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Abstract

The cell nucleus encloses, organizes, and protects the genome. Chromatin maintains nuclear 

mechanical stability and shape in coordination with lamins and the cytoskeleton. Abnormal 

nuclear shape is a diagnostic marker for human diseases, and it can cause nuclear dysfunction. 

Chromatin mechanics underlies this link, as alterations to chromatin and its physical properties 

can disrupt or rescue nuclear shape. The cell can regulate nuclear shape through 

mechanotransduction pathways that sense and respond to extracellular cues, thus modulating 

chromatin compaction and rigidity. These findings reveal how chromatin’s physical properties can 

regulate cellular function and drive abnormal nuclear morphology and dysfunction in disease.

Introduction

The cell nucleus is a mechanically responsive organelle that protects and organizes the 

genome it encloses. Forces can directly dictate gene transcription through the physical 

positioning [1,2] and stretching of genes [3], as well as through force transduction that alters 

nuclear import and export of transcription factors [4,5]. Moreover, the nucleus must resist 

forces from within the cell and its microenvironment to prevent catastrophic events, such as 

nuclear rupture and deformations, which result in mixing nuclear and cytoplasmic contents, 

DNA damage, and disrupted transcription [6–8]. An essential component of this mechanical 

response is chromatin, i.e., the genome and associated proteins, which behaves like a spring, 

elastically resisting few-micron-sized deformations [9–13]. With the advent of chromosome 

capture and various imaging techniques, there have been numerous studies of chromatin’s 

spatial organization [14,15]. However, less is known about how the mechanical properties of 

chromatin dictate spatial organization and what role forces play in governing it, as well as 

the shape and stability of the nucleus as a whole. Recent research on nuclear mechanics and 
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morphology has provided insights into the basic biophysical mechanisms underlying nuclear 

architecture, and consequently, the ways in which chromatin’s physical properties affect 

nuclear function and human diseases.

Physiological impact of defects in nuclear shape and mechanics

Abnormal nuclear shape is a pathognomonic trait that has been used as a diagnostic 

indicator of human disease for nearly a century, albeit without an understanding of the 

mechanisms of nucleus deformations and their effects on function. Cancer diagnostic assays 

examine cell nuclei for unusual sizes and shapes via Pap smear (cervical) [16], nuclear 

herniations termed “blebs” that correlate with Gleason score (prostate) [17], and aberrant 

shapes and orientations via quantitative histomorphometrics (breast) [18,19]. Aberrantly 

shaped nuclei also occur in mechanically demanding environments, such as muscle cells in 

heart disease (cardiomyopathy) associated with progeria and aging and muscular dystrophy 

[20]. The prevalence of abnormal nuclear morphology in cancers and other diseases suggests 

that nuclear shape is normally regulated by the cell. Furthermore, because shape stability of 

an object depends on its mechanical properties, these observations suggest that nuclear 

shape regulation and diseases in which abnormal nuclear shapes occur are linked to the 

mechanics of the nucleus. Indeed, nuclear mechanics play a significant role in malignant 

cancer cells that migrate and invade tissue; nuclear deformation is the rate-limiting step in 

migration [21–23], and deficient nuclear rigidity leads to ruptures and DNA damage upon 

migration through confined volumes [8,24,25].

Abnormal nuclear morphology disrupts nuclear function in several ways. Nuclei that are 

mechanically perturbed by altered lamins or chromatin are prone to rupture, which induces 

exchange of nuclear and cytosolic contents (including chromosomes) [6,26–32]. Loss of 

nuclear compartmentalization can lead to DNA damage [24,25,33], at least in part due to 

concurrent mislocalization of chromatin and DNA repair factors [8,34]. It has furthermore 

been hypothesized that nuclear rupture could activate the cGAS-STING innate immune 

response pathway leading to inflammation, senescence, and cancer (reviewed in [35]). 

Morphological disruption is also associated with changes in the overall spatial organization 

of chromatin and gene expression profile [28,36]. Nuclear blebs arising with ruptures 

correlate with decreased transcription and mRNA transport for the chromatin held within 

[7,37]. Abnormal shape and mechanics could also disrupt mechanotransduction, which 

would result in further perturbations to transcription. Together, these findings demonstrate 

the cell-biological importance of the physical properties of the cell nucleus – perturbations 

of which can lead to nuclear dysfunction – and highlight the role of altered nuclear 

mechanics as a factor underlying human disease.

Mechanical components dictating nuclear shape: chromatin, lamins, and 

the cytoskeleton

The ability of the nucleus to maintain its shape is dictated by a trio of mechanical 

components: chromatin, lamins, and the cytoskeleton (Figure 1A). Chromatin and lamin A 

are the two major resistive elements that protect the nucleus, as shown by atomic force 

microscopy [10,11,38], micropipette aspiration [39,40], substrate stretching [41], and 
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micromanipulation [12,13]. However, experiments with nuclei treated with the chromatin-

degrading enzyme MNase [13,42] show that lamins alone cannot maintain nuclear shape. 

Instead, the lamina buckles under mechanical stress when it is unsupported by chromatin. 

This is consistent with experiments revealing that lamins comprise a thin (10–30 nm) 

peripheral meshwork of highly bendable intermediate filaments with a short (few hundred 

nm) persistence length [43–45]. In turn, lamin networks can unfold during cell and nuclear 

spreading [46], but resist large stretching deformations [13,42,47]. Chromatin is a variably 

compacted polymer filling the nucleus [48] that interacts both with both itself (e.g., 
compartments and topologically associating domains, TADs seen in Hi-C [14]) and the 

nuclear periphery (e.g., lamin associated domains, LADs [49]). Variations in compaction 

may correspond to variations in chromatin stiffness [13,50] and viscoelasticity [40,51–53]. 

Moreover, a number of mechanical measurements demonstrate that chromatin is a stiff 

mechanical element [9,10,12,13,54,55]. Altogether, these data suggest a physical model of 

the nucleus as a semiflexible meshwork of lamins at the nuclear periphery that encloses a 

stiff polymeric chromatin gel [56] (Figure 1A).

Chromatin and lamins have distinct contributions to nuclear mechanics, as detailed by 

micromanipulation force measurements [13]. Chromatin acts as an elastic spring that 

dominates the force response to small deformations (few µm), while the lamin A meshwork 

deforms easily for small extensions and stiffens to resist large deformations (Figure 1B) 

[13,42]. These two regimes reflect the geometry of the cell nucleus [42]. Differential force 

response is biologically important because almost all cell nuclei undergo small deformations 

which are resisted by chromatin, while generally only nuclei in mechanically demanding 

tissues and microenvironments have high lamin A levels [5]. Overall, the interdependence of 

chromatin and lamin organization, as well as extranuclear factors, makes understanding 

nuclear morphology and mechanics a rich and complex physical biology problem.

The cytoskeleton is external to the nucleus, but it is nonetheless an important contributor to 

nuclear shape maintenance that can both antagonize and promote nuclear stability. In its 

antagonistic role, actin-based confinement or compression lead to abnormal shape and 

rupture of perturbed nuclei or models of diseased nuclei [27,28,30,31,57]. Similarly, 

microtubules, along with dynein motors, exert forces that can deform or rupture the nucleus 

[33,55,58–60]. In contrast, the intermediate filament vimentin has a protective role essential 

for nuclear positional stability [61] and for perinuclear stiffness, which impedes 3D motility 

[62]. Additionally, actin cap cables can stabilize nuclear shape [63] in coordination with 

microtubules [64]. Altogether, the balance of the trio of lamins, chromatin, and the 

cytoskeleton tightly regulates nuclear morphology, and the perturbation of any one element 

can lead to global nuclear shape dysfunction.

Lamin perturbations impact nuclear shape via chromatin

Lamin perturbations are well known to induce abnormal nuclear morphology, but the 

physical basis for this is not well understood. Progerin, a misprocessed, permanently 

farnesylated lamin A mutant, causes the premature aging disease progeria and disrupts 

nuclear morphology [65]. Further studies show that depletion of either lamin A or lamin B 

results in similar abnormal morphologies and blebbing of cell nuclei [27,32,41]. While all of 
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these alterations of lamins perturb nuclear morphology, each has a different effect on lamin-

based nuclear mechanics. Lamin A mutant progerin increases nuclear stiffness, while lamin 

A depletion decreases stiffness, and lamin B depletion leads to either no change or increased 

rigidity, depending on lamin A content [5,13,41,66]. Moreover, lamins provide little 

contribution to the mechanical response to deformations on the small length scales of blebs 

and typical nuclear deformations [13,56]. Instead, lamin A is more important in cells 

migrating through pores where the nucleus is highly strained and compressed [22,24,25] 

(Figure 1B). These observations challenge the idea that blebs and other nuclear shape 

aberrations arise from the biophysical properties of lamins alone.

Lamins A, B, and C are interconnected with chromatin, which can cause downstream effects 

that impact the biophysical properties of the cell nucleus. Disruption of proteins that tether 

chromatin to the nuclear envelope results in abnormalities in nuclear fluctuations, overall 

shape, and chromatin organization [55,67–71]. Depletion of lamin A can disrupt lamin 

associated domains (LADs) of chromatin and change chromatin’s spatial localization [72–

75]. Mutant lamin A progerin causes disruption of chromatin connections to the lamina and 

induces decreased heterochromatin and chromatin softening [7,76–79]. Depletion of lamin 

B1 also decreases chromatin connections to the periphery [75] and decreases 

heterochromatin [30,80]. It is significant that each of these downstream chromatin 

perturbations – loss of connections to the periphery, decondensation, and decreased 

heterochromatin content – can independently induce abnormal nuclear morphology (as 

discussed below). Moreover, in many of these lamin-perturbed cases, normal nuclear 

morphologies can be rescued by restoring heterochromatin to normal levels [30,81]. This 

suggests that heterochromatin mechanics may dominate the regulation of nuclear shape, and 

that lamin defects may induce blebs indirectly through their downstream effects on 

chromatin and its anchoring to the nuclear periphery.

Chromatin is a key regulator of nuclear shape

Various chromatin perturbations induce blebbing, ruptures, and other abnormal nuclear 

morphologies, independent of altering lamins. Histone perturbations and modifications are a 

major class of such chromatin alterations. Overexpression of HMGN5 disrupts histone linker 

H1, which results in decreased chromatin compaction, nuclear stability, and rigidity, and 

consequently, increased nuclear blebbing [54]. HMGN5 overexpression in transgenic mice 

leads to cardiac defects and premature death, demonstrating the physiological importance of 

chromatin-based nuclear mechanics and morphology. Alterations in the amount of compact 

heterochromatin and decompact euchromatin are also commonly found in cancers and other 

diseases [82]. Chromatin histone modifications that broadly increase euchromatin or 

decrease heterochromatin result in weakened chromatin-based nuclear rigidity, abnormal 

nuclear morphology, and nuclear ruptures [30]. Increases in heterochromatin, in contrast, 

can rescue nuclear shape and rigidity. Rescue by heterochromatin has been demonstrated for 

both chromatin and lamin perturbations, including in cells with excess histone acetylation, 

lamin B1 depletion, or mutant lamin A progerin overexpression, as well as in Hutchinson-

Gilford progeria syndrome patient cells [30,81]. Similarly, chromatin condensation 

coincides with bleb healing and reabsorption into the nuclear body [29]. Additionally, loss of 

heterochromatin at the nuclear periphery, a common occurrence in lamin-perturbed nuclei, 
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by depletion or mutation of heterochromatin-lamin tethering protein PRR14 causes 

abnormal nuclear morphology [71]. Regulators of histone modifications, such as WDR5, 

which promotes the euchromatin mark H3K4me3, can also regulate nuclear deformability, 

independent of transcription [83]. Thus, changes to histone modification state of chromatin 

through different molecular mechanisms are sufficient to disrupt or restore nuclear 

morphology without requiring lamin alterations (Table 1).

Aside from cases with altered histones, nuclear rupture has also been reported for RPE-1 

cells depleted of well-known cancer-related chromatin proteins Rb and p53, due to enlarged 

nuclei [84]. Depletion of the SWI/SNF chromatin-remodeling ATPase BRG1 causes 

abnormal nuclear morphology in breast epithelia MCF10A cells, due to BRG1-related 

changes in internal nuclear forces [85]. This mimics the abnormal nuclear shape seen in 

more metastatic breast cancers [18]. Depletion of other cancer-relevant molecules, 

particularly p63 [86], miR29-b [87], and NOP53 [88], can also induce abnormal nuclear 

shape, although these perturbations may have effects beyond those on chromatin. Even prior 

to nuclear formation, chromatin mechanics regulates shape; barrier-to-autointegration factor 

(BAF) stiffens chromatin by bridging chromatin sites, which inhibits the formation of 

micronuclei [89]. It remains to be determined whether the other diverse types of chromatin-

chromatin bridging factors, such as loop-forming cohesin [90,91] and phase-separating 

HP1α [92,93], help stabilize chromatin-based nuclear mechanical response. These studies 

(summarized in Table 1) reveal that biophysical properties of chromatin – spatial 

organization, structure, and rigidity – are paramount in maintaining normal nuclear shape 

and function throughout the cell cycle.

Native pathways for regulating nuclear morphology through chromatin

Recent experiments have begun to reveal how chromatin is natively regulated to maintain 

nuclear morphology. While there are several known mechanisms for regulation of the 

cytoskeleton and the lamina that modulate nuclear shape [46,69,94–97], these alterations are 

often upstream of chromatin modifications. Recent studies have demonstrated that cells can 

also directly regulate chromatin compaction through a native pathway. External mechanical 

stimuli trigger mechanotransduction through mechanosensitive ion channels in the plasma 

membrane [98–100], leading to chromatin condensation and heterochromatin formation 

[81,94,101,102]. Mechanotransduction via mechanosensitive ion channels can increase 

heterochromatin levels and chromatin-based nuclear rigidity, while concurrently rescuing 

nuclear shape in lamin-perturbed, chromatin-pertubed, and disease model cells (e.g., 
progeria and breast cancer) [81]. This provides a native chromatin regulation pathway for the 

cell to sense and respond to the extracellular environment in order to protect nuclear shape 

and organization.

Similarly, chromatin condensation and compaction can be regulated through extracellular 

osmotic changes [103,104], compression [105], substrate micropatterning [97,106], cell 

substrate stretching [94,101,102,107], changes in charge composition [81], and cell 

migration [36,108,109]. Notably, heterochromatin levels increase during cell migration, and 

migration through pores can be blocked by the concurrent increase in nuclear rigidity [110]. 

Similar to nuclear rigidity changes due to lamin A increases [22], this increase in chromatin-
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based rigidity could protect nuclei from ruptures that occur when cells migrate through 

narrow pores [24,25] or block migration through pores entirely, thus stopping cancerous 

invasion [21,83,110]. Altogether, cells possess a variety of native mechanisms for regulating 

nuclear shape through rigidity linked to the underlying chromatin compaction state.

Biophysical modeling of nuclear shape

Despite knowing many of the biological factors involved in nuclear morphology, the 

biophysical mechanisms by which chromatin, lamins, and the cytoskeleton regulate nuclear 

morphology remain unclear. Physical modeling may fill the gaps in our mechanistic 

understanding of how these three components cooperate and compete to maintain or disrupt 

nuclear morphology. Several existing models for nuclear shape and rupture focus exclusively 

on the role of lamins [111,112], consider only osmotic pressure associated with the 

nucleoplasm [113], or treat chromatin as a viscoelastic material that is secondary to the 

lamina [114]. Other studies incorporate more robust models for chromatin but primarily 

apply to specific experimental conditions [42,115] or do not extensively explore the physical 

role of chromatin and its linkages to the lamina [115]. Most of these models omit the 

cytoskeleton. Each of these models illustrates how the mechanical properties of different 

cellular components may regulate nuclear morphology, yet altogether, they provide an 

incomplete mechanistic picture. Figure 1 depicts key concepts that could be elucidated by 

further modeling efforts. Such efforts are likely to both inform and be informed by 

continuing experiments in this developing field.

Conclusion

The tight interplay between chromatin’s genetic regulation, compaction, spatial 

organization, and mechanics controls nuclear function. Chromatin is a stiff polymer gel that 

fills the nucleus, providing the nucleus with a robust mechanical response complementing 

the strain stiffening of the nuclear lamina. These two nuclear components, along with the 

cytoskeleton, shape the nucleus and the genome within. An imbalance between these three 

components can induce abnormal nuclear shape, which can disrupt chromatin organization 

and transcription, cause nuclear rupture, and increase DNA damage. We have emphasized 

that chromatin-based mechanics is an underlying mechanism of abnormal nuclear 

morphology. Furthermore, emerging data reveal that extracellular stimuli sensed by the cell 

can regulate chromatin mechanics, and thus, shape through modulating histone modification 

state. Chromatin itself, through its structure and mechanics, is emerging as key factor that 

determines normal nuclear function, as well as dysfunction in a variety of disease contexts.

Many intriguing questions remain regarding the connections between chromatin 

organization, nuclear shape, and nuclear function. Are there specific histone modifications 

and chromatin remodeling factors that are particularly important in governing nuclear 

shape? Can we develop a detailed understanding of how shape impacts chromatin 

organization, e.g., via Hi-C experiments? There are also many interesting questions about 

function, such as how do chromatin modifications that control nuclear shape affect 

transcription? And how do we separate the effects chromatin modifications have on 

mechanics, organization, biochemistry, and transcription from each other? As we have begun 
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to see for cell migration and DNA damage response, addressing these questions will provide 

insight into broader questions of how chromatin organization and nuclear shape impact 

cellular functions, e.g., the cell cycle, development, homeostasis, and tissue self-

organization. Study of nuclear shape and mechanoregulation may reveal new therapeutic 

targets across a range of diseases spanning cancers, dystrophies, progerias, aging, and more.
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Figure 1. Chromatin is a major contributor to nuclear mechanics and shape along with lamins 
and the cytoskeleton.
(A) The major protective mechanical components of the nucleus that aid nuclear shape 

stability are chromatin (blue), which is a stiff polymer gel, and lamins (green), which are an 

intermixed meshwork of easily bendable intermediate filaments of lamin A, B1, B2, and C. 

The cytoskeleton components actin (purple) and microtubules (orange) antagonize nuclear 

shape stability, although actin and vimentin (not shown) can also aid stability. (B) Top: 

Schematic showing differential force response regimes arising due to geometric 

considerations for lamins (a 2D meshwork) and chromatin (a 3D gel). For short, few-micron 

deformations (i.e., small strains), the chromatin gel acts as a spring that resists stretching, 

while lamins contribute little as they bend easily until they are aligned with the tension axis. 

Longer deformations, for which the lamins are aligned with the force, generate lamin-A-

based strain stiffening. Chromatin continues to resist stretching of the nucleus at long 

deformations as a secondary component. Bottom: Abnormal nuclear shape and blebs are 
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small deformations, occurring in the regime dominated by chromatin. During migration 

through pores, the nucleus extends many microns (>3 µm) into a deformation regime that 

necessitates and activates lamin A resistance to maintain shape stability. Failure to maintain 

shape stability in either condition can result in disruption of transcription through chromatin 

disorganization or blebs that inhibit it. Either shape disruption can result in nuclear ruptures 

that lead to DNA damage and loss of nuclear compartmentalization.

Stephens et al. Page 16

Curr Opin Cell Biol. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Stephens et al. Page 17

Table 1.
Summary of comparison of lamin- and chromatin-based perturbations that change 
nuclear morphology.

Lamin perturbations that disturb nuclear shape, but can either strengthen, weaken, or not change the nucleus. 

The commonality is that they disrupt chromatin in some fashion. Increasing stiffness by heterochromatin 

formation stabilizes nuclear shape in lamin perturbations. Chromatin perturbations that soften the nucleus 

destabilize nuclear shape without the need to alter lamins.

Lamin perturbations that result in abnormal nuclear morphology

Type Mechanics Effect on chromatin Shape rescue via chromatin

Lamin A depletion weaker ~50% decreased chromatin-lamina 
attachments [72–75] (not tested)

Progerin, mutant lamin 
A stiffer 100%

decreased chromatin-lamina 
attachments and decreased 
heterochromatin [7,76–79]; softer 
chromatin by 50% [76]

increased heterochromatin [30,81]

Lamin B depletion
no change or stiffer 
(lamin A amount 
dependent)

decreased chromatin-lamina 
attachments [75]; decreased 
heterochromatin [30,80]

Increased heterochromatin [30,81]

Chromatin perturbations that result in abnormal nuclear morphology

Type Mechanics Chromatin perturbation Lamins Citations

HMGN5 
overexpression weaker ~40% H1 (linker histone 1) disruption, 

chromatin decondensation no change (Furusawa et al., 2015) 
[54]

broad histone 
acetylation

35% weaker 
chromatin; lamin A 
stiffening unchanged

increased euchromatin (H3K9ac, 
H4K5ac) no change (Stephens et al., 2018a) 

[30]

broad histone 
demethylation

35% weaker 
chromatin; lamin A 
stiffening unchanged

decreased heterochromatin 
(H3K9me2,3, H3K27me3)

no change (Stephens et al., 2018a) 
[30]

WDR5/RbBP5 correlated to weaker 
~60%

increased euchromatin H3K4me3, 
activated in 3D, but not 2D, culture

no change (Wang et al., 2018) [83]

PRR14 depletion (not tested)
chromatin/HP1-lamin A tethering 
protein, loss of heterochromatin at 
periphery

no change (Poleshko et al., 2013) 
[71]

BRG1 depletion (not tested) SWI/SNF ATPase chromatin-
remodeler lamin grooves (Imbalzano et al., 2013) 

[85]

p53 depletion (not tested) chromatin protein associated with 
cancer no change (Yang et al., 2017) [84]

Rb depletion (not tested) chromatin protein associated with 
cancer no change (Yang et al., 2017) [84]

p63 depletion (not tested) transcription factor, decreased 
heterochromatin & HP1

decreased lamin 
expr.

(Rapisarda et al., 2013) 
[86]

miR-29b blockade (not tested) cancer-relevant microRNA that 
modulates DNA methylation - (Kriegel et al., 2018) [87]

NOP53 depletion (not tested) p53 interacting protein - (Lee et al., 2018) [88]

BAF depletion weaker, in vitro depletes chromatin bridging during 
nuclear formation

no change 
reported (Samwer et al., 2017) [89]
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