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Abstract

Obesity, defined as a state of positive energy balance with a body mass index (BMI) exceeding 30 

kg/m2 in adults and 95th percentile in children, is an increasing global concern. Approximately 

one-third of the world’s population is overweight or obese, and in the U.S. alone, obesity affects 

one in six children. Meta-analysis studies suggest that obesity increases the likelihood of 

developing several types of cancer, and with poorer outcomes, especially in children. The 

contribution of obesity to cancer risk requires a better understanding of the association between 

obesity-induced metabolic changes and its impact on genomic instability, which is a major driving 

force of tumorigenesis. In this review we discuss how molecular changes during adipose tissue 

dysregulation can result in oxidative stress and subsequent DNA damage. This represents one of 

the many critical steps connecting obesity and cancer, since oxidative DNA lesions can result in 

cancer-associated genetic instability. In addition, the by-products of the oxidative degradation of 

lipids (e.g., malondialdehyde, 4-hydroxynonenal, and acrolein), and gut microbiota-mediated 

secondary bile acid metabolites (e.g., deoxycholic acid and lithocholic acid), can function as 

genotoxic agents and tumor promoters. We also discuss how obesity can impact DNA repair 

efficiency, potentially contributing to cancer initiation and progression. Finally, we outline obesity-

related epigenetic changes and identify the gaps in knowledge to be addressed for the development 

of better therapeutic strategies for the prevention and treatment of obesity-related cancers.
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Introduction

The present global burden of issues affecting human health is not limited to infectious 

disease, as non-communicable disease, such as obesity is the fifth leading global risk factor 

for mortality1. The global prevalence of children and adults being overweight or obese has 

increased by ~47% and ~28%, respectively, between 1980 and 20132. Overweight and 
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obesity are defined as the accumulation of excess body fat, which can have a negative effect 

on health. The body-mass index (BMI), measured as a ratio of weight in kilograms to the 

square of the height in meters, is often used as a tool for assessing overall adiposity. Adults 

with a BMI of 25.0 to 29.9 kg/m2 are considered overweight, whereas a BMI of >30 kg/m2 

is considered as obese. BMI-for-age percentiles define whether a child or young adult is 

overweight (85th to 95th percentile) or obese (>95th percentile)3. With one-third of the 

world’s population being overweight or obese, both developed and developing countries are 

coping with the challenges posed by this epidemic4.

Apart from the psychological challenges such as depression, anxiety, eating disorders and 

low self-esteem5, obesity is also associated with a number of psychiatric disorders6. High 

adiposity also elevates the risk for developing other serious diseases and health conditions 

such as metabolic syndrome, diabetes, hypertension, dyslipidemia, hyperglycemia, sleep 

disorders, cardiovascular disease, and osteoarthritis7. Evidence from several epidemiological 

studies have suggested that a significant increase in the amount of body fat is associated with 

an increased risk of various cancers, including endometrial, breast, colon, kidney, 

gallbladder, liver and melanoma to name a few8–11. In fact, according to a 2012 population-

based study, ~4% of all cancer cases in adults worldwide may be attributed to high BMI 

levels12.

Meta-analysis data from epidemiological studies have enabled us to identify the existence of 

a link between obesity and several diseases. But owing to the differences in metabolic 

profiles, genetics, and the environment to which an individual is exposed, mechanistic 

studies are required to determine the physiological and pathological alterations instigated at 

the molecular level. For example, there are several metabolic alterations that are thought to 

link obesity and cancer, including: 1) chronic low-level systemic inflammation due to 

elevated levels of cytokines13; 2) insulin resistance due to high levels of insulin and insulin 

like growth factor-1 (IGF-1), resulting in altered insulin signaling14; 3) dysregulation of 

adipokines, e.g., leptin and adiponectin15; 4) elevated levels of estrogen in adipose tissue16; 

5) increased lipids and alterations in lipid signaling17; and 6) oxidative stress leading to 

cellular and molecular alterations, including DNA damage18.

The molecular mechanisms that underlie the effects of obesity on tumor formation are 

complex and certainly involve multiple pathways. An important factor associated with 

obesity-induced metabolic dysregulation is alterations in the adipose tissue19. Adipose tissue 

is a dynamic endocrine organ, which apart from serving as an energy reservoir, has 

biochemical and metabolic functions that are implicated in cancer incidence and 

progression20,21. Many groups have found that p53 levels are elevated in adipose tissue 

under conditions of chronic nutrient abundance. Contrary to its role as a tumor suppressor, 

the sustained activation of p53 signaling has been linked to the development of insulin 

resistance and adiposity. Activation of p53 also contributes to the induction of inflammatory 

cytokines that can promote the initiation and progression of cancer22–24.

Another pathway that seems to associate obesity with cancer development is genetic 

instability25. Many studies have indicated that obesity-related modulations in DNA damage 

and/or repair pathways may be involved in obesity-induced genetic instability26. However, 
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little is known about the impact of obesity on DNA damage and DNA repair mechanisms 

that play critical roles in tumor initiation and progression. A better understanding of the 

relationship between obesity and cancer at the molecular level is important as it may aid in 

the development of effective therapies and non-invasive interventions that can help attenuate 

the obesity-associated cancer risk.

Studies have shown that oxidative stress and lipid dysregulation in obese individuals can 

result in elevated levels of reactive oxygen species (ROS), which in turn can cause oxidative 

DNA damage directly or via the formation of reactive lipid peroxidation by-products (e.g., 

malondialdehyde, 4-hydroxynonenal and acrolein) and secondary bile acid metabolites (e.g., 

deoxycholic acid and lithocholic acid)18,27–29. Another aspect central to obesity-induced 

carcinogenesis is the inefficient repair and/or failure of DNA repair mechanisms to process 

ROS-induced and other obesity associated metabolite-mediated DNA lesions, which can 

result in genetic instability26. Recent studies have also suggested that obesity-induced 

epigenomic reprogramming can serve as signatures for the prediction of the development of 

obesity-related metabolic disorders and cancers30–32. This review specifically focuses on 

obesity-associated alterations in DNA damage (including oxidative DNA damage, and DNA 

damage induced by lipid peroxidation by-products and secondary bile acid metabolites), and 

DNA repair mechanisms that may result in genetic instability and increased cancer risk 

(Figure 1).

1. DNA Damage

1.1 Obesity-induced oxidative stress promotes DNA damage

Formation of free-radicals is a consequence of many endogenous biochemical processes, as 

well as the result of exposure to external factors. The presence of unpaired electrons in free 

radicals such as the hydroxyl radical (•OH) and the superoxide radical (O2
•-) makes them 

unstable and highly reactive33. Biological macromolecules such as nucleic acids, proteins, 

carbohydrates, and lipids are potential targets of free radicals or ROS, which can result in 

perturbations to cell and tissue homeostasis34. This process of oxidative stress can increase 

the potential for tissue damage; thus, cells have evolved a variety of anti-oxidative defense 

mechanisms35. However, the onset of several pathological conditions such as obesity, 

diabetes, and cardiovascular disease can disturb this balance leading to additional systemic 

oxidative stress36,37. Several studies in mice and humans have confirmed a positive 

correlation between systemic oxidative stress and fat dysregulation in adipose tissue, 

resulting in obesity-related metabolic disorders27,38,39.

Adipose tissue is the preferred site of excess fat storage during nutrient abundance. 

However, the expansion capacity of adipose tissue is finite and when a critical limit is 

reached, lipid spillage from adipocytes and accumulation in other metabolically harmful 

ectopic tissues can occur, resulting in lipid toxicity40. Environmental and genetic factors can 

modulate the capacity of adipose tissue to increase in mass41. Moreover, the regulation of 

the fat-storing capacity of adipose tissue, while maintaining homeostasis during obesity, is 

dependent on the ability of existing adipocytes to expand (hypertrophy) and or pre-

adipocytes to differentiate into adipocytes (adipogenesis)42. For example, several studies in 

mouse models and humans have shown that hypertrophic expansion of adipocytes resulted in 
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adipose tissue dysregulation associated with impaired insulin sensitivity, disturbed adipokine 

secretion, and induction of inflammation due to the activation and infiltration of immune/

inflammatory cells43.

Using genetically engineered and/or diet-induced mouse models of obesity and insulin 

resistance, Prieur et al. (2011) showed that lipid-induced toxicity might serve as a link 

between obesity and inflammation due to adipose tissue macrophage (ATM) polarization44. 

The infiltration of macrophages and the induction of anti-inflammatory M2 markers, in 

association with remodeling of adipose tissue, may protect against progressive early-stage 

positive energy balance. However, later stages of obesity characterized by hypertrophic 

expansion of adipocytes can lead to ATM class switching from anti-inflammatory M2 to 

pro-inflammatory M1 cytokines, such as tumor necrosis factor-α (TNF-α), interleukin 

IL-1β, IL-6, leptin, visfatin, resistin, angiotensin II, and monocyte chemoattractant protein-1 

(MCP-1)45–49. In adipose tissue, these pro-inflammatory cytokines can promote insulin 

resistance either directly by inhibiting insulin signal transduction via serine phosphorylation 

of the insulin receptor50,51, or indirectly by disrupting the insulin signaling pathways via the 

c-Jun N-terminal kinase (JNK) and the I-kappa B kinase β (IKKβ)/nuclear factor kappa-

light-chain-enhancer of activated B cells (NFκB) pathways52. In addition, pro-inflammatory 

cytokines such as IL-1, TNF-α, and interferon gamma (IFN-γ) can stimulate the production 

of ROS stimulating oxidative stress53,54.

Though the inherent mechanism linking adipose tissue dysfunction and oxidative stress is 

unclear, various studies have suggested that the production of ROS and free radical 

generation is increased in adipose tissue in the obese state27,55. The role of oxidative stress 

in adipogenesis is not yet clearly understood. For example, while elevated oxidative stress in 

aging can inhibit pre-adipocyte differentiation56, in obesity, ROS and free radicals can 

promote pre-adipocyte differentiation57. To support a role of oxidative stress in the 

promotion of adipogenesis in obesity, Lee et al. (2009) demonstrated that redox-induced 

DNA binding of CCAAT/enhancer-binding protein-β (C/EBPβ) is crucial for the clonal 

expansion and differentiation of adipocytes58. Further, a study in non-diabetic obese Zucker 

fatty rats also showed that the association of obesity with a reduced redox state could 

promote differentiation of pre-adipocytes59.

The parallel increase of ROS levels with the expansion of adipocytes has also been found to 

be associated with the upregulation of NADPH oxidase 4 (Nox4)27,60,61. Although some 

studies have provided evidence for the protective effect of Nox462,63, others have reported 

Nox4-mediated ROS as a molecular switch promoting the differentiation of pre-adipocytes, 

the onset of insulin resistance, and adipose tissue inflammation60,64–66. Additionally, 

increased expression of Nox4 in white adipose tissue can result in the production of H2O2, 

which can be converted to •OH radicals via the Fenton and Haber-Weiss reactions in the 

presence of Fe2+ and Cu2+ ions, eventually leading to oxidative DNA damage27. Weyemi et 

al. (2012) have reported that the H-Ras oncogene positively regulated Nox4, resulting in the 

production of ROS, the induction of DNA double-strand breaks (DSBs), and subsequent 

cellular senescence67. In an obese mouse model, gain-of-function mutations in the H-Ras 
oncogene were found to be associated with non-alcoholic fatty liver disease (NAFLD) and 

hepatocellular carcinoma (HCC)68. Obesity has also been reported to be a risk factor for an 
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aggressive acute myeloid leukemia phenotype containing an internal tandem duplication of 

the FMS-like tyrosine kinase receptor (FLT3-ITD). It has been shown that FLT3-ITD-

expressing cell lines stimulated Nox-mediated ROS generation that resulted in error-prone 

DNA repair or DNA repair that may contribute to drug resistance69–72.

Thus, there are several obesity-related mechanisms of increased ROS production which can 

result in the formation of mutagenic lesions in the DNA such as 8‐hydroxy‐2′‐
deoxyguanosine (8‐OH-dG) or 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dG)18,73 

(Figure 2A).

Oxidized guanine bases (e.g., 8-oxo-dG) are sensitive biomarkers for the elevated levels of 

oxidative stress during obesity and carcinogenesis74–78. The induction and distribution of 

oxidative DNA damage depends on a number of factors, including but not limited to, 

chromatin structure, the accessibility of DNA repair proteins79, the DNA sequence80 and 

context (e.g., guanines are more susceptible to oxidation due to their low redox potential 

compared to other bases)81, alternative DNA secondary structures, which are known sources 

of genetic instability82,83 (e.g., hairpin-forming triplet repeat sequences are hypersensitive to 

oxidative damage)84,85, and metal ions86.

During DNA replication, DNA polymerases can misincorporate an A opposite 8-oxo-dG 

with a frequency of 10–75%, resulting in GC to TA mutations87. Other mutations that can 

result from guanine oxidation products include GC to AT or GC to CG mutations75,88,89. 

Such base substitution events have been frequently observed in the RAS oncogene and the 

p53 tumor suppressor gene in skin, lung and breast cancers90–92. Formation of 8-oxo-dG 

lesions adjacent to 5’-methyl-cytosine (5-mC) may inhibit the binding of methyl-binding 

proteins, thereby interfering with various steps of chromatin condensation, resulting in 

epigenetic alterations93. Oxidative DNA damage may also result in other cellular effects 

such as microsatellite instability, frameshift mutations, and acceleration of telomere 

shortening, leading to cellular senescence94,95.

The abundance and stability of 8-oxo-dG lesions and their mutagenic potential during DNA 

replication may represent one of the many critical steps connecting metabolic disorders and 

cancer96. However, the correlation between BMI and 8-oxo-dG levels is not clear. For 

example, one study found a negative correlation between BMI and 8-oxo-dG levels, and 

concluded that occupational stress combined with social and lifestyle factors increased 

cancer risk97. Whereas another study showed no correlation existed between BMI and 8-

oxo-dG levels in urine samples, and suggested that urban living might contribute to elevated 

urinary 8-oxo-dG levels98. However, a one-year follow-up study in obese patients showed 

significantly reduced antioxidant enzymes (e.g., superoxide dismutase, catalase, glutathione 

peroxidase) and increased oxidized/reduced glutathione ratios in peripheral blood 

mononuclear cells in addition to elevated serum and urinary 8-oxo-dG levels99.

DNA replication of guanine oxidation products may result in somatic mutations that can 

cause proliferation of smooth muscle cells contributing to the etiology of atherosclerosis 

plaque formation, a risk factor of obesity100,101. Obesity is also associated with NAFLD, 

and ROS-induced oxidative DNA damage that may contribute to chronic conditions, such as 
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liver fibrosis and HCC in NAFLD patients102–104. The molecular mechanisms connecting 

obesity, ROS, and cancer are unclear; however, obesity-stimulated oxidative stress, 

contributing to DNA damage and consequently to genetic instability, appears to play an 

important role.

1.2 Obesity-induced lipid peroxidation by-products promote DNA damage

The microenvironment created by the dysregulation of adipose tissue allows for a continuous 

cycle where increased oxidative stress and inflammation together stimulate the induction of 

signaling molecules involved in transduction pathways maintaining adipogenesis and 

metabolic homeostasis. ROS-mediated oxidative degradation of polyunsaturated fatty acids 

(PUFA), i.e., lipid peroxidation, results in unsaturated reactive aldehyde by-products such as 

malondialdehyde (MDA; Figure 2B), 4-hydroxynonenal (4-HNE; Figure 2C) and acrolein 

(Acr; Figure 2D)28. Both MDA and 4-HNE levels have been found to be increased in obese 

patients27,74. In fact, it has been reported that MDA levels in newborns positively correlated 

with maternal BMI and were also found to be elevated in obese children105,106. These 

electrophilic molecules can form adducts with nucleophilic centers of phospholipids, 

proteins, and nucleic acids, potentially altering their biological functions107. Of these, MDA 

is thought to be the most mutagenic, and 4-HNE the most genotoxic of all lipid peroxidation 

by-products108.

1.2.1 Malondialdehyde—MDA reacts with DNA to form 3-(2-deoxy-β-D-erythro-

pentofuranosyl)pyrimido[1,2-α]purin-10(3H)-one-deoxygunanosine (M1dG) adducts109,110 

(Figure 2B). M1dG has been detected in DNA from human leukocytes, liver, pancreas, and 

breast tissues typically at levels from 2–150 per 108 bases111–113. The cytotoxic and 

mutagenic effects of MDA have been demonstrated in Escherichia coli (E. coli) and 

mammalian cells114–116. For example, transfection of MDA-adduct containing plasmid 

DNA into mammalian cells stimulated a ~15-fold increase in mutation frequency over 

background levels115.

The high reactivity of MDA toward CG-rich sequences has been evidenced by the 

prevalence of MDA-induced base-pair substitutions or frameshift mutations at repetitive CG 

base-pairs in mammalian cells117. MDA adducts can also form DNA interstrand crosslinks 

(ICLs) which can block DNA replication and transcription. In addition to point mutations, 

these lesions can also result in large insertions and deletions during their processing and 

repair115. Further, unrepaired MDA-induced DNA lesions have been shown to result in 

frameshift mutations, point mutations, strand breaks, cell cycle arrest, and cellular 

apoptosis115–119.

MDA levels have been used as a biomarker for measuring seminal oxidative stress and were 

found to be positively correlated with oxidative guanine adduct levels120,121. Hosen et al. 

(2015) measured seminal MDA levels in 41 infertile male subjects, and found that oxidative 

stress-induced sperm DNA damage was associated with the pathogenesis of male 

infertility121. Further, several epidemiological studies indicated an increased infertility risk 

that correlated with increased levels of MDA in obese males compared to their non-obese 

counterparts122,123.

Kompella and Vasquez Page 6

Mol Carcinog. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1.2.2 4-Hydroxynonenal—Another by-product of lipid peroxidation, 4-HNE, is a 

reactive aldehyde that acts as a second messenger of free radicals124. At low intracellular 

concentrations (<2 μM), 4-HNE has been reported to promote cell survival and proliferation, 

but at higher concentrations (10 to 60 μM) it can result in mutagenesis (e.g., GC to AT 

mutations) and can function as a genotoxic agent (e.g., facilitating the formation of sister 

chromatid exchange, micronuclei formation, and DNA fragmentation) in mammalian 

cells125,126. 4-HNE can also cause inhibition of DNA synthesis leading to cytotoxicity127. 

The electrophilic nature of 4-HNE results in interactions with DNA bases with different 

specificities (G>C>A>T), leading to the formation of adducts that can interfere with DNA 

replication and transcription128. 4-HNE can be further metabolized by liver enzymes to an 

epoxide that can interact with DNA to form exocyclic etheno-guanine -cytosine and -adenine 

adducts129, where the major bulky exocyclic adduct in various human and rat tissues is 6-(1-

hydroxyhexanyl)-8-hydroxy-1,N(2)-propano-2’-deoxyguanosine (HNE-dG; Figure 

2C)130–132. Some stereoisomers of 4-HNE can form ICLs, which covalently link the two 

complementary strands of DNA, impeding DNA replication and transcription133.

A role for HNE-dG in the etiology of HCC has been reported134, and the tumor suppressor 

gene p53, is frequently mutated at codon 249 in HCC135–138. Using a wild-type p53 human 

lymphoblastoid cell line, Hussain et al. (2000) found that 4-HNE can bind to the third 

guanine of codon 249 (– AGG –) of p53, resulting in G to T transversions139. The p53 gene 

was mapped for 4-HNE-DNA adducts using the UvrABC nuclease, an E. coli nucleotide 

excision repair (NER) enzyme, and the results revealed preferential formation of 4-HNE 

adducts at the second guanine in codons 174 and 249, which contain the same sequence -G 

AGG* C-. Perhaps due to the chromatin structure in vivo, 4-HNE more frequently binds to 

the mutational hotspot in codon 249 than 174, providing a growth advantage to liver cells, 

contributing to HCC136,140.

1.2.3 Acrolein—Acrolein, a carcinogenic by-product of lipid peroxidation, can form two 

exocyclic DNA adducts, α- and γ-hydroxy-1,N2-propano-2′-deoxyguanosine (α-OH-Acr-

dG and γ-OH-Acr-dG; Figure 2D), in human cells under conditions of oxidative 

stress141–144. Both adduct types, α-OH-Acr-dG and γ-OH-Acr-dG can induce base 

substitution mutations, and can inhibit DNA synthesis145,146. Acr-DNA adducts are thought 

to form predominantly at guanine residues, specifically in G-rich sequences, though Acr 

adducts with dC, dA and dT have also been reported147–150. A preference for Acr-DNA 

adduct formation has been shown at CpG sites containing methylated cytosines (5-mC), 

which are cytotoxic and mutagenic in Chinese hamster ovary (CHO) cells and can exert 

dose-dependent effects in NER-deficient human xeroderma pigmentosum complement 

group A (XPA) cells when compared to NER-proficient human fibroblast cells150.

The interactions of Acr with newly-synthesized histones such as H4K12ac and H3K9 and 

K14ac has been reported. For example, Acr can interact with lysine residues 5 and 12 of 

histone H4 to form adducts that subsequently reduce histone acetylation. This can prevent 

certain protein-protein interactions ultimately affecting chromatin assembly151,152. Acr can 

also form ICLs or DNA-protein crosslinks (DPCs)153, which have been implicated in lung, 

liver and bladder cancers154–156.
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1.3 Obesity-induced secondary bile acid metabolites promote DNA damage

Several studies have reported an association between obesity and alterations in the gut 

microbiome in mouse models and in humans157,158. However, a meta-analysis report 

suggested that this association was more robust in animal models than in the human cohorts 

studied. The variations in metabolism and the immune system from person to person may 

result in the inability of these studies to tease out the microbial differences (and causes and 

effects of obesity and microbiome alterations) in such cohort studies159. Nevertheless, the 

gut microbiota found in the intestinal epithelium of the host, through symbiotic interactions 

can assist in digestion and nutrient metabolism160, preservation of the structural integrity of 

the gut mucosal barrier to promote caloric extraction from the diet161,162, xenobiotic and 

drug detoxification, antimicrobial activities, and other homeostatic functions such as 

modulation of the immune system and modulation of apoptosis163,164.

Gut microbiota play an important role in digestion, and due to this function have been 

implicated in obesity and metabolic syndrome165,166. Studies in animal models and in 

humans have shown that obesity is associated with phylum-level changes in the microbiota. 

For example, metagenomic analyses of gut bacteria in mice and humans have shown 

increases in the Firmicute to Bacteroidete ratio in obese subjects compared to their lean 

counterparts167–169. However, Duncan et al. (2008) were unable to confirm this observation 

in humans, indicating variation in study outcomes related to the complexity of lifestyle and 

other factors170.

Gut microbiota also participate in the production of bioactive metabolites such as bile acids 

(BA) that signal through their cognate receptors to regulate the host metabolism171. The 

oxidation of cholesterol to primary BA in the liver is mediated by cytochrome P-450 

enzymes172. In liver, the primary BA, cholic acid (CA) and chenodeoxycholic acid (CDCA) 

produced by humans, and CA and muricholic acid (MCA) produced by mice, conjugate with 

glycine and/or taurine to form bile salts before being secreted in the bile171. In the intestine, 

small amounts of the bile salts can undergo dehydroxylation by gut microbial populations 

with active BA-inducible genes to produce secondary bile metabolites such as deoxycholic 

acid (DCA; Figure 3A) and lithocholic acid (LCA; Figure 3B)173–175. Bacteria that can 

convert primary BA into secondary metabolites have been identified in Clostridium (clusters 

XIVa and XI) and in Eubacterium, both genera belonging to the Firmicutes 

phylum173,176–178. In addition to their important roles in cholesterol homeostasis172, BA can 

directly bind and activate the farnesoid X receptor (FXR), the pregnane X receptor (PXR), 

and the vitamin D receptor (VDR) to regulate lipid, glucose, and drug metabolism in liver 

and/or the intestine, which are frequently exposed to BA at relatively high 

concentrations179–183.

Differences in BA production and physiology in obese mice and humans have been reported. 

In obese (ob/ob) mice, hyperglycemia can stimulate the overexpression of CYP7A1 in the 

liver leading to increased synthesis and altered BA composition184. Conversely, studies in 

Fxr-deficient mice (Fxr−/−) bred on a genetically obese background (ob−/−Fxr−/−) or Fxr−/− 

mice fed on a high fat diet (HFD) showed resistance to weight gain compared to their 

respective ob/ob and wild-type control mice185,186. A recent study examining 32 obese, non-

diabetic human subjects for the effects of obesity and insulin resistance on BA synthesis and 
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transport, reported a substantial increase in BA synthesis markers and variations in BA 

serum levels along with defective hepatic BA transport187. Obesity is also associated with an 

altered representation of bacterial genes and metabolic pathways. For example, by 

modulation of the hepatic FXR signaling, a primary sensor for endogenous BA, gut bacteria 

not only regulate secondary bile salt metabolism, but also hepatic BA synthesis185,188. Thus, 

the microbiota-BA interactions play important roles in obesity and other metabolic 

disorders171.

One of the earliest studies suggesting the carcinogenic potential of BA, particularly 

secondary BA in mice was published in 1940189. Since that time, much research has been 

done to elucidate the roles of secondary bile metabolites in obesity-related gastrointestinal 

and pancreatic cancers29,190. Epidemiological studies have shown that consumption of a diet 

containing high fat and a high intake of beef products was associated with high fecal levels 

of the secondary bile acids DCA and LCA, similar to patients with carcinoma of the 

colon191,192. The inability to accurately measure the different forms of secondary bile acids 

may limit direct interpretation of such results; however, several mechanistic studies 

described below also provide support for the carcinogenic effects of DCA and LCA in 

rodents and humans.

Several bacterial studies have revealed the mutagenic effects of BA and their metabolites. 

Through single-gel electrophoresis assays, Ames tests, fluctuation assays and reversion 

assays in various Salmonella strains, research groups have identified the formation of DSBs, 

single-strand DNA breaks, abasic sites, frameshift mutations, base-pair substitutions, and 

point mutations in response to bile-salt exposure193–198. Results have shown that frameshift 

mutations (−1) were a result of the adaptive SOS response to the stressor BA, and point 

mutations were largely comprised of nucleotide substitutions (GC to AT transitions), 

suggesting that exposure to BA salts can result in oxidative DNA damage196.

1.3.1 Deoxycholic acid—DCA, a hydrophobic secondary metabolite of CA, is known 

to be a stress inducer and at higher than normal levels, DCA can adversely affect colon 

epithelial cells199. A diet high in fat has been associated with high levels of DCA, which can 

cause oxidative DNA damage, including modified bases, DSBs, aneuploidy, chromosomal 

alterations, micronuclei formation, and mitotic aberrations200–203. For example, DCA-

induced mutations in the K-Ras gene in colon epithelial cells can provide a proliferative 

advantage to those cells, contributing to carcinogenesis204.

In obese mice, the levels of DNA-damaging DCA were found to be elevated in the 

enterohepatic circulation, and this was thought to be due to their altered gut bacterial 

metabolism191,205. DCA has been shown to induce a senescence-associated secretory 

phenotype (SASP) in hepatic stellate cells (HSCs) via upregulation of the 53BP1 and p21 
genes. HSCs can also secrete inflammatory and tumor-promoting factors [e.g., IL-6, growth-

regulated oncogene-alpha (Gro-α) and C-X-C motif chemokine ligand 9 (CXCL-9)] in the 

liver, thereby facilitating the development of HCC in mice after carcinogen exposure206,207. 

Reducing the production of DCA, by either reducing primary to secondary BA converting 

Clostridium cluster XI or XIVa bacterial strains by antibiotic treatment, or by decreasing 7α-

dehydroxylation activity with difructose anhydride III, substantially reduced the 
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development of HCC in obese mice207. In non-alcoholic steatohepatitis (NASH) patients, 

the induction of SASP has been observed, indicating that the DCA-SASP axis may play a 

role in the development of obesity-associated HCC in humans208. In another experiment 

involving the incorporation of radiolabeled thymidine into hepatocyte DNA, DCA was 

found to inhibit DNA synthesis, suggesting that this secondary BA metabolite may affect 

DNA repair and cellular proliferation209.

Shi et al. (2016) demonstrated the effects of DCA on the gastric epithelial cell line (GES-1) 

in vitro. Among other factors, DCA downregulated the core histone H2A.1. This histone is 

involved in chromatin structure, which is important in DNA repair, DNA replication and 

transcription, and chromosomal stability210. Since obesity has been associated as a risk 

factor for gastritis211–213 and DCA is upregulated in the obese state, it is plausible that DCA 

might be a contributing factor to obesity-related gastric cancers.

DCA has also been implicated in the development of Barrett adenocarcinoma. DCA 

treatment of Barrett’s epithelial cells increased the formation of DSBs as evidenced by γ-

H2AX staining, and stimulated the phosphorylation of proteins in the NF-κB signaling 

pathway214,215. Burnat et al. (2010) found that DCA upregulated NFκB-mediated induction 

of cyclooxygenase-2 (COX-2) and downregulated the DNA repair glycosylases, 8-

oxoguanine DNA glycosylase (OGG1) and MutY glycosylase homologue (MUTYH), in 

Barrett’s epithelial cancer cells216. These findings suggest that DCA exerts its carcinogenic 

potential by increasing DNA damage.

1.3.2 Lithocholic acid—LCA, the other major secondary metabolite of BA, is known to 

function as an oncometabolite. Generally, post synthesis in the liver, most of the primary BA 

and its secondary metabolites enter the enterohepatic circulation before passing through the 

small intestine for re-absorption by the intestinal lumen. The unabsorbed metabolites are 

brought back to the liver for secretion into the bile217. LCA on the contrary, is partly 

absorbed in the intestine and transits to the colon where it is concentrated, and has been 

found to be excreted in feces at levels of up to 200 µM218. This may promote tumor 

initiation in colon epithelial cells by forming adducts with DNA219. Kulkarni et al. (1980) 

showed that within one hour of treating mouse lymphoblastoma L1210 cells with LCA (at 

250 µM), single-strand breaks (SSBs) appeared in DNA, which were subsequently repaired 

when the cells were incubated in LCA-free media220. Similar results of DNA damage and 

repair were observed in an LCA-induced insult study in colon epithelium crypt cells 

involved in colon carcinogenesis221. Treatment of colon cells with LCA over a range of 

physiologically relevant concentrations (25–300 µM) also led to DNA strand breaks as 

assessed by comet assays222,223.

LCA can promote methyl-N’-nitro-N-nitrosoguanidine (MNNG)-induced carcinogenesis in 

rat colon epithelial cells, presumably by inhibiting the base excision repair (BER) enzyme, 

DNA polymerase β (pol β), which plays an essential role in repairing DNA damage induced 

by MNNG224,225. The demonstration that BER was inhibited by LCA has provided a 

possible mechanism for its role as an oncometabolite225,226. LCA is also an inhibitor of 

topoisomerase II (topo II), which simultaneously breaks and rejoins DNA strands to manage 

supercoiling during DNA metabolic processes such as DNA repair. Three dimensional 
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computational analysis revealed interaction sites for LCA with pol β at amino acids Lys60, 

Leu77, and Thr79, and interaction sites for LCA with topo II were identified at Lys720, 

Leu760, and Thr791227. The identification of these binding sites should prove helpful for the 

development of selective DNA repair inhibitors in cancer therapy228.

1. DNA Repair

The DNA repair machinery is crucial to maintain genome stability, and thus eukaryotic cells 

have evolved several highly conserved mechanisms to remove DNA damage229. Depending 

on the complexity of the damage, the repair proteins/pathways work in a concerted fashion 

targeting different types of DNA lesions to maintain genome stability. While some lesions 

involving alkylation of the bases can be reversed by direct methyltransferase repair230, more 

complex lesions require repair mechanisms that involve a number of proteins that can excise 

damaged bases and resynthesize DNA. For example, BER removes many types of DNA 

lesions that result in modification of single bases using specialized DNA glycosylases and 

apurinic/apyrimidinic (AP) endonucleases231. Proteins in the NER pathway process helix-

distorting bulky adducts, for example, those created by exposure to UV radiation232. DSBs 

can be processed by a variety of homologous or non-homologous pathways; for example, 

breaks with non-homologous ends can be processed via non-homologous end-joining 

(NHEJ) repair mechanisms233, whereas homologous recombination repair (HR) is guided by 

sequence homology234 often provided by a sister chromatid during S-phase repair. Mismatch 

repair (MMR) processes base-base mismatches, and small loops or insertion/deletion 

mispairs generated during replication and recombination235.

Although the molecular mechanisms underlying the obesity-cancer link are poorly 

understood, there is some mechanistic evidence to suggest that inefficient repair of DNA 

adducts formed as a result of obesity-induced metabolic changes may contribute to 

carcinogenesis.

2.1 Repair of oxidative stress-induced DNA lesions

Obesity results in altered lipid homeostasis, cellular oxidative stress, and inflammation that 

can result in DNA damage and overwhelm or reduce the repair capacity and accuracy of 

various DNA repair mechanisms. Over time, the accumulation of unrepaired DNA lesions 

and/or the error-generating repair of DNA lesions can result in mutations and genetic 

alterations involved in the etiology of many diseases, including cancer236,237.

One of the critical markers of oxidative stress in accumulated fat is elevated levels of Nox4 

and ATM class switching from anti-inflammatory to pro-inflammatory cytokines which can 

stimulate ROS27,53, resulting in the formation of oxidative DNA damage lesions such as 8-

oxo-dG18,73. To limit mutagenesis and cytotoxicity, 8-oxo-dG lesions are primarily repaired 

by OGG1 via the BER mechanism238. OGG1 cleaves the N-glycosidic bond between the 

sugar and the base, followed by endonucleolytic cleavage and subsequent gap-filling with 

limited specificity toward the 8-oxo-dG lesions on the daughter strand231. Mutations and 

gene polymorphisms in the human OGG1 gene have been found to be associated with an 

increased risk of developing various cancers239. Moreover, mice deficient in OGG1 

(OGG1−/−) have been found to accumulate 8-oxo-dG lesions in an age-related and tissue 
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specific manner240. Rozalski et al. (2005) have shown a ~26% reduction in urinary levels of 

8-oxo-dG in OGG1−/− mice compared to wild-type mice suggesting the important role of 

OGG1 glycosylase241.

However, several groups have reported the existence of back-up BER glycosylases242,243. 

As an example, DNA constructs containing a single 8-oxo-dG lesion incubated in 

mammalian cell extracts were primarily repaired by BER via pol β-dependent removal and 

gap-filling of a single nucleotide. However, 8-oxo-dG lesions were also repaired in pol β-

deficient cells, suggesting the existence of an alternative pathway(s) for their removal244. 

Other glycosylases that may be involved in processing 8-oxo-dG include the Nei 

endonuclease VIII-like or NEIL family of glycosylases (NEIL1, NEIL2, and NEIL3)243,245, 

and evidence has suggested potential roles for the NER and MMR mechanisms to 

compensate for deficient OGG1 activity in processing these lesions246,247.

The role of BER glycosylases in modulating cellular and whole body energy homeostasis 

has been reported. For example, Sampath et al. (2011, 2012) showed that mice deficient in 

the BER enzymes, DNA glycosylase NEIL1 or OGG1, increased susceptibility to the 

development of metabolic syndrome248,249. A recent report by the same group indicated 

protection from diet-induced obesity in mice overexpressing mitochondrial OGG1, further 

reinforcing the idea that BER plays an important role in body weight regulation250.

GC to TA transversion mutations can result during DNA replication past 8-oxo-dG lesions. 

Using immunofluorescence experiments in mammalian cells, van Loon and Hϋbscher 

(2009) demonstrated the involvement of MUTYH in recognizing these lesions. MUTYH 

generates an apurinic (AP) site, which is subsequently processed by apurinic/apyrimidinic 

endonuclease 1 (APE1). This is followed by the incorporation of deoxycytidine triphosphate 

(dCTP) in the single nucleotide gap by DNA pol λ, replication protein A, (RPA), 

proliferating cell nuclear antigen (PCNA), and finally ligation of the DNA strand by DNA 

ligase I and flap endonuclease 1 (FEN1)251.

Cockayne syndrome group A (CSA) and B (CSB) proteins involved in the transcription-

coupled repair sub-pathway of NER (TC-NER) have also been implicated in processing 8-

oxo-dG lesions by several groups252–256. Compared to control human cells, primary 

fibroblasts from CS patients were unable to repair ionizing radiation-induced 8-oxo-dG 

lesions, suggesting that unrepaired oxidative DNA lesions might contribute to 

neurodegeneration in CS patients255.

MMR has been reported as an alternative pathway for processing 8-oxo-dG lesions. For 

example, MMR-deficient mouse cells treated with oxidizing agents or low-dose ionizing 

radiation showed elevated levels of 8-oxo-dG compared to MMR-proficient wild-type 

cells257,258. In addition, oxidized purines in MMR-deficient cells have been implicated in 

frame-shift mutations resulting in microsatellite instability259. Though the precise 

mechanism is unclear, human MUTSα (a dimer of MSH2 and MSH6) preferentially 

recognized 8-oxoG-containing duplexes with an unpaired C or T, suggesting a role for MMR 

in repairing 8-oxo-dG lesions260,261. In response to oxidative stress-induced DNA damage, 

loss of key MMR genes has been reported. MSH2-deficient mouse embryonic fibroblasts 
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contained higher levels of both basal and ROS-induced 8-oxo-dG lesions when compared to 

wild-type cells257.

Unsurprisingly, 8-oxo-dG is also an important biomarker for the prognosis and progression 

of colorectal cancers (CRC), a risk factor of obesity262, and MMR status is used to classify 

CRC into different sub-types263. Epigenetic inactivation of the MutL homolog 1, colon 
cancer, nonpolyposis type 2 (MLH1) gene promoter and germline mutations in the MMR 

genes resulted in microsatellite instability, which occurs in 10–20% of CRC cases264–268. 

However, obesity alone presented a poor prognosis for overall survival in patients with CRC, 

as obese patients were found to be ~40% less likely to have a deficient MMR status 

compared to normal-weight CRC patients269,270. In fact, obese CRC patients exhibited a 

prognostically unfavorable proficient MMR molecular subtype characterized with 

chromosomal instability266,271.

Several groups have reported the mutagenic effects of oxidative stress-induced 8-oxo-dG 

lesions in DNA regions with repetitive sequences capable of adopting alternative DNA 

structures. For example, we have observed stimulation of oxidative stress and induction of 

mutations in and around mirror-repeat sequences capable of forming alternative DNA 

structures in a diet-induced obese mouse model (Kompella & Vasquez, unpublished, 2019). 

Other groups have found that when the repair of 8-oxo-dG lesions occurred at or near triplet-

repeat sequences such as CAG or CTG or CGG, GCC or GAA, slipped DNA or hairpin 

structures can form transiently within the sequence, which were improperly processed by the 

BER machinery272–275, impacting deletion or expansion of the repeats. This error generating 

repair of 8-oxo-dG within triplet-repeat sequences may be involved in disease etiology, as 

triplet-repeat expansions have been implicated in many neurological disorders274.

2.2 Repair of lipid peroxidation by-product-induced DNA lesions

The by-products of lipid peroxidation generally have long half-lives and can diffuse from 

their sites of formation across membranes, thus acting as second messengers of oxidative 

stress (e.g., 4-HNE)124,276. Their electrophilic nature enables them to react with nucleophilic 

functional groups in DNA, and sulfhydryl, guanidine and amino groups in proteins277. 

Aldehydes such as (MDA and 4-HNE) often form covalent mutagenic exocyclic adducts 

with the free -NH2- in the DNA bases leading to genetic instability, and subsequently 

contributing to the development of various cancers276.

2.2.1 Malondialdehyde—Chemically stable propanodeoxyguanosine (PdG)-DNA 

adducts have been used as an in vitro model for unstable M1dG adducts as they are 

structurally analogous. In both E. coli and mammalian cell systems, PdG-DNA adducts have 

been shown to be repaired by the NER mechanism278, and that formamidopyrimidine 

glycosylase or 3-methyladenine glycosylase do not play roles in the removal of M1dG 

adducts116,278. Transformation of M1dG adduct-containing plasmids in NER-deficient E. 
coli (LM103) cells resulted in an ~3-fold increase in mutation frequency compared to the 

NER-proficient wild-type (LM102) cells. Further, without a functional NER system, the 

half-life of the M1dG adducts was longer, likely contributing to the increased 

mutagenicity116. Interestingly, when an M1dG adduct-containing plasmid was replicated in 
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human fibroblasts deficient in NER (XP12BE and XP12RO), no increase in mutation 

frequency was observed relative to NER-proficient wild type cells (GM00637F)115. A 

possible explanation for this result could be the presence of another repair mechanism in 

human cells that is capable of removing the M1dG adducts in the absence of NER.

TC-NER has been implicated in the processing of endogenous lipid peroxidation by-

products such as 4-HNE279. Thus, a potential role for TC-NER in the processing and repair 

of M1dG adducts has also been examined. When present in the transcribed strand of a DNA 

template, M1dG was able to arrest T7 RNA polymerase and mammalian RNA polymerase II 

(RNAPII). Also, an M1dG adduct opposite to a C posed a stronger block to transcription 

than when present opposite to a T. These results suggest that M1dG-induced DNA adducts 

might have negative implications for patients with Cockayne’s syndrome280.

The non-bulky nature of M1dG adducts might prevent them from being efficiently 

recognized by NER, making them substrates for MMR. Johnson et al. (1999) transfected an 

M1dG-containing M13 phage vector into MMR-deficient E. coli cells and found them to be 

recognized by mutator S (MutS), which appeared to compete with NER for processing these 

lesions. In the absence of MutS, M1dG-DNA adducts were repaired by NER, thereby 

reducing their mutagenic potential. The researchers used surface plasmon resonance assays 

and gel mobility shift assays to show that MutS interacted with M1dG when located opposite 

to T with a similar affinity to a GT mismatch, suggesting that M1dG adducts can also be 

recognized and repaired by the MMR system281.

Singh et al. (2014) tested the role of the E. coli dioxygenase enzyme, AlkB, in repairing Acr 

and MDA adducts in single-stranded and double-stranded DNA282. AlkB is an alpha-

ketoglutarate-dependent hydroxylase, which is involved in the direct reversal of alkylation 

damage283. Using high-resolution quadrupole time-of-flight (Q-TOF) mass spectrometry, 

they found that AlkB repaired MDA-induced single-stranded DNA lesions more efficiently 

than double-stranded DNA lesions and the repair efficiency depended on the base opposite 

the lesion282.

2.2.2 4-Hydroxynonenal—Hydroxynonenal can form bulky exocyclic HNE-dG-DNA 

adducts that are primarily repaired by the NER mechanism284, as evidenced by significantly 

higher levels of 4-HNE-dG-induced mutations in NER-deficient human and E. coli cells 

compared to NER-proficient cells285. Choudhury et al. (2004) demonstrated the efficient 

repair of HNE-dG adducts in human cell nuclear extracts in a dose and time dependent 

manner. The NER proteins recognized and repaired HNE-dG adducts more efficiently (~2.4-

fold) than UV adducts (the canonical NER substrate), which might explain the relatively low 

levels of HNE-dG-induced DNA lesions in mammalian cells286.

CSB, a protein required for TC-NER, has been reported to be involved in the processing of 

HNE-dG lesions. Compared to CSB-proficient wild-type human fibroblast cells (CS1AN/

pc3.1-CSBwt), treatment of CSB-deficient human fibroblast cells (CS1AN/pc3.1) with 4-

HNE at physiological concentrations (1–10 μM), resulted in hypersensitivity and enhanced 

sister chromatid exchanges. Endogenous HNE-induced DNA adducts can also elicit DNA 

replication and transcription arrest. At concentrations of 1–20 μM in vitro, 4-HNE exposure 
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was found to dephosphorylate CSB in a dose-dependent manner, resulting in increased CSB 

ATPase activity and activation of TC-NER. However, at higher concentrations (100 and 200 

μM), 4-HNE significantly inhibited CSB ATPase activity, which led to cell death279. This 

affect was thought to be due to the formation of direct adducts with the CSB protein. 

Through Michael adduction, 4-HNE can react with the amino group of lysine, the imidazole 

group of histidine, and the sulfhydryl group of cysteine107,287,288. If the adducted proteins 

are part of the DNA repair machinery, then the removal of HNE-dG adducts could be 

inhibited or inefficient, contributing to cytotoxicity and carcinogenicity. For example, NER 

was inhibited in in vitro host cell reactivation assays using human colon and lung epithelial 

cells and cell extracts treated with 4-HNE, BPDE- or UV-damaged DNA, all of which are 

substrates for NER289.

Winczura et al. (2014) examined the modulation of BER enzymes by 4-HNE. Pre-treatment 

of the human fibroblast cell line, K21, with physiological concentrations of 4-HNE 

hypersensitized the cells to hydrogen peroxide (H2O2), and the alkylating agent, methyl 

methanesulfonate (MMS). Direct exposure of purified BER enzymes to high concentrations 

(1–2 mM) of 4-HNE showed inhibitory effects on alkyl-N-purine glycosylase (APNG) and 

thymine DNA glycosylase (TDG); whereas, OGG1 glycosylase and APE-1 were unaffected. 

Exposure of 4-HNE pretreated K21 cells to H2O2 and MMS resulted in the accumulation of 

SSBs, suggesting that 4-HNE also inhibited DNA ligation290.

2.2.3 Acrolein—Acr-dG adducts have been shown to be repaired by the NER pathway in 

both E. coli and mammalian cells145,291,292. However, the repair kinetics of Acr-dG was 

shown to be much slower than HNE-dG in human colon cancer cells. This was suggested to 

be due to the poor excision efficiency of Acr-dG adducts, such that their repair was inhibited 

in the presence of HNE-dG293. These results support the observation that the in vivo levels 

of Acr-dG adducts were two orders of magnitude higher than HNE-dG adducts132,144. α-

OH-Acr-dG adducts have been found to be better substrates for excision repair than γ-OH-

Acr-dG adducts, and thus are repaired more efficiently150. Interestingly, Acr-adducts are 

repaired by NER proteins in normal human bronchial epithelia (NHBE) cells and normal 

human lung fibroblasts (NHLF), but treatment of NHBE and NHLF cell lysates with acr 

decreased the capacity of NER to remove Acr-adducts within the p53 gene and the overall 

genome of these cells294. Following treatment with Acr, the gene expression levels of XPA, 

XPC, hOGG1, PMS2 and MLH1 were unaffected, but protein degradation was increased, 

perhaps via Michael addition with the amino acids lysine, cysteine, and histidine142. These 

findings suggested that Acr treatment could inhibit NER, BER, and MMR by degradation of 

repair proteins in these pathways, contributing to its mutagenic and carcinogenic 

potential291.

In E. coli, Pol I catalyzes the error-free translesion synthesis past Acr-dG adducts, whereas 

in eukaryotic cells, various translesion synthesis polymerases participate in catalyzing 

bypass of the Acr-dG adduct, often resulting in mutations292,295. Lee et al. (2014) showed 

that endogenous (e.g., oxidative stress-induced lipid peroxidation) and exogenous (e.g., 

tobacco smoke) sources of Acr can cause bladder tumors in a rat model. Treatment of 

urothelial cells with Acr revealed that it induced degradation of repair proteins, thereby 

inhibiting the NER and BER pathways, implicating it in tobacco-smoke induced bladder 
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cancers156. Interestingly, a meta-analysis study showed that obesity is associated with an 

~10% increase in the risk of bladder cancer296. Though smoking did not seem to play a role, 

studies on the contribution of obesity-induced increases in oxidative stress-induced Acr 

levels are required to understand the molecular mechanisms involved in obesity-associated 

bladder cancers.

Like MDA, Acr-dG adducts can also be repaired by AlkB. Interestingly, the γ-OH-Acr-dG 

adducts were oxidatively dealkylated more efficiently by AlkB than α-OH-Acr-dG adducts 

in both open- and closed-ring forms282. Acr was also shown to inhibit DNA polymerase α 
(Pol α), and influence DNA methylation by either inhibiting the repair enzyme O6-

methylguanine-DNA-methyl transferase or DNA methylase by covalently binding to 

guanine residues and modifying DNA such that it is no longer a substrate for these 

enzymes297,298.

2.3 Repair of secondary bile acid metabolite-induced DNA lesions

The DNA damaging effects of BA and their metabolites leading to carcinogenesis have been 

reported29,190–192,299, but their effects on DNA repair mechanisms are not well understood. 

In Salmonella enterica, bile salts have been reported to induce oxidative SOS responses 

when the lesions impaired DNA replication, and when single-stranded DNA was generated 

by BER or dam-directed MMR during the processing of the oxidative DNA lesions. Their 

repair can generate SSBs which can be converted to DSBs during DNA replication. 

However, the replication block can be overcome by the dinB polymerase via translesion 

synthesis, followed by the action of recA, recBCD and PolIV enzymes that repair the DSBs 

via homologous recombination195,196,300. Bernstein et al. (1999) have observed similar 

SOS-induced DNA repair responses to bile salts in E. coli301. Importantly, bile salt-induced 

mutagenesis in bacterial species colonizing the intestine may lead to chronic infection or 

adaptation giving rise to antibiotic-resistant strains301,302.

Of note, the molecular mechanisms that underlie the cellular responses to BA salts in mouse 

models do not always mirror the mechanisms found in human carcinogenesis. Factors 

limiting the applicability of rodent data to humans may be due to: 1) differences in rodent 

and human gut physiology; 2) the shorter life span of rodents, such that the experimental 

exposure time is insufficient to recapitulate the long-term effects of BA metabolites in 

humans; 3) the carcinogenic effects of BA metabolites often manifest at particular sites and 

under specific physiological conditions; and 4) BA metabolites are carcinogenic in humans, 

while they show tumorigenic effects in animal studies, suggesting that they may be tumor 

promoters only and not carcinogens in rodents29,303.

2.3.1 Deoxycholic acid—The bile salt, deoxycholate, has been found to be associated 

with colon cancer in individuals on a high-fat diet304. To better understand this finding, 

Romagnolo et al. (2003) treated colon epithelial cells in vitro with sodium deoxycholate at a 

low non-cytotoxic concentration (10 µM), and found that the expression of BRCA1, which is 

an important protein for DNA repair and apoptosis, was induced; whereas, at higher 

cytotoxic concentrations (≥100 µM) of sodium deoxycholate, BRCA1 expression was 

inhibited. These observations correlated with BRCA1 gene expression levels in colon cancer 
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patients, suggesting that clonal selection of colon epithelial cells resistant to apoptosis (in 

part due to BA-induced loss of BRCA1) contributed to colon carcinogenesis305.

Kandell et al. (1991) demonstrated the induction of unscheduled DNA repair synthesis when 

human fore-skin fibroblasts were exposed to CDCA and DCA. In addition, UV4 CHO cells 

deficient in excision repair and DNA crosslink removal were more sensitive to sodium 

chenodeoxycholate than wild-type cells, and EM9 CHO cells deficient in single-strand DNA 

repair were more sensitive to sodium deoxycholate than wild-type cells299. In response to 

sodium-deoxycholate-induced DNA damage, human Jurkat cells and rat epithelial cells were 

found to overexpress the stress response proteins NFκB and poly ADP ribose polymerase 

(PARP), thereby facilitating DNA repair and protecting the cells from bile-salt induced 

apoptosis306. Conversely, Glinghammar et al. (2002) showed that the treatment of human 

HCT 116 and HT-29 colon cancer cells with DCA led to the activation of caspase-3 and 

cleavage of PARP, subsequently resulting in apoptosis199.

The exposure of Barrett’s epithelial cells to DCA was shown to increase the production of 

ROS215. Among other cellular changes, this led to the accumulation of oxidative DNA 

damage-induced mutations, perhaps contributing to the etiology of esophageal 

adenocarcinoma (EAC). Recently, Hong et al. (2016) investigated the role of the BER 

protein, APE1, on the survival of mutant p53 EAC cells in response to BA. They found that 

overexpression of APE1 in EAC cells suppressed BA-induced DSBs, perhaps by enhancing 

BER and regulating stress responses, which reduced JNK- and p38-associated apotposis307.

2.3.2 Lithocholic acid—LCA is a potent inhibitor of Polβ, a key enzyme required for 

the BER mechanism226,228, and other DNA polymerase enzymes (Pol α, Pol δ, Pol ε) 

involved in DNA replication and repair226. Inefficient BER can result in intermediates that 

require BRCA2-dependent HR for their repair. Stachelek et al. (2010) found that LCA 

reduced the efficiency of BER by inhibiting Polβ in EUFA423 BRCA2-deficient human 

fibroblasts. LCA was found to inhibit the formation of a stable pol β–DNA complex, thereby 

suppressing the DNA polymerase and 5′-deoxyribose phosphate lyase activities of pol β. 

These effects were synergistic with the cytotoxic effects of the alkylating agent 

temozolomide, which can methylate guanine residues in DNA. This synergism depended on 

the conversion of BER-induced SSBs into DSBs during replication, as evidenced by γH2AX 

immunofluorescence. Co-treatment with LCA and temozolomide eventually led to cell death 

likely due to the accumulation of unrepaired DSBs in BRCA2-deficient cells, suggesting 

that BRCA2-deficient cancers may be an attractive target for synergistic drug therapy308.

2. Obesity-induced epigenetic changes

Several studies have been published on the role of epigenetics in the etiology of obesity. It is 

only recently that we have begun to understand that the obesogenic state, apart from eliciting 

a DNA damage and repair response, can also result in epigenetic alterations. Studies have 

shown that our environment influences changes in gene expression, sometimes leading to the 

onset of disease, but due to genome-wide epigenetic reprogramming, the trans-generational 

inheritance of these changes is not well defined309.
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Epigenetic marks are tissue specific and include DNA methylation and histone 

modifications. Since all the tissues in the body depend on the uptake of glucose and lipids, 

their cellular states are affected directly or indirectly by increases in the nutrient levels 

during obesity. As mentioned previously, in the adipose tissue the increase in lipids is 

accommodated via hyperplasia under the regulation of the adipogenic transcription factor C/

EBPβ. During adipocyte differentiation, C/EBPβ can be hypermethylated whereas, the 

promoter region of the fatty acid storage regulator, peroxisome proliferator-activated 

receptor gamma (PPARγ), can be hypomethylated310. There is evidence that histone 

deacetylases (HDACs) are also involved in adipocyte differentiation. Specifically, HDAC9 

was found to negatively regulate adipogenesis in a deacetylase-independent manner311. 

Rodents fed on a HFD have been shown to undergo chromatin modifications in the liver and 

at regulatory regions near genes associated with metabolism and insulin signaling312,313.

Mendelson et al. (2017) performed a microarray-based analysis of DNA from whole blood 

samples from 3,743 adult participants to study the association between BMI and differential 

methylation over 400,000 CpG sites. They identified BMI-related differential methylation at 

83 of these CpG sites (replicating across cohorts), which were associated with concurrent 

expression of genes involved in lipid metabolism314. Though the cross-sectional nature of 

the data makes it difficult to draw causal relationships between BMI and DNA methylation, 

the results provide evidence to warrant further investigation to establish the mechanistic 

relationship between the two. Other research groups have performed similar epigenome-

wide association studies in human blood samples from a variety of study cohorts with 

similar results30,315. Interestingly, Wahl et al. (2017) using methylation array analyses of 

blood and tissue samples from 5,387 individuals, identified 187 CpG sites with altered 

methylation patterns that were associated with BMI. These methylation changes led to 

alterations in the expression of several genes involved in lipid metabolism, substrate 

transport, and inflammation. They also identified 62 markers that were associated with Type 

II Diabetes (T2DM), with one marker in the ATP Binding Cassette Subfamily G Member 1 

(ABCG1) locus involved in insulin secretion and β-cell function showing the strongest 

association. This association was observed to be independent of the canonical T2DM risk 

factors, supporting the authors’ view that changes in obesity-related DNA methylation might 

represent a predictive measure for obesity-related disorders, such as T2DM30.

Obesity associated reprogramming of the epigenome via DNA methylation may alter the 

expression of genes that inhibit tumor progression thereby increasing cancer risk. As an 

example, the epigenetic silencing of tumor suppressor genes by estrogen in mammary 

epithelial cells in obese women may contribute to the development of or drive the 

progression of breast cancer31. Similarly, obesity-induced dysregulation of DNA 

methylation in endometrial epithelial cells may result in endometrial cancer development in 

obese women32.

Conclusions

The dearth of studies correlating DNA damage, DNA repair, genetic instability and cancer in 

overweight or obese humans (or in non-human animal models) makes it challenging to draw 
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direct causal links. However, the available mechanistic studies have proved useful in 

postulating hitherto unexplained obesity-cancer links via genetic instability.

Many gaps in knowledge still exist as to which stage(s) of increases in body weight initiate 

cellular responses leading to increases in oxidative stress, and subsequent DNA lesion 

formation and DNA damage responses. Information is limited regarding the consequences of 

obesity-associated DNA damage on oncogenes and malignant transformation of cells. 

Studies utilizing genetic and/or diet-induced obesity animal models deficient in, or 

overexpressing a specific DNA repair protein, will assist in a better understanding of the 

molecular mechanisms underlying the obesity-cancer link. Further research focus is also 

needed to investigate the association between oxidative DNA damage and modification of 

DNA methylation during obesity. Information provided by such studies will assist in the 

design of personalized therapies targeted to specific pathways involved in DNA damage, 

DNA repair, epigenetic modifications, and genetic instability associated with obesity. As we 

and many other research groups continue to investigate obesity-induced genetic instability 

and its potential contribution to cancer development, the findings will assist in the 

development of improved therapeutic strategies for the prevention and treatment of obesity-

related cancers.
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Abbreviations

OH hydroxyl radical

4-HNE 4-hydroxynonenal

5-mC 5’-methyl-cytosine

8-OH-dG 8-hydroxy-2′-deoxyguanosine

8-oxo-dG 8-oxo-7,8-dihydro-2′-deoxyguanosine

ABCG1 ATP binding cassette subfamily G member 1

Acr acrolein

AP apurinic/apyrimidinic

APE-1 apurinic/apyrimidinic endonuclease 1

APNG alkyl-N-purine glycosylase

ATM adipose tissue macrophage
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BA bile acids

BER base excision repair

BMI body mass index

BPDE Benzo(a)pyrene diol epoxide

C/EBPβ CCAAT/enhancer-binding protein-β

CA cholic acid

CDCA chenodeoxycholic acid

CHO chinese hamster ovary

COX-2 cyclooxygenase-2

CRC colorectal cancers

CSA cockayne syndrome group A

CSB cockayne syndrome group B

CXCL-9 C-X-C motif chemokine ligand 9

DCA deoxycholic acid

dCTP deoxycytidine triphosphate

DPCs DNA-protein crosslinks

DSBs DNA double-strand breaks

E.Coli Escherichia coli

EAC esophageal adenocarcinoma

FEN-1 flap endonuclease 1

FLT3-ITD FMS-like tyrosine kinase receptor

FXR farnesoid X receptor

Gro-α growth-regulated oncogene-alpha

H2O2 hydrogen peroxide

HCC hepatocellular carcinoma

HDACs histone deacetylases

HFD high fat diet

HNE-dG 6-(1-hydroxyhexanyl)-8-hydroxy-1,N(2)-propano-2’-

deoxyguanosine
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HR homologous recombination repair

HSCs hepatic stellate cells

ICLs inter-strand crosslinks

IFN-γ interferon gamma

IGF-1 insulin-like growth factor 1

IKKβ Inhibitor of kappa B kinase beta

IL interleukin

JNK c-Jun N-terminal kinase

LCA lithocholic acid

M1dG 3-(2-deoxy-β-D-erythro-pentofuranosyl)pyrimido[1,2-

α]purin-10(3H)-one deoxygunanosine

MCA muricholic acid

MCP-1 monocyte chemoattractant protein-1

MDA malondialdehyde

MLH1 MutL homolog 1 colon cancer, nonpolyposis type 2

MMR mismatch repair

MMS methyl methanesulfonate

MNNG methyl-N’-nitro-N-nitrosoguanidine

MutS mutator S

MUTYH mutY glycosylase homologue

NAFLD non-alcoholic fatty liver disease

NASH non-alcoholic steatohepatitis

NEIL nei endonuclease VIII-like

NER nucleotide excision repair

NFκB nuclear factor kappa-light-chain-enhancer of activated B 

cells

NHBE normal human bronchial epithelia

NHEJ non-homologous end-joining

NHLF normal human lung fibroblasts
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Nox 4 NADPH oxidase 4

O2
• superoxide radical

OGG1 8-oxoguanine DNA glycosylase

PARP poly ADP ribose polymerase

PCNA proliferating cell nuclear antigen

PdG propanodeoxyguanosine

Pol α DNA polymerase α

Pol β DNA polymerase β

PPARγ peroxisome proliferator-activated receptor gamma

PUFA polyunsaturated fatty acids

PXR pregnane X receptor

Q-TOF high-resolution quadrupole time-of-flight

RNAPII RNA polymerase II

ROS reactive oxygen species

RPA replication protein A

SASP senescence-associated secretory phenotype

SSBs single-strand breaks

T2DM type II diabetes

TC-NER transcription-coupled nucleotide excision repair

TDG thymine DNA glycosylase

TNF-α tumor necrosis factor-α

topo II topoisomerase II

VDR vitamin D receptor

XPA xeroderma pigmentosum complement group A

α-OH-Acr-dG α-hydroxy-1,N2-propano-2′-deoxyguanosine

γ-OH-Acr-dG γ-hydroxy-1,N2-propano-2′-deoxyguanosine

μM micromolar
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Figure 1. 
Schematic overview of the impact of obesity on genetic instability.
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Figure 2. Chemical structures of deoxyguanosine (dG) adducts in DNA generated endogenously 
via oxidation (A), and reactions of lipid peroxidation by-products with DNA (B-D).
A. 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxo-dG). B. 3-(2-deoxy-β-D-erythro-

pentofuranosyl)pyrimido[1,2-α]purin-10(3H)-one-deoxyguanosine (M1dG). C. 6-(1-

hydroxyhexanyl)-8-hydroxy-1,N(2)-propano-2’-deoxyguanosine (HNE-dG). D. α-

hydroxy-1,N2-propano-2’-deoxyguanosine (α-OH-Acr-dG) and γ-hydroxy-1,N2-

propano-2′-deoxyguanosine (γ-OH-Acr-dG).
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Figure 3. Chemical structures of secondary bile acids.
A. Deoxycholic acid. B. Lithocholic acid.
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