
Ultra-low-dose PET reconstruction using generative adversarial network with
feature matching and task-specific perceptual loss

Jiahong Ouyang and Kevin T. Chen
Department of Radiology, Stanford University, Stanford, CA 94305, USA

Enhao Gong
Subtle Medical, Menlo Park, CA 94025, USA

John Pauly
Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA

Greg Zaharchuka)

Department of Radiology, Stanford University, Stanford, CA 94305, USA
Subtle Medical, Menlo Park, CA 94025, USA

(Received 19 February 2019; revised 2 April 2019; accepted for publication 5 May 2019;
published 17 June 2019)

Purpose: Our goal was to use a generative adversarial network (GAN) with feature matching and
task-specific perceptual loss to synthesize standard-dose amyloid Positron emission tomography
(PET) images of high quality and including accurate pathological features from ultra-low-dose PET
images only.
Methods: Forty PET datasets from 39 participants were acquired with a simultaneous PET/MRI
scanner following injection of 330 � 30 MBq of the amyloid radiotracer 18F-florbetaben. The raw
list-mode PET data were reconstructed as the standard-dose ground truth and were randomly under-
sampled by a factor of 100 to reconstruct 1% low-dose PET scans. A 2D encoder-decoder network
was implemented as the generator to synthesize a standard-dose image and a discriminator was used
to evaluate them. The two networks contested with each other to achieve high-visual quality PET
from the ultra-low-dose PET. Multi-slice inputs were used to reduce noise by providing the network
with 2.5D information. Feature matching was applied to reduce hallucinated structures. Task-specific
perceptual loss was designed to maintain the correct pathological features. The image quality was
evaluated by peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and root mean square
error (RMSE) metrics with and without each of these modules. Two expert radiologists were asked to
score image quality on a 5-point scale and identified the amyloid status (positive or negative).
Results: With only low-dose PET as input, the proposed method significantly outperformed Chen
et al.’s method (Chen et al. Radiology. 2018;290:649–656) (which shows the best performance in this
task) with the same input (PET-only model) by 1.87 dB in PSNR, 2.04% in SSIM, and 24.75% in
RMSE. It also achieved comparable results to Chen et al.’s method which used additional magnetic
resonance imaging (MRI) inputs (PET-MR model). Experts’ reading results showed that the proposed
method could achieve better overall image quality and maintain better pathological features indicating
amyloid status than both PET-only and PET-MR models proposed by Chen et al.
Conclusion: Standard-dose amyloid PET images can be synthesized from ultra-low-dose images
using GAN. Applying adversarial learning, feature matching, and task-specific perceptual loss are
essential to ensure image quality and the preservation of pathological features. © 2019 American
Association of Physicists in Medicine [https://doi.org/10.1002/mp.13626]
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1. INTRODUCTION

Positron emission tomography (PET) is a widely used imag-
ing technique in many clinical applications including tumor
detection1 and neurological disorder diagnosis.2 In particular,
amyloid PET plays a significant role in dementia diagnosis.
The amyloid plaque buildup is an important biomarker for
Alzheimer’s disease (AD) diagnosis, where AD patients usu-
ally show tracer retention in the cerebral cortex area (amyloid
status positive) with amyloid imaging.3,4 The interpretability

of the amyloid status from the PET scans largely decides the
diagnosis accuracy.

To obtain high-quality images, the amount of injected
radiotracer in current protocols leads to the risk of radiation
exposure in scanned subjects. As AD trials begin to focus on
younger, cognitively intact subjects, reduced dosage is espe-
cially desirable.5 Decreasing this injected dose can lower
radiation exposure risk6 as well as imaging costs,7,8 though at
the expense of lowering the PET image signal-to-noise ratio
and structural similarity, further affecting the disease
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diagnosis. To solve this problem, an algorithm9 was proposed
to synthesize high quality and accurate PET images either
with only ultra-low-dose PET images as input (PET-only
model) or with additional magnetic resonance imaging
(MRI) inputs (PET-MR model). A deep convolutional neural
network with L1 loss was used for image reconstruction. To
the best of our knowledge, this method holds the best perfor-
mance on ultra-low-dose amyloid PET reconstruction. How-
ever, this method could only generate high-quality images
with additional MRI contrast images while generating blurry
images when only low-dose PET inputs were available. This
limited the utility of the method to data acquired on PET/
MRI machines only; however, most clinical trials still use
PET/CT scanners where no simultaneous MRI data are avail-
able.

In Chen et al.’s method8,9 where only an encoder-decoder
structure was used for image synthesis, blurriness and miss-
ing details could be noticed in some key structures. It is inevi-
table as only an "unstructured" loss function is used, which
means each output pixel is considered conditionally indepen-
dent from others given the input image. To address the issues
of blurriness and missing details, structured loss,10 which
penalizes the joint configuration of the output, and adversar-
ial learning enables the network proposed in this work to syn-
thesize images with more realistic features.

Recently, generative adversarial networks (GANs) have
attracted a lot of attention in computer vision applications,
yielding superior performance on image translation and gen-
eration, and have been gaining more interest from the medical
field. Introduced by Ian Goodfellow,11 Generative adversarial
networks are generative models with the objective of learning
the underlying distribution of training data in order to gener-
ate new realistic data samples. Pix2pix conditional GAN10

was proposed to solve supervised image-to-image translation
problems. Medical image translation tasks have been
explored on computed tomography (CT) to PET,12 CT to
MRI, MRI to CT,13 and fourfold low-dose PET to standard-
dose PET.14 Other work14,15 also incorporated non-adversar-
ial losses from recent image style transfer techniques16 which
transferred the style of an input image onto the output image,
matching their textures and details in the process. Most of
these applications were based on the pix2pix architecture.
The performance on these tasks shows the potential of recon-
structing images with detailed structures. In this study, we
aimed to train a GAN-based deep network to synthesize diag-
nostic-quality standard-dose-like images with ultra-low-dose
PET (99% dose reduction) as input.

2. MATERIALS AND METHODS

2.A. Data acquisition and preprocessing

Using a simultaneous time-of-flight enabled PET/MRI
scanner (Signa, GE Healthcare, Waukesha, WI, USA), 40 sets
of PET data were acquired from 39 participants at 90–
110 min after the injection of 330 � 30 MBq of the amyloid
radiotracer 18F-florbetaben. The raw list-mode PET data
were reconstructed as the standard-dose ground truth and
were randomly undersampled by a factor of 100 to recon-
struct 1% low-dose PET scans. Positron emission tomogra-
phy reconstruction was performed using the standard Ordered
Subsets Expectation Maximization (OSEM) method with two
iterations and 28 subsets, with correction for randoms17, scat-
ter,18 dead time, and attenuation.19 Attenuation correction
was performed using the vendor’s default algorithm, which
uses an atlas created from 2-point Dixon MR imaging. Each
PET volume consists of 89 2.78 mm-thick slices with
256 mm2 9 256 mm2 1.17 mm2 9 1.17 mm2 pixels. Each
volume was normalized by the mean value of the nonzero
region. The top and bottom 20 slices, which usually did not
cover the brain, were removed. To avoid overfitting, data aug-
mentation of flipping along the X and Y axes was adopted.
Fourfold validation was adopted to obtain synthesized results
for each dataset. Figure 1 represents the pipeline for data pre-
processing from the standard-dose raw list-mode PET to the
paired standard-dose and low-dose images for training and
testing. We used the FreeSurfer to obtain the segmentation
masks of temporal cortex for the region-specific evaluation in
experiments.

2.B. Network structure and objective function

The architecture of the proposed method is shown in
Fig. 2, consisting of the following three blocks: the generator
G, the discriminator D, and a pretrained amyloid status classi-
fier T. The input of the network is the stack of nine neighbor-
ing slices from the low-dose PET images, as using only a
single low-dose image as input may not provide enough infor-
mation to reconstruct some detailed structures and may also
cause noise and generate hallucinated structures. As shown in
Xu et al,8 using multi-slice inputs instead of a single-slice
input can help to improve the image quality. The proposed
method stacks neighboring slices together as different chan-
nels of the input to provide the network with 2.5D structural
information between different slices, helping the network dis-
tinguish random noise from actual morphology of the subject.

FIG. 1. Pipeline for data preprocessing. [Color figure can be viewed at wileyonlinelibrary.com]
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The generator is an encoder-decoder U-Net structure, in
which each stage consists of either convolution or de-convo-
lution layers with kernel size of 4 9 4 and stride size of
2 9 2 (Conv), a leaky rectified linear unit with leaky ratio of
0.2 (Leaky ReLU), and batch normalization (BN). Concate-
nate connections are linked between the corresponding layers
of the encoder and decoder. SoftPlus activation function is
used for the output layer to match the value range of the target
image. The discriminator is a classifier that consists of four
stages of Conv-Leaky ReLU-BN. The network is trained by
the Adam optimizer with a learning rate of 0.0002 and a
batch size of 4 over 100 epochs. The generator is trained
twice while the discriminator is trained once to keep the bal-
ance between the two components. The pretrained T network
is a classifier with ResNet-18 structure20 that is trained for
the amyloid status regression on the standard-dose images
with an early stop strategy. In training and testing of the
GAN, T acts merely as a feature extractor without updating
the parameters.

The optimization loss consists of three parts, namely:
pixel-wise L1 loss, structured adversarial loss LcGAN by fea-
ture matching, and the task-specific perceptual loss Lperceptual
including content loss Lcontent and style loss Lstyle. Thus, the
objective function G� for training the generator can be written
as:

G� ¼ argminGmaxD LcGANðG;DÞ þ k1L1ðGÞ
þ kcLcontentðG; TÞ þ ksLstyleðG; TÞ (1)

The appropriate k for each type of loss and each layer
needs to be chosen. kgi, kcj; and ksj were selected to allow
each layer in the discriminator or the task-specific network to
have relatively the same scale of influence on the loss. Here,

we chose kgi for i = 1,2,3 and kg4 ¼ 0:1, kcj ¼ ksj ¼ 1. The
weight of each type of loss was chosen as: k1 ¼ 102,
kc ¼ 103, and ks ¼ 104.

3. THEORY

3.A. Adversarial learning

As proposed in Isola et al,10 adversarial learning can be
used for transferring images between two domains with the
compensation of structured loss. Here, GAN is introduced to
transfer the input low-dose PET image x� plow�dose with a
random noise vector z to the corresponding target standard-
dose PET y� pstandard�dose. Comparing with Chen et al.’s
method, which only used a encoder-decoder structure as Gen-
erator G for image synthesis, a discriminator D is added to
serve as a classifier to judge the output image from the gener-
ator of whether it is real or fake. To ensure that D also evalu-
ates whether G synthesizes images with corresponding
features from the input, the input low-dose images are stacked
with the output or target to feed into D. To make the genera-
tor and the discriminator compete with each other and
improve simultaneously, the adversarial loss representing the
loss of the discriminator’s output can be written as:

LcGANðG;DÞ ¼ Ex;y½logDðx; yÞ� þ Ex;z½logð1
� Dðx;Gðx; zÞÞ� (2)

Here, Gðx; zÞ represents the synthesized image from G,
Dðx; zÞ and Dðx;Gðx; zÞÞ stand for the digit outputs of D for
real and fake images, respectively, and E indicates the mathe-
matical expectation. The adversarial learning enables the net-
work to synthesize images with more realistic features.

FIG. 2. Architecture of the proposed method. [Color figure can be viewed at wileyonlinelibrary.com]
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However, using only the adversarial loss cannot ensure that
the synthesized image shares a similar global structure with
the standard-dose image, thus a pixel-wise loss is included:

L1 ¼ Ex;y;z½k y� Gðx; zÞk1� (3)

The final objective that the training process optimizes is
the combination of the two losses:

G� ¼ argminGmaxD LcGANðG;DÞ þ k1L1ðGÞ (4)

One thing of note is that, in image-to-image conditional
GAN, whether adding the noise vector z or not will not
explicitly effect the results, because the input image itself
already contains enough variance.10 Hence, we did not
explicitly add z in our implementation.

3.B. Feature-matching technique

As stated in Salimans et al,21 GANs generally face the
problem of instability in training, as simply providing the true
or fake label by the discriminator is not enough for the gener-
ator to improve. In addition, hallucinated structures are pro-
duced during the oscillating training process.

Feature matching was introduced here to address the prob-
lems by specifying a new objective for the generator, requir-
ing the generator to synthesize images that match the
expected value of the features on the intermediate layers of
the discriminator, instead of directly maximizing the output
of the discriminator. The new adversarial loss can be written
as:

LcGANðG;DÞ ¼
X

i

kdi
1

hiwici
k Ey½DiðyÞ� � Ex;z½DiðGðx; zÞÞ� k22 (5)

Di denotes the activation on an intermediate layer of the dis-
criminator and hiwici represents the size of the layer. The fea-
ture matching adversarial loss is used as the substitute of the
original adversarial loss in training the generator. The dis-
criminator is trained in the usual way.

3.C. Task-specific perceptual loss

With the learning strategies above, the network can syn-
thesize images of high-visual quality that are consistent with
the realistic distribution of the standard-dose PET, but not
necessarily with matched clinical interpretations, which in
our case would be either a positive or negative amyloid
uptake status.

Combining perceptual loss16 into the GAN architecture
was shown to be useful in improving the synthesized image
quality.14,15 However, the widely used pretrained VGG22 on
ImageNet will not solve the problem as stated above, as it
merely captures the features of natural images. Here, we first
trained an extra network for amyloid status regression and
then use the pretrained network to extract the task-specific
perceptual loss.

3.C.1. Amyloid status classifier

In this work, we trained a network (T) to accurately predict
the amyloid status as positive (1) or negative (0). For the
ground-truth label, two expert radiologists were asked to read
the amyloid status on the standard-dose PET images for all
40 datasets. For the cases that were ambiguous (disagreement
between the two radiologists), an amyloid status value of 0.5
was assigned. Subsequently, the network was trained using a
regression strategy, optimizing L2 loss, instead of the simple
binary cross entropy, for classification. Data augmentation
including flipping along the X and Y axes was implemented.
The top and bottom 20 slices were also removed as they did
not include the supratentorial brain, and thus contained less
information on amyloid status.

For the task-specific network, we implemented ResNet-18
and trained it from scratch, as residual learning had been
shown to have superior performance on computer vision
tasks such as classification and detection.20 Fourfold cross-
validation was also adopted here with the corresponding
training and testing splits in GAN.

3.C.2. Extracting task-specific perceptual loss

Perceptual loss is usually combined with GAN for better
image synthesis quality, to ensure that images are generated
with the correct features.14,15

The perceptual loss has the following two parts: content
loss and style loss. Similar to feature matching, we encourage
the synthesized image to match the target image by forcing
them to have similar feature representations. The content loss
can be represented by the Euclidean distance between feature
representations:

LcontentðG; TÞ ¼
X

j

kcj
1

hjwjcj
k TjðyÞ � TjðGðx; zÞÞ k22

(6)

Tj yð Þ and TjðGðx; zÞÞ stand for the feature maps from the jth

layer in the network T for the ground-truth image and the
synthesized image, respectively. hjwjcj stands for its size.
With the content loss, we encouraged the synthesized image
Gðx; zÞ to be perceptually similar on the pathological features
to the ground-truth standard-dose image y, but did not force
them to match exactly.

Aside from the content loss, differences in style (image
textures and pathological patterns) would still have to be
penalized. Here, the style loss is introduced. We first define
the Gram matrix for jth layer in the network T ; m and n
denote the index for a specific channel in that layer:

GramjðyÞm;n ¼
1

hjwjcj

Xhj

h¼1

Xwj

w¼1

TjðyÞh;w;mTjðyÞh;w;n (7)

According to Johnson et al,16 the Gram matrix for a layer
can be computed efficiently by reshaping TjðyÞ into a matrix
w of shape cj � hjwj:
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GramjðyÞ ¼ 1
hjwjcj

wwT (8)

Then, the style loss can be represented by the difference
between the Gram matrix of the synthesized image and the
ground-truth image:

LstyleðG;TÞ ¼
X

j

ksj kGramjðyÞ�GramjðGðx; zÞÞ k22 (9)

We can interpret it this way: each layer of the network
extracts different levels of features and each channel in a layer
extracts different types of features from the same level. The
Gram matrix learns the style of the image by projecting the
feature maps from the same layer to a higher dimensional
space, so that the stylistic features are preserved rather than
the spatial structure. Then the style loss is computed by com-
paring the difference between the synthesized image and the
ground-truth image in this space.

A pretrained VGG16 or VGG19 on ImageNet is usually
used as the feature extractor for content loss and style loss.
However, the pretrained model on a natural dataset like Ima-
geNet with no prior knowledge on the task does not meet the
requirement of extracting the right pathological features. By
using the pretrained amyloid status classifier, we get a task-
specific feature extractor that specifically focuses on extract-
ing amyloid status-related features.

3.D. Evaluation method

The synthesized image quality was assessed by three met-
rics, namely: peak signal-to-noise ratio (PSNR), structural
similarity (SSIM), and root mean square error (RMSE).
These metrics were also measured in the temporal cortex for
region-specific analysis. Frequency-based blurring measure-
ment (FBM)23 and edge-based blurring measurement
(EBM)24 were used to measure the sharpness of the image
structures. The statistics for each slice (with the top and bot-
tom 20 slices removed) were averaged to obtain the metrics
for each dataset.

Readings of image quality and amyloid status diagnosis
were included for clinical assessment. The low-dose PET,
standard-dose PET, and the synthesized PET images of each
subject were anonymized and read in random order by two
certified clinicians (one radiologist and one nuclear medicine
physician), who also performed the same readings on images
generated from Chen et al.’s method9 to make the results
comparable. The readers gave each volume a score from 1 to
5 for the image quality. We considered 1-3 as low quality and
4-5 as high quality. The readers also gave amyloid status
diagnoses (positive or negative) for each volume. The consis-
tency between their diagnosis on the standard-dose ground-
truth and the synthesized images shows how well the method
can maintain the pathological features. For both tasks, the
readers were asked to read the standard-dose PET twice to
determine intra-reader reproducibility.

4. RESULTS

In the experiments, we took Chen et al.’s 2D U-Net PET-
only model9 as the baseline model, gradually adding each
module/technique introduced above and comparing the
results. Here we also show specifically the contribution of the
task-specific perceptual loss; results for the contribution from
other components and the weight selection for L1 loss can be
seen in the supplementary file and Figs. S1–S8. Finally, we
compared the best version of the proposed method with Chen
et al.’s models.

4.A. Contribution of task-specific perceptual loss

Task-specific perceptual loss was computed by the feature
maps extracted from the task-specific network to ensure the
consistency of the pathological features shown in the synthe-
sized and standard-dose images. To evaluate the contribution
of the task-specific perceptual loss, on the top of the model
with nine-slice input, L1 loss, and feature matching loss, we
compared the results of no perceptual loss, adding percep-
tual loss computed by the widely used pretrained VGG16 on
ImageNet, and adding perceptual loss computed by the pre-
trained amyloid status classifier. Results are shown in Figs. 3
and 4.

4.B. Comparing with Chen et al.'s method

We compared our proposed best model (nine-slices input
with L1 loss, feature matching adversarial loss, and percep-
tual loss extracted by pretrained amyloid status classifier)
against Chen et al.’s method9 using single-slice input and L1
loss. The proposed method and Chen et al.’s PET-only model
used only the ultra-low-dose PET as input, while Chen et al.’s
PET-MR model also incorporated MRI inputs (T1-, T2-, and
T2 FLAIR-weighted images).

To examine the perceptual image quality, two representa-
tive slices were selected from different subjects. As shown in
Figs. 5 and 6., comparing to Chen et al.’s PET-only model,
the synthesized images from the proposed method main-
tained more structural details and were visually more similar
to the ground-truth standard-dose PET.

Quantitatively, Fig. 7 shows the average performance in
terms of PSNR, SSIM, and RMSE. The proposed method on
average increased 4.14 dB in PSNR, 7.63% in SSIM, and
decreased 33.55% in RMSE from low-dose PET images and
outperformed Chen et al.’s PET-only model by 1.87 dB in
PSNR, 2.04% in SSIM, and 24.75% in RMSE. Among all 40
cases, the proposed method achieved better performance than
Chen et al.’s PET-only model in all three metrics. The pro-
posed method also achieved comparable performance with
Chen et al.’s PET-MR model. Region-specific measurements
are shown in Fig. 8.

For the image quality readings, Fig. 9 shows the distribu-
tion of image quality scores for the low-dose, standard-dose,
and the synthesized images from Chen et al.’s PET-only
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model, PET-MR model, and the proposed method. Scores for
all the low-dose PET images were either 1 or 2 (average score
1.30). The standard-dose ground-truth images had an average
score of 4.41 with only four cases out of all 80 evaluations
(40 cases read independently by two radiologists) considered
as low-image quality. The results from the proposed method
had an average of 4.27 with only five low-quality scores,
comparable to the ground-truth and far outperforming Chen
et al.’s method PET-only model (average score 3.22 with 56
low-quality scores) and PET-MR model (average score 4.02

with 12 low-quality scores). The confusion matrix for inter-
reader agreement of the image quality score is shown in
Table S1.

For the amyloid status diagnosis, Tables I–III show the
confusion matrices for the radiologists’ reading results, com-
paring readings from the synthesized images to the readings
from the standard-dose ground-truth images. The proposed
method achieved an error rate of only 10%, in contrast to
Chen et al.’s PET-only model (20%) and PET-MR model
(11.25%). We can see that with Chen et al.’s PET-only model,

FIG. 3. Qualitative results of the model without perceptual loss and with perceptual loss computed from either VGG16 or a task-specific network. (a) low-dose
PET, (b) standard-dose PET, (c) no perceptual loss, (d) perceptual loss from VGG16, (e) perceptual loss from pretrained amyloid status classifier (task-specific).
PET, Positron emission tomography. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 4. Image quality metrics: PSNR, SSIM, RMSE of models without perceptual loss and with perceptual loss computed from either VGG16 or a task-specific
network. PSNR, peak signal-to-noise ratio; RMSE, root mean square error; SSIM, structural similarity. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 5. Qualitative results comparing Chen et al.'s and the proposed method. (a) low-dose PET, (b) standard-dose PET, (c) Chen et al.'s PET-only model, (d)
Chen et al.'s PET-MR model, (e) proposed method (PET-only). PET, Positron emission tomography.
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the clinicians tended to classify amyloid negative as positive
because in the synthesized images, features were smeared out
among the cerebral cortex area, misleading them on whether
there is true cortical tracer deposition, while the proposed
method significantly increased the diagnosis specificity. An
example is shown in Fig. 5, where the upper image is a repre-
sentative slice from a negative case, which was read as posi-
tive based on Chen et al.’s PET-only model but read correctly
based on the proposed method. The confusion matrix for

inter-reader agreement of the amyloid status is shown in
Table S2.

Here, we also compared the diagnosis accuracy between
the clinical readers and the amyloid status classifier (the pre-
trained task-specific network T), which is shown in Table IV.
The error rate of the clinicians is subject-wise, as they
decided the amyloid status based on the whole 3D volume.
The error of the classifier is measured slice-wise, as it is a 2D
network. The classifier will give each slice a score from 0 to

FIG. 6. Error maps of figure 5. (a) low-dose PET, (b) Chen et al.'s PET-only model, (c) Chen et al.'s PET-MR model, (d) proposed method (PET-only). PET, Posi-
tron emission tomography. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 7. Image metrics comparing Chen et al.'s and the proposed method. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 8. Image metrics comparing Chen et al.'s and the proposed method on temporal cortex area. [Color figure can be viewed at wileyonlinelibrary.com]
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1 as its amyloid status prediction. The error for each slice is
the mean absolute error (MAE) between the prediction and
the average status label given by the two clinicians. Based on
the classification results on the middle 20 slices of the vol-
ume, the subject-wise error rate is computed by voting and
following the majority rule. Considering the subject-wise
accuracy, the classifier makes no mistakes on standard-dose
and both sets of results from the proposed and Chen et al.’s
methods, largely outperforming the human experts’ error rate
of 8 and 16 over 80 judgements, respectively.

5. DISCUSSION

We trained a GAN-based network with feature matching,
and a task-specific network to synthesize the standard-dose
amyloid PET images with only 1% dose images. We obtained
results that were superior than Chen et al.’s model both quan-
titatively and based on clinical interpretation.

5.A. Benefits of each component

The adversarial learning generates less blurry image with
more details. Feature matching suppresses the possible hallu-
cinated structures caused by the adversarial learning to ensure
the high image quality. Stacking neighboring slices provides
the network with 2.5D information to suppress the random
noise and artifacts while keeping the detailed structures. The
task-specific network ensured the consistency in pathological
features (amyloid status). Specific benefits of this task-speci-
fic network with its perceptual loss are discussed in the fol-
lowing; detailed analyses of other components can be found
in the supplementary file.

As indicated on Figs. 3 and 4. adding perceptual loss
based on the ImageNet pretrained VGG16 did not have an
obvious contribution to the image quality, as the features
extracted by the VGG16 are related to natural image proper-
ties but with no specific emphasis on the pathological imag-
ing features. On the contrary, the pretrained task-specific
network learned features that were most salient to amyloid

FIG. 9. Image quality score given by two physicians comparing Chen et al.'s and the proposed method. 1 = uninterpretable, 5 = excellent. Mean scores and the
standard deviations shown at the top of each bar. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE I. Confusion matrix between the standard-dose and the synthesized
images from the proposed method.

Confusion Matrix

Proposed Method

N P total

Standard-dose PET

N 50 7 57

P 1 22 23

total 51 29 80

PET, Positron emission tomography.

TABLE II. Confusion matrix between the standard-dose and the synthesized
images from the Chen et al.’s PET-only model.

Confusion Matrix

Chen et al.’s PET-only model

N P total

Standard-dose PET

N 46 11 57

P 3 20 23

total 49 33 80

PET, Positron emission tomography.

TABLE III. Confusion matrix between the standard-dose and the synthesized
images from the Chen et al.’s PET-MR model.

Confusion Matrix

Chen et al.’s PET-MR model

N P total

Standard-dose PET

N 49 8 57

P 1 22 23

total 50 30 80

PET, Positron emission tomography.

Medical Physics, 46 (8), August 2019

3562 Ouyang et al.: Ultra-low-dose PET reconstruction 3562

www.wileyonlinelibrary.com


status, thus adding the perceptual loss through this network
could ensure the consistency of the amyloid status between
the standard-dose ground-truth and the synthesized images.
From visual results shown in Fig. 3, the enhancement of fea-
tures related to the amyloid status can be noticed in the cere-
bral cortex area.

5.B. Comparison with Chen et al.'s method

The proposed method shows superior performance on all
evaluation methods, including the image metrics and clinical
readings on image quality score and amyloid status. Figure 7
indicates that based on the low-dose input, with its inferior
signal-to-noise ratio and structural similarity, the proposed
method can synthesize images that are most similar to the
ground-truth. Region-specific measurements illustrate the
same results in Fig. 8. As the amyloid retention in cerebral
cortex area is a biomarker required for a diagnosis of AD3,4

and the temporal lobe is most related with memory,25 we con-
ducted the regional experiments in the temporal cortex area.
The synthesized images also demonstrated comparable image
quality with the standard-dose PET based on the quality
scores. In addition, the diagnostic value shows high accuracy,
sensitivity, and specificity for amyloid status compared to
Chen et al.’s method. Chen et al.’s results had a significantly
higher false positive rate possibly due to the smoothing effect
from activity originally in the white matter bleeding into the
adjacent cortical regions; this is mitigated by the proposed
method with less blurry images and more detailed structures.

5.C. Clinical value

Ultra-low-dose PET acquisitions would be advantageous
for many reasons. They would allow for more frequent scan-
ning under current radiation safety standards. They would
also reduce the cost of radiotracers and extend the geographi-
cal range over which radiotracers could be provided. On the
other hand, reducing the scan time (also reducing the amount
of counts collected in a scan) can allow for increasing the
throughput of subjects scanned at an institution, alleviating
wait-times for scans at busy centers. Moreover, certain patient
populations who may be more susceptible to radiation risk
(e.g., pediatric patients) can also be scanned under a low-dose
PET acquisition protocol, expanding use cases. Finally, PET/
CT scanners are much more common than PET/MRI scan-
ners. The proposed method is compatible with these scan-
ners, broadening the potential application of ultra-low-dose
imaging.

5.D. Limitation and future work

There are several limitations to our study. First, the low-
dose data we used were randomly undersampled from the
standard-dose PET, instead of using data with true injected
1% dose. The method should be further evaluated with the
actual ultra-low-dose acquisition, and these studies are ongo-
ing. Second, the normalization method we used was dividing
the volume with its mean in the nonzero area, which ignored
the absolute value of the original PET images. It might be
improved by using physiologically relevant values such as the
standard uptake value (SUV) for normalization, although
clinical interpretation is often based on relative values (such
as the SUV ratio compared to a region-of-interest in the cere-
bellum) rather than relying on the absolute quantitative value.
Third, the model we implemented is 2.5D due to the limited
number of datasets available. The results are likely to be
improved by using a 3D CNN model, though this will
increase the computational requirements.

For future work, MR contrasts can be added as input to
the model to see whether the additional structural information
can help further improve the reconstruction.

6. CONCLUSION

In this paper, we proposed a GAN-based deep network
with task-specific perceptual loss to synthesize high quality
and diagnostic amyloid PET images using only 1% low-dose
PET as input. Based on Chen et al.’s method using U-Net
with L1 loss, adversarial learning is added to mitigate the
blurring and maintain more morphological detail. Feature
matching is used to suppress the hallucinated structures from
the adversarial learning. Task-specific perceptual loss is com-
puted from the pretrained amyloid status classifier to ensure
the consistency of the pathological features between the stan-
dard-dose ground-truth and the synthesized images. Results
showed significant improvement on image quality and diag-
nosis consistency compared to Chen et al.’s method.
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TABLE IV. Comparison of the error rate of clinicians and the amyloid status classifier.

Standard-dose PET Chen et al.’s PET-only Chen et al.’s PET-MR Proposed method

CliniciansSubject-wise error/all cases Ground-truth 16/80 9/80 8/80

Amyloid status classifier 0.136 0.140 0.134 0.132

Slice-wise MAE (subject-wise error) (0/40) (0/40) (0/40) (0/40)

PET, Positron emission tomography.
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SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Fig. S1. Qualitative results of the model with adversarial
learning. (a) low-dose PET, (b) standard-dose PET, (c) sin-
gle-slice+L1 model (Chen et al.'s PET-only model), (d) sin-
gle-slice+L1+GAN model.
Fig. S2. Image quality metrics: PSNR, SSIM, RMSE. 2D U-
Net is single-slice+L1 model. 2D GAN is single-slice+L1+-
GAN model.
Fig. S3. Qualitative results of the model with multi-slice
input. (a) low-dose PET, (b) standard-dose PET, (c) single-sli-
ce+L1+GAN model, (d) five-slice+L1+GAN model, (e)
nine-slice+L1+GAN model.
Fig. S4. Image quality metrics: PSNR, SSIM, RMSE of mod-
els with different input stack slices.
Fig. S5. Qualitative results of the model with and without
feature matching. (a) low-dose PET, (b) standard-dose PET,
(c) nine-slice+L1+GAN model, (d) none-slice+L1+GAN+-
feat model.
Fig. S6. Image quality metrics: PSNR, SSIM, RMSE of mod-
els with and without feature matching.
Fig. S7. Qualitative results of the model with different k1. (a)
low-dose PET, (b) standard-dose PET, (c) k1 = 50, (d) k1 =
100, (e) k1 = 200.
Fig. S8. Image quality metrics: PSNR, SSIM, RMSE of mod-
els with different weight for k1.
Table S1. Confusion matrix for inter-reader agreement of the
image quality score (5=excellent) for the standard-dose PET
[9]. The tau-b statistic was 0.798 (p < 0.001), Krippendorff's
alpha was 0.867 (95% CI 0.814-0.904), and the p=0.494 for
the symmetry test. This shows that the readers agreed
strongly on scoring and did not systemically over- or under-
call scores with respect to each other.
Table S2. Confusion matrix for inter-reader agreement of the
diagnosis of amyloid status on standard-dose images.
Supinfo. Analysis of supplementary figures and tables. Con-
tribution of each component, weight selection for L1 loss,
inter-reader agreement.
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