU for pel-
vic site. However, the MAE within union set of sCT and CT

bone region reached 259.9 � 68.7 HU for brain site and
268.1 � 73.2 HU for pelvic site. This means even if our sCT
bone intensity can reach the similar level with CT bone inten-
sity, the misregistration can enhance the MAE.

4. DISCUSSION

The proposed dense cycle GAN-based method is novel in
two aspects. First and foremost, several dense blocks are
engaged in constructing the network architecture of the gener-
ator of cycle GAN. Training the mapping between two differ-
ent image modalities relies on the deep feature’s capability to
not only capture the structural information but also to capture
the textural information. The more informative and multi-
scale features the generator acquires, the better one-to-one
mapping the cycle GAN-based model learns. This signifi-
cantly enhances the proposed method’s ability to generate
distinctive tissue boundaries when local mismatches and
misalignment occur. Second, MAD loss functions have the
potential to misclassify image tissues, prediction bone as air
or vice versa. This is especially problematic in the task of
MRI-only based radiation treatment planning because local
dose calculation is sensitive at tissue boundaries.41 An MPD
loss function is used to overcome the blur and misclassifica-
tion issues that occur when using traditional distance loss
functions.

The whole image is first divided into multiple small
patches, each of which has overlap with neighboring patches.
Most of the patch pairs between MRI and CT match very
well. Moreover, any mismatched pairs are not likely to be in
the similar anatomic regions from patient to patient, meaning
that each erroneous contribution can be effectively averaged
out. Additionally, the dense blocks implemented by the pro-
posed method can capture both structural information and
textural information, which more tightly enforces the network
to learn a one-to-one mapping.

Traditional cycle GAN methods use residual blocks to
capture image features.42 A residual block is a fundamental
network block that merges feature maps by adding previous
layers to future layers. Incorporating these additive features
forces the network to learn the residuals, that is, the differ-
ence between previous convolutional layers and the current
one. This approach can be easily applied for the synthesis of

TABLE I. Numerical results of using the three loss functions on brain and pelvic sCT images.

Loss function

Brain Pelvis

MAE (HU) PSNR (dB) NCC MAE (HU) PSNR (dB) NCC

MAD 59.3 � 4.7 25.05 � 1.13 0.959 � 0.005 55.1 � 7.8 24.31 � 1.32 0.919 � 0.014

MSD 64.8 � 5.0 24.77 � 1.17 0.946 � 0.005 65.0 � 8.1 24.34 � 1.33 0.899 � 0.015

MPD 57.5 � 4.6 25.79 � 1.11 0.965 � 0.05 49.4 � 7.4 24.49 � 1.31 0.926 � 0.013

P value MPD vs MAD 0.048 0.633 0.812 0.05 0.243 0.713

P value MPD vs MSD 0.036 0.338 0.766 <0.001 0.598 0.301

HU, Hounsfield units; MAD, mean absolute distance; MAE, mean absolute error; MPD, mean p distance; MSD, mean squared distance; NCC, normalized cross correla-
tion; PSNR, peak signal-to-noise ratio
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images between similar modalities, such as image quality
enhancement for low-dose CT,43 and image quality improve-
ment for cone beam CT.44 In contrast, dense block concate-
nate outputs from the previous layers instead of using the
summation, connecting each layer to every other layer in a
feed-forward fashion.38 The dense block approach has several

compelling advantages: they alleviate the vanishing-gradient
problem, strengthen feature propagation, encourage feature
reuse, and substantially reduce the number of parameters.38

In our work, the dense blocks aim to combine the low fre-
quency and high frequency information together to well rep-
resent the image patch and then map them to produce a

(a1)

(b1)

(c1)

(d1)

(e1)

(d2) (d3) (d4) (d5)

(c2) (c3) (c4) (c5)

(b2) (b3) (b4) (b5)

(a2) (a3) (a4) (a5)

FIG. 7. A comparison of different sCT generation methods in the brain in the sagittal plane. The first row shows the original CT (a1) and the sCT images pro-
duced by the RF-method (a2), the GAN method (a3), the cycle GAN method (a4), and the proposed method (a5). The second row (b1–b5) highlights the region
of interest outlined by the green box on each corresponding CT. The corresponding MRI and ROI are shown in (c1) and (d1), respectively. Insets (c2–c5) show
the error image, with the planning CT taken as the ground truth, for each sCT, and their ROIs are shown below (d2–d5). The line profile corresponding to the red
line drawn on the CT images is plotted in (e1). The display windows are [0, 500] for MRIs and [�1000 1000] for CT images. MRI, magnetic resonance imaging;
ROI, region of interests. [Color figure can be viewed at wileyonlinelibrary.com]
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synthetic image patch. The low frequency data, which often
contains textural information, is obtained from previous con-
volutional layers. The high frequency data, which often con-
tains structural information, is obtained from the current

layer. Since the shape of the source image (MRI) varies sig-
nificantly among different patients, the dense block, which
captures multiscale information (low frequency and high fre-
quency) better captures the relationship between MRI and CT

(a1)

(b1)

(c1) (c2)

(d2) (d3) (d4) (d5)

(c3) (c4) (c5)

(d1)

(e1)

(b2) (b3) (b4) (b5)

(a2) (a3) (a4) (a5)

FIG. 8. A comparison of different sCT generation methods in the brain in the coronal plane. The first row shows the original CT (a1) and the sCT images pro-
duced by the RF-method (a2), the GAN method (a3), the cycle GAN method (a4), and the proposed method (a5). The second row (b1–b5) highlights the region
of interest outlined by the green box on each corresponding CT. The corresponding MRI and ROI are shown in (c1) and (d1), respectively. Insets (c2–c5) show
the error image, with the planning CT taken as the ground truth, for each sCT, and their ROIs are shown below (d2–d5). The line profile corresponding to the red
line drawn on the CT images is plotted in (e1). The display windows are [0, 500] for MRIs and [�1000, 1000] for CT images. CT, computed tomography; MRI,
magnetic resonance imaging; ROI, region of interests. [Color figure can be viewed at wileyonlinelibrary.com]
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images, and thus increases the accuracy of the generator.
Even if there are some mismatches in pair-wise MRI and CT
patches, the one-to-one mapping can avoid most potential
bias. However, even though these effects will not affect image
quality, they will affect our MAE, PSNR, and NCC accuracy.
Large mismatches may happen around the rectum and blad-
der due to different filling between CT and MR, which may
confuse the training model. For clinical use, it is essential to
establish the training database with standard clinical work-
flow to acquire CT and MR on the same day.

The MRI imaging acquisition parameters as well as mag-
netic field inhomogeneity and patient-specific distortion may
influence the performance of the proposed method, with

implications on dosimetry calculations and patient setup. In
our study, all MRIs were preprocessed using an N3 Algo-
rithm45 to correct bias field before training or synthesis. The
intensity normalization for these MRIs was also needed to
bring the intensities to a common scale across patients.46

Other novel methods such as a real-time image distortion cor-
rection method47 have been reported to have excellent perfor-
mance, and combining these preprocessing methods with our
method could increase the accuracy of the sCTs. Due to the
high volume of air, large motion, and distortion, the lung with
poor resolution and low intensity in MRI is a very unique
and difficult site for our MRI-based radiotherapy. Future
research will include applying the proposed method to the
lung.

In this study, we demonstrated the accuracy of sCT in HU
numbers because dose calculation in MRI-only radiation
therapy treatment planning relies solely on HU.41 In MRIs,
bony tissues pose a significant susceptibility artifact, which
can lead to an ambiguous boundary with air, introducing
shifting errors in sCT images. Such an effect on dose calcula-
tion accuracy especially for surrounding tissues needs further
evaluation. A combination of T1 MRI with ultrashort echo
time (UTE) sequence provides much better signal for bones,
which would help differentiate the bone-air boundary in sCT.

Our previous studies show that even an RF-based sCT,
which has inferior image quality to our results, has very good
dose calculation accuracy (<1% error) for brain stereotactic

(a1)

(b1) (b2) (b3) (b4) (b5) (b6)

(a2) (a3) (a4) (a5) (a6)

FIG. 9. A comparison of different methods on pelvic site. (a1–b1) are MRIs shown in axial and coronal planes. (a2–b2) are corresponding CT image. (a3–b3)
show the corresponding sCT images generated by RF-based method. (a4–b4) show the corresponding sCT images generated by GAN-based method. (a5–b5)
show the corresponding sCT images generated by 2D cycle GAN-based method. (a6–b6) show the corresponding sCT images generated by the proposed method.
The display windows are [0, 500] for MRIs and [�1000 1000] for CT images. GAN, Generative adversarial networks; MRI, magnetic resonance imaging; sCT,
synthetic CT.

TABLE II. Numerical results of different methods on brain and pelvis sCT images.

Method

Brain Pelvis

MAE (HU) PSNR (dB) NCC MAE (HU) PSNR (dB) NCC

RF-based 69.8 � 15.2 24.41 � 1.71 0.955 � 0.002 69.7 � 19.7 24.25 � 2.20 0.893 � 0.026

GAN-based 66.9 � 15.6 25.10 � 2.02 0.937 � 0.021 74.7 � 20.0 22.08 � 2.7 0.877 � 0.053

2D Cycle GAN-based 59.0 � 11.9 25.75 � 1.81 0.953 � 0.009 65.4 � 18.6 23.45 � 2.97 0.903 � 0.037

The proposed 55.7 � 9.4 26.59 � 2.27 0.963 � 0.008 50.8 � 15.5 24.45 � 2.64 0.929 � 0.028

GAN, Generative adversarial networks; HU, Hounsfield units; MAE, mean absolute error; NCC, normalized cross correlation; PSNR, peak signal-to-noise ratio; CT, syn-
thetic computed tomography.

TABLE III. P values by performing t test between our proposed method and
all the comparing methods for MAE, PSNR, and NCC on the brain and pel-
vic data.

Method

Brain Pelvis

MAE PSNR NCC MAE PSNR NCC

RF-based 0.008 <0.001 0.011 0.008 0.009 0.014

GAN-based 0.002 0.009 <0.001 <0.001 0.002 0.002

2D cycle GAN-based 0.009 0.011 0.001 0.002 0.005 0.007

GAN, Generative adversarial networks; HU, Hounsfield units; MAE, mean abso-
lute error; NCC, normalized cross correlation; PSNR, peak signal-to-noise ratio.
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radiosurgery and pelvis radiation therapy for photon.41,48 It is
because that photon dose calculation are quite forgiving to
pixel intensity errors, and dose calculation errors tend to be
averaged and cancelled each other in a rapid arc plan. How-
ever, proton plans may benefit more from image quality
improvement since the calculation on proton energy deposi-
tion is more sensitive to HU errors, especially the pixels
along the beam path of limited beam angles. Moreover, better
image quality of our results would still help patient setup in
providing better DRR images. In the future, we plan to con-
duct studies to investigate the effects that various MRI arti-
facts and sCT errors will have on both photon and proton
dose calculation and patient setup during MRI-only based
radiotherapy.

Different scanners may have different intensity range and
image quality. It is unclear how it would affect the results if
the training datasets from one scanner and testing datasets
from another one. Future study would involve a comprehen-
sive evaluation with a larger cohort of patients acquired on
different scanners with different protocols. These studies are
necessary for testing the clinical utility of the proposed
method.

As an emerging field in radiation therapy, currently there
is no task group report or consensus of recommendation on
quality assurance/commissioning on synthetic CT. However,
we think it reasonable to refer to the current guidance of CT
simulator QA (TG 66) and treatment planning system QA
(TG 53) for both nondosimetric and dosimetric accuracy.49,50

For machine learning-based method, special attention should
be given to patient specific error because training datasets
would not include all possible features and may produce
unpredictable results when untrained features are presented
in MR images. Possible solutions can be a CBCT scan as an
independent verification.11,51

Recently, Han proposed a deep CNN method for sCT syn-
thesis.32 The MAE was 84.8 � 17.3 HU for all test brain
data. Nie et al.35 reported that the MAE was
92.5 � 13.9 HU for the brain data by using GAN-based
method. Emami et al. also used GAN for brain cancer
patients’ sCT synthesis.36 The mean MAE between sCT and
CT were 89.3 HU across the entire field of view. Chen et al
applied U-net to generate sCT images for MRI-only prostate
intensity-modulated radiation therapy treatment planning.52

They reported the MAE value within body outline was
29.96 � 4.87 HU. The MAE from our proposed method was
54.2 HU for the brain data. Compared with the deep learn-
ing-based method proposed by Han, Emami et al and Nie
et al, our method obtained a much smaller MAE for the brain
sites, which further demonstrates the performance of our sCT
synthesis method. In comparison with state-of-the-art meth-
ods in the brain and pelvis, our method significantly outper-
forms the comparison methods. As is shown in Figs. 6–9, the
sCT images generated by using RF-based method are often
noisy. This may be caused by the RF-based method training a
collection of weak learners by using handcrafted texture fea-
tures.29 However, structural features are also needed to train a
one-to-one mapping from MRI to CT. The sCT image

generated by using GAN-based method has some misclassifi-
cation of tissue and some blurry estimation regions. This is
because the GAN-based method uses deep features only from
MRI and loses the information of CT during training.35 In
addition, the 3D patch size of GAN-based method is limited
to 32 9 32 9 32 due to memory limitations, possibly con-
tributing to a loss of global information, and making the
GAN-based method more susceptible to local mismatches
between the MRI and CT. The cycle GAN-based method34

outperforms RF- and GAN-based methods by adding an addi-
tional generator. However, its performance may be limited by
two reasons. First, its network consists of several residual
blocks. The residual blocks focus on the difference between
two images. If the MRI and CT images are accurately regis-
tered, and the ROIs of these two images are well registered,
the residual blocks can learn the accurate mapping from MRI
to CT within these ROIs. But if the two images have some
local mismatches within these ROIs, the difference or resid-
ual between MRI and CT images modality will not only con-
tain the voxel value difference between the two image
modalities but also contain the difference caused by the mis-
match. This ambiguous difference will disturb the learning
process for sCT generation, as is shown in the comparison of
sCT images in Fig. 2. Second, cycle GAN-based methods
used MSE loss as distance loss function to optimize the train-
ing model. However, the MSE loss often leads to blurring
and over-smoothing as is shown in Figs. 4 and 5. Addition-
ally, the cycle GAN-based method does not use the loss of
GD, which can sharpen the tissue boundaries in the sCT.

One limitation of the proposed method is our MAE metric
is affected by the misalignment between MRI and CT. Another
limitation of this study is the small data set. However, rather
than using whole image as training and testing data, we used
3D patch extracted by sliding with a window from MRI and
CT images. By setting overlap between the two neighboring
patches, for each patient’s image, we can get more than 6000
patches. Data augmentation such as image rotation, flipping,
and as well as random elastic deformation were used to intro-
duce more such training data diversity. Thus, although we
trained on small data set, the diversity of training patches may
be sufficient to train a robust sCT generation model.

Additionally, we did not use robust preprocessing methods,
especially with regards to geometric artifact correction. How-
ever, the majority of the examples shown in this work are from
the regions most affected by geometric artifacts, for example,
Figs. 2, 4, 6, 7. Wang et al.53 investigated the nature and mag-
nitude of the subject-induced susceptibility effect on geometric
distortions in clinical brain MRI, which are unneglectable, and
showed the feasibility of in vivo quality control using field
inhomogeneity mapping. Therefore, without correcting geo-
metric distortion around the nasal cavity region, contour plots
in the paper are less robust. Effectively correcting these arti-
facts with additional short-scan sequences, for example, field-
map based correction,54 will be our future work.

Although we have tested our algorithm on 24 brain
patients and 20 pelvis patients and added other 10 cases each
from the brain and pelvis for separate testing. In the future,
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we plan to enroll more patients to further study the robustness
of our algorithm. In addition, in this study we only used rou-
tine T1-weighted (brain) or T2-weighted (pelvis) MRIs to
synthesize our sCTs. However, it is possible for our method
to generate sCTs using other sequence-based MRIs. In future
studies, we plan to combine several types of MRIs based on
widely used sequences into our training database to generate
sCTs using multisequence MRIs.

5. CONCLUSIONS

We propose a novel deep learning-based approach to syn-
thesize an sCT image from a routine MRI for potential MRI-
based treatment planning in radiation therapy. The proposed
method incorporates dense blocks into a cycle GAN-based
framework using a novel MPD loss function. We demon-
strated that the proposed method is capable of reliably gener-
ating a CT image from its MRI counterpart on brain and
pelvis image data. This sCT synthesis technique could be a
useful tool for MRI-based radiation treatment planning.
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