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Purpose: Manually tracing regions of interest (ROIs) within the liver is the de facto standard method
for measuring liver attenuation on computed tomography (CT) in diagnosing nonalcoholic fatty liver
disease (NAFLD). However, manual tracing is resource intensive. To address these limitations and to
expand the availability of a quantitative CT measure of hepatic steatosis, we propose the automatic
liver attenuation ROI-based measurement (ALARM) method for automated liver attenuation estima-
tion.
Methods: The ALARM method consists of two major stages: (a) deep convolutional neural network
(DCNN)-based liver segmentation and (b) automated ROI extraction. First, liver segmentation was
achieved using our previously developed SS-Net. Then, a single central ROI (center-ROI) and three
circles ROI (periphery-ROI) were computed based on liver segmentation and morphological opera-
tions. The ALARM method is available as an open source Docker container (https://github.com/
MASILab/ALARM).
Results: Two hundred and forty-six subjects with 738 abdomen CT scans from the African Ameri-
can-Diabetes Heart Study (AA-DHS) were used for external validation (testing), independent from
the training and validation cohort (100 clinically acquired CT abdominal scans). From the correlation
analyses, the proposed ALARM method achieved Pearson correlations = 0.94 with manual estima-
tion on liver attenuation estimations. When evaluating the ALARM method for detection of nonalco-
holic fatty liver disease (NAFLD) using the traditional cut point of < 40 HU, the center-ROI
achieved substantial agreements (Kappa = 0.79) with manual estimation, while the periphery-ROI
method achieved “excellent” agreement (Kappa = 0.88) with manual estimation. The automated
ALARM method had reduced variability compared to manual measurements as indicated by a smal-
ler standard deviation.
Conclusions: We propose a fully automated liver attenuation estimation method termed ALARM by
combining DCNN and morphological operations, which achieved “excellent” agreement with manual
estimation for fatty liver detection. The entire pipeline is implemented as a Docker container which
enables users to achieve liver attenuation estimation in five minutes per CT exam. © 2019 American
Association of Physicists in Medicine [https://doi.org/10.1002/mp.13675]
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1. INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is the most fre-
quent cause of liver disease worldwide and strongly associ-
ated with diabetes, metabolic syndrome, obesity liver failure,
liver cancer, and cardiovascular disease. (Rinella 2015,
Angulo 2002) NAFLD includes a spectrum of conditions
from isolated hepatic steatosis, inflammation of the liver,
liver fibrosis, and liver failure. NAFLD is the major cause of
abnormal liver function in the United States and is expected
to become the major indication for liver transplantation.1,2

Estimated worldwide prevalence of NAFLD ranges from 6%
for diagnoses relying upon serum biomarkers of hepatic func-
tion up to 33% when diagnosed using noninvasive imaging
techniques such as computed tomography (CT), ultrasound
or magnetic resonance spectroscopy.3 Moreover, patients with
NAFLD are at increased risk of mortality and incidence of
NAFLD is likely to rise due to its strong association with
obesity and diabetes.3 Early identification of individuals with
NAFLD and nonalcoholic steatohepatitis prior to progression
to fibrosis and liver failure, is considered critical to reducing
the negative health consequences.

Medical imaging techniques play roles in detecting and
diagnosing NAFLD in vivo. Computed tomography (CT) of
the abdomen is a widely used imaging modality for a variety
of conditions and quantification of hepatic steatosis has been
used in both research and clinical practice.4 Liver attenuation
from CT is a noninvasive qualitative biomarker allowing
measurement of liver fat content based on tissue attenua-
tion.5,6 CT attenuation of normal livers typically ranges from
50 to 75 Hounsfield Units (HU) on noncontrast CT scans,
while liver attenuation <40 HU indicates moderate hepatic
steatosis, with a pathologic fat content of ≥30%.7 CT liver
attenuation is an accepted biomarker, which has been widely
used for investigating hepatic steatosis (fatty liver disease),8,9

coronary artery risk,10,11 diabetes12,13 obesity,14 and as tool
for gene discovery.8

CT-based liver attenuation measurements are traditionally
performed by a clinically trained expert with many years’
experience in manually tracing the liver ROIs on one or more
CT slices. In the present study, the expert reader was trained
by a board-certified radiologist who provides overreads of
her work. This expert reader has read >1500 liver scans and
has over 5 yr of experience (one slice is presented Fig. 1). To
leverage the robustness of the ROI measurement, multiple
ROIs are annotated on the CT slice, and the average HU score
of each ROI from three slices is used to indicate the liver
attenuation. However, manual tracing is resource and time
intensive for clinical practitioners, and is not scalable for
large-scale medical image data. Therefore, it is appealing to
develop automatic liver attenuation estimation algorithms to
alleviate the manual efforts.

Few automatic algorithms have been proposed to achieve
the liver attenuation estimation on CT.15 The straight-forward
strategy is to estimate the liver attenuation from whole liver
segmentation. However, (a) liver vessels and (b) nonliver tis-
sues can be included in the whole liver segmentation, which
would affect the accuracy of live attenuation estimation.
Therefore, it is appealing to simulate the manual estimation
protocols using fully automated image processing. In terms
of manual estimation, shrinking protocol15, and peripheral
ROI protocol7,15,16 are two prevalent protocols. Kullberg
et al.15 proposed an automatic liver attenuation estimation
method to simulate the shrinking protocol, which shrinks the
liver segmentation within the liver border to avoid nonliver
tissues. However, the liver vessels are not excluded from this
protocol, which would lead to higher liver attenuation values
since the vessels typically have higher HU values. To further
reduce the affect from vessels, the peripheral ROI proto-
col7,15,16 has been widely used in clinical studies by manually
placing several small ROIs (typically three) in the liver. Com-
pared with single ROI, three ROIs capture the heterogeneity
in the liver better, which enable more robust estimation by
averaging values from different ROIs. Unfortunately, the fully
automated peripheral ROI-based liver attenuation estimation
method has not been proposed and evaluated. Moreover, to
the best of our knowledge, no previous methods have been
proposed to perform peripheral ROI-based liver attenuation
estimation using deep learning and morphological opera-
tions.

In this manuscript, we propose the Automatic Liver
Attenuation ROI-based Measurement (ALARM) pipeline,
which has been developed on 100 CT scans with liver seg-
mentation and tested on 738 additional CT scans from dif-
ferent populations and CT instruments used in clinical
practice. The proposed pipeline simulates the ROI-based
manual liver attenuation labeling protocol by obtaining
three liver ROIs on a noncontrast CT scan. Briefly, our pre-
viously proposed deep convolutional neural network
(DCNN)-based abdominal organ segmentation method17

was employed to segment the liver. Next, the morphologi-
cal operations were included to identify an ROI in the cen-
ter of the liver (center-ROI) and set of three circular ROIs
in the periphery of the liver (periphery-ROI) upon the liver
segmentation. The entire ALARM pipeline has been imple-
mented as a Docker container,18 which enables the users to
achieve the automatic liver attenuation estimations from an
abdominal CT scan by using one line of command. The
ALARM pipeline can be downloaded from (https://github.c
om/MASILab/ALARM). To our knowledge, the proposed
ALARM pipeline is the first open-source work that per-
forms automatic ROI-based liver attenuation estimation by
combining deep convolutional neural network (DCNN) and
morphological operations.
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2. MATERIALS AND METHODS

The end-to-end framework of the proposed ALARM pipe-
line is presented in Figs. 2 and 3. The ALARM pipeline consists
of two sections: liver segmentation and morphological opera-
tions. The liver segmentation was implemented using deep con-
volutional neural network described in our previous work.17

2.A. Manual liver attenuation estimation protocol

The manual liver attenuation ROIs are traced by clinical
experts, on abdominal CT scans with slice thickness of
2.5 mm and 50 field of view (FOV) (“Scan Series 1” in

Fig. 4). Then, a single axial view at central liver location is
selected by the annotator. Next, three circles (each
~100 mm2) are placed over the peripheral and are of the right
lobe of the liver (shown in Fig. 1). The slice selection and cir-
cle drawing rely on the annotator’s experience in clinical
practice, analysts were instructed to avoid vessels, hepatic
pathology, and artifacts when feasible.

2.B. Whole liver segmentation using deep
convolutional neural network

The first step in the ALARM pipeline is to obtain whole
liver segmentation. The previously proposed SS-Net17 deep

FIG. 1. The regions of interests (ROIs) of liver attenuation estimations on computed tomography. The left panel shows an example of manual ROIs, while the
right panel shows the automatic three circular ROIs (periphery-ROI) proposed in this study. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 2. The liver segmentation stage in ALARM method. Our previously developed convolutional neural network was used to segment liver. The deep network
is to convert an input CT slice to a segmentation map, which consists of (1) encoder, (2) large convolutional kernel (LCK) skip connection, and (3) decoder lay-
ers. The PatchGAN is employed as the discriminator to provide additional adversarial loss for training the network with the traditional Dice loss. [Color figure
can be viewed at wileyonlinelibrary.com]
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convolutional neural network was employed to achieve whole
liver segmentation (Fig. 2). This network was originally
designed for spleen MRI segmentation and was adapted to CT
liver segmentation in this work. Briefly, the SS-Net is a 2D
abdominal organ segmentation network consisting of both a

generator and discriminator (Fig. 2). The generator is to convert
an input CT slice to a segmentation map, which consists of (a)
encoder, (b) skip connection, and (c) decoder layers. The enco-
der consists of residual blocks (in green), which are employed
from the canonical residual network (ResNet),19 while the skip

FIG. 3. The ROI extraction stage in ALARM method. Two types of automatic regions of interests (ROIs) are obtained: (1) a single central ROI (center-ROI) and
three circular ROIs (periphery-ROI). [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 4. Qualitative visualizations of raw abdomen computed tomography (CT) scan, liver segmentation, center-regions of interests (ROIs) and periphery-ROI
from ALARM pipeline (a) shows the results of three subjects from accurate liver segmentation, while (b) presents the results of three subjects with the inaccurate
liver segmentation. The first row indicates the raw input CT scan. The second row shows the liver segmentation from the deep learning segmentation. The third
row shows the central-ROI, while the fourth row shows the periphery-ROI. The ROI based liver attenuation method is able to tolerate imperfect whole liver seg-
mentation after performing morphological operations. [Color figure can be viewed at wileyonlinelibrary.com]

Medical Physics, 46 (8), August 2019

3511 Huo et al.: Deep liver attenuation detection 3511

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com


connection (in orange) and decoder (in purple and blue) are
employed from the global convolutional network (GCN).20 The
PatchGAN21 is used as the discriminator to provide additional
adversarial loss for training the generator. The SS-Net is trained
by axial view images from 3D scans. However, the clinically
acquired DICOM images are not always axial acquisition (e.g.,
axial, coronal, and sagittal). Therefore, to be compatible with
different acquisitions, we first perform DICOM to NIFTI con-
version to reconstruct the 3D volumes. Then, each axial slice in
a 3D CT volume was resized to 256 9 256 image for both
training and testing purposes. The details of preprocessing and
training have previously been reported.17 Briefly, learning
rate = 0.00001, optimization method = Adam, loss func-
tion = Dice loss and Adversarial loss, and batch size = 32.
After deep segmentation, the output 256 9 256 two-dimen-
sional axial view segmentations were resampled to the original
axial image resolution using nearest neighbor interpolation.
Then, the 2D slices were stacked to 3D segmentation volumes
in the original image space.

2.C. Central liver measurement (center-ROI)

Due to the limitation of the segmentation accuracy, the
segmentation could be over-segmented or under-segmented
at the boundaries of liver tissue [Fig. 4(b)]. Therefore, it
would be inaccurate to get liver attenuation directly from the
whole liver segmentation. To address this issue, we per-
formed morphological erosion on liver segmentation to
ensure the eroded segmentation is located within the liver.
We proposed the first type of automatic liver attenuation ROI
in the central region, termed center-ROI, which is an eroded
segmentation based on the whole liver segmentation. The
process of creating the center-ROI is shown in Fig. 3, where
a series of morphological erosion operations were conducted
upon the whole liver segmentations. Briefly, we first resam-
ple the 3D liver binary segmentation to 1 mm isotropic vol-
ume, and perform 3D erosion morphological operations until
the remaining volume size <=1000 mm3. The threshold
1000 mm3 is empirically chosen as an order of magnitude
less than the standard liver size. The 3 9 3 9 3 kernel of
erosion is a 3D “diamond” shape, where indices [1,1,0]
[0,1,1] [1,0,1] [1,1,1] [1,2,1] [2,1,1] [1,1,2] are set to one while
the remaining are set to zero. Then, the 3D region within the
center liver ROI is defined as center-ROI, and the corre-
sponding liver attenuation is calculated by the mean HU
score within the center-ROI.

2.D. Peripheral liver ROImeasurement (periphery-ROI)

The center-ROI reflects the mean HU scores within the
central liver. The central region of the liver includes the large
vascular structures, specifically the portal and hepatic veins
which would not be representative of hepatic fat content.
Next, we perform additional operations beyond the center-
ROI. The new method extracts periphery-ROI, replicating the
manual process and thus avoiding the major vascular struc-
tures located in the central portion of the liver.

Since the manual ROIs are annotated on a 2D central axial
slice in liver, we simulate that procedure using automated
pipeline. Briefly, we continue performing morphological ero-
sion operations on center-ROI until the volume size equals to
0. The smallest ROI from the previous nonzero volume itera-
tion was used to locate the central point. Then, the central
point pc ¼ xc; yc; zc½ � is defined as the coordinate of the cen-
troid of the small 3D volume, in which zc indicates the index
of central axial slice to measure the periphery-ROI. From pc,
we draw three lines on posterior, lateral, and anterior direc-
tion to get the pb1, pb2, and pb3 at the boundary of liver
segmentation. pb1 ¼ xc; y1; zc½ �, pb2 ¼ x2; yc; zc½ �, and pb3 ¼
xc; yc; z3½ �. Next, we define the proportional coefficient a to
obtain the three periphery-ROI center locations p1, p2, and
p3, whole coordinates are calculated by

p1 ¼ xc; yc � yc � y1ð Þa; zc½ �
p2 ¼ xc � xc � x1ð Þ 1� að Þ; yc; zc½ �
p3 ¼ xc; yc þ y3 � ycð Þ 1� að Þ; zc½ �

(1)

For all the experiences in this study, the coefficients
were empirically set as a ¼ 1=3 to (a) be tolerant to the
imperfect liver segmentation, and (b) not be too close to
the center point pc. The ablation study of the proportional
coefficient a is provided in Fig. S2. Using p1, p2, and p3 as
centers, three circles of periphery-ROI are obtained, whose
radius is empirically set to 7 mm (area � 150 mm2). The
mean HU score with each periphery-ROI is defined as liver
attenuation score.

2.E. ALARM docker

The ALARM method consists of a variety of image pro-
cessing algorithms (e.g., image preprocessing, deep segmen-
tation, ROI extraction, and visualization). It would be time
and resource intensive to deploy for users who lack a back-
ground in programming. Therefore, we integrated all steps in
a single Docker container18 as an “end-to-end” solution,
called “ALARM Docker.” The inputs of the Docker are
DICOM format images from a single abdomen CT scan. The
outputs of the ALARM Docker are the liver attenuation ROIs
and measurements. As a result, the ALARM method can be
deployed on abdominal CT scans using only one line of com-
mand. The ALARM Docker and example data22 are available
at (https://github.com/MASILab/ALARM) with the details in
the Supporting Information.

3. EXPERIMENTS

3.A. Data

One hundred clinically acquired abdominal CT scans22 with
manual liver segmentation were used as training and validation
data, while another independent cohort with 246 subjects from
the African American-Diabetes Heart Study (AA-DHS)23,24

were used as external validation (testing) data. For each of the
246 AA-DHS study participants included in the external
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validation (testing), three abdomen series were acquired each
differing only in slice thickness or FOV as shown in Fig. 5.
This cohort is only used in testing and independent to the train-
ing since it is excluded from training or tuning the deep learn-
ing parameters.

The 100 training and validation CT abdominal scans with
liver segmentations were acquired during portal venous contrast
phase with volume size 512� 512� 33 to 512� 512� 158.
The in-plane resolution varies from 0.54 9 0.54 mm2 to
0.98 9 0.98 mm2, while the slice thickness ranges from 1.5 to
7.0 mm (details can be found in Ref. [22]).For AA-DHS
scans,23,24 each subject has three different scan series (Fig. 5).
In scan series 1, the field of view (FOV) is 50 mm while the
slice thickness is 2.5 mm. In scan series 2, the FOV is 35 mm
while the slice thickness is 2.5 mm. In scan series 3, the FOV
is 35 mm while the slice thickness is 1.25 mm. For three scan
series, the in-plane size is 512� 512. The manual annotations
were performed on scan series 1.

3.B. Experimental design

For the liver segmentation using the method in Sec-
tion 2.B, 75 abdomen CT scans were randomly picked as
training while the remaining 25 were used as internal valida-
tion. The 738 AA-DHS scans were not used in the training
and validation; therefore, the parameters were only tuned on
100 training and validation cohort. After obtaining the whole
liver segmentations, the center-ROI and periphery-ROI are
computed based on the ALARM pipeline. The entire
ALARM pipeline was deployed on all 738 AA-DHS scans,
which took ~5 min for each scan using a typical workstation

with Intel Xeon ES-2630 V4 2.2 GHz CPU, 32 GB memory,
and NVIDIA Titan GPU (12 GB memory) and CUDA 8.0.

4. STATISTICAL ANALYSES

Summary measures including means, standard deviations
(SD), medians, ranges, and other measures of distribution
were used to assess performance of center-ROI and periph-
ery-ROI and manual methods. Also presented are scatterplots
and Pearson correlation coefficients that show relationships
within methods and between methods across the range of
liver values encountered. We also present Bland-Altman plot
assessing the limits of agreement for our final model compar-
ing the mean of three ROIs measured by the periphery-ROI
and manual methods.25 As liver attenuation values <40 HU
are considered indicative of moderate to severe steatosis, we
also evaluated the methods on the basis of number of mean
attenuations falling below or at or above the 40 HU thresh-
old.6,26,27 Predictive agreement for identifying <40 HU was
tested using kappa (K) and 95% confidence intervals (95%
CI)28,29 and suggested scales for assessing agreement are pre-
sented.22 All analyses were performed using STATA 15.1
(StataCorp LLC, College Station, TX, USA) and Bland-Alt-
man and scatterplots were created using GraphPad Prism
6.05 (GraphPad Software, Inc., LaJolla, CA. USA).

5. RESULTS

Figures 4 and 5 present the qualitative results from the
ALARM pipeline. Figure 4 shows the segmentation and ROI
results of six subjects. The center-ROI and periphery-ROI

FIG. 5. Qualitative visualizations of raw abdomen computed tomography (CT) scan, liver segmentation, center-ROI and periphery-regions of interests (ROIs)
from ALARM pipeline. The left panel shows the results for one subject from three scanning protocols 1 to 3. The right panel presents the results for another sub-
ject from three scanning protocols. The first row indicates the raw input CT scan. The second row shows the liver segmentation from the deep learning segmenta-
tion. The third row shows the central-ROI, while the fourth row shows the periphery-ROI. The ROI-based liver attenuation method is able to be deployed on
different imaging protocols. [Color figure can be viewed at wileyonlinelibrary.com]
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results for the three subjects in the left panel are generated
when the liver segmentations are accurate. The center-ROI
and periphery-ROI results for the three subjects in the right
panel are achieved when the liver segmentations are inaccu-
rate. Results demonstrate that the proposed method is able to
identify well placed periphery-ROI even when the liver seg-
mentation is not accurate. Figure 5 shows the segmentation
and ROI results of two subjects. For each subject, the liver
segmentation, center-ROI, and periphery-ROI results are pre-
sented for the three different scan series. Note that the manual
liver segmentation results are not shown in Figs. 4 and 5
since those patients are from AA-DHS testing cohort, in
which we do not have manual liver segmentation results.

5.A. Segmentation performance

The liver segmentation performance of the SS-Net is eval-
uated on 25 internal validation abdominal CT scans with
manual liver annotation. The segmentation performance with
median DSC values of SS-Net on the 100 epochs is provided
in Fig. S1. From the validation results, the segmentation
model with epoch = 85 is chosen for the remaining morpho-
logical operations, which achieves median DSC = 0.942,
mean DSC = 0.934, standard deviation = 0.021 on 25 inter-
nal validation cohorts.

5.B. Correlations of manual ROI and periphery-ROI

Three ROIs are identified for both manual ROI delineation
and periphery-ROI extractions. Figure 6 shows the Pearson cor-
relation of liver attenuation estimation across three ROIs. The
upper panel shows the cross ROI correlations for manual delin-
eation, while the lower panel shows the cross ROI correlations
for periphery-ROI estimations. From the results, the correla-
tions between manual ROIs are higher than periphery-ROIs.

Then, one-to-one ROI wise correlations between each
manual ROI and periphery-ROI is presented in Fig. 7. From
Figs. 6 and 7, the periphery-ROI has larger inter-ROI varia-
tions. Therefore, to reduce the variations for automatic liver
attenuation estimation, the mean HU scores across three ROIs
for both manual and automatic methods is used in this study,
whose Bland-Altman plot25 are shown in Fig. 8. The left
panel in Fig. 8 shows that we achieve Pearson correla-
tion = 0.94 between mean periphery-ROI and mean manual
ROI for liver attenuation estimation. The right panel in Fig. 8
presents the Bland-Altman plot with 95% confidence inter-
val. The x-axis indicates the average of mean periphery-ROI
and mean manual ROI, while the y-axis indicates the differ-
ences by subtracting mean periphery-ROI from mean manual
ROI. The upper and lower dash lines indicate the 95% confi-
dence interval (6.916 and �6.938), while the middle dash line
shows the bias (�0.011).

5.C. Quantitative results on fatty liver detection

The quantitative results have been presented in Tables I
and II. Table I shows the HU scores along with mean, SD

and range for center-ROI and periphery-ROI across three scan
series (1–3) measured by ALARM method as well as HU
scores for series 1 by manual method are provided in Table I.
The row “HU < 40” in Table I indicates the estimation num-
ber of subjects with fatty liver based on Hounsfield units
(HU < 40). On the same scan series 1, 16 subjects were
detected with fatty liver using center-ROI, while 17 subjects
were detected with fatty liver using periphery-ROI. Using
manual measurement, 19 subjects were identified with fatty
liver. Agreement between automatic and manual measure-
ments is evaluated using the K statistic.28 The K statistic on
inter-rater agreement between manual and the proposed
ALARM methods on fatty liver detection (HU < 40) are pre-
sented in Table II. The K values are all >0.7, which indicate
substantial agreement between manual and the ALARM
methods. The fatty liver detection based on the periphery-
ROI ALARM method agreement with manual estimation
(K = 0.88, P < 0.0001) is considered to be “almost perfect”
30. When applying ALARM method on different series (Ser-
ies 2 and 3), the center-ROI achieved K = 0.82 and 0.84 with
manual detection for Series 2 and 3. The periphery-ROI
achieved K = 0.91 and 0.72 with manual detection for Series
2 and 3. The sensitivity and specificity results of the detec-
tion performance are provided in Table II as well.

6. DISCUSSION

In the present study, we evaluated the use of the ALARM
method for automated measurement of liver attenuation and
prevalence of NAFLD, an important marker of future cardio-
vascular risk. To the best of our knowledge, the proposed
ALARM pipeline is the first open-source pipeline that per-
forms automatic ROI-based liver attenuation estimation by
combining DCNN and morphological operations. ALARM
method determination of liver attenuation and NAFLD detec-
tion was highly correlated with gold-standard manual tracings
performed by a trained analyst. From Figure 5 and Table I,
the proposed ALARM method is able to achieve good auto-
matic liver attenuation estimation across different scan series.
The manual protocols of liver attenuation estimation can be
done efficiently in clinical practice. However, it might not be
a scalable method and typically not desired in large-scale
imaging analysis studies, especially for the large-scale retro-
spective studies. Using the proposed ALARM method, we
are able to achieve the liver attenuation measurements from
the large-scale cohorts automatically.

The prevalence of NAFLD, which may already affect up
to 33% worldwide, may be expected to only increase in the
coming years secondary to the obesity epidemic. NAFLD is
associated with higher risk for cardiovascular disease risk
and progression of NAFLD to more serious liver disease
increases risk of hepatic cancer, liver failure, and the need for
liver transplantation. It is thus imperative that large scale
means for identifying those at risk for NAFLD be developed.
CT is often used for population studies of liver attenuation
and NAFLD, but these studies are limited by the resource-in-
tensive need to train analysts to manually place liver ROIs

Medical Physics, 46 (8), August 2019

3514 Huo et al.: Deep liver attenuation detection 3514



consistently. Nevertheless, liver attenuation has been mea-
sured in thousands of study participants in Framingham,31

Jackson Heart Study,32 CARDIA,33 and MESA34 and pooled
to provide evidence of the genetic components of NAFLD.8

Thus, we developed and tested the ALARM method for liver
attenuation determination potentially opening the door for
measurement of fatty liver in tens of thousands of study par-
ticipants or patients.

FIG. 6. The upper panel shows the scatter plots as well as the Pearson correlation between three manual regions of interests (ROIs), while the lower panel shows
the results between three circular ROIs in periphery-POI. The blue dots indicate the Hounsfield Unit (HU), and the red lines are the linear regression results.
[Color figure can be viewed at wileyonlinelibrary.com]

FIG. 7. The correlation maps between each manual regions of interest (ROI) and each periphery-ROI. The blue dots indicate the Hounsfield Unit (HU), and the
red lines are the linear regression results. [Color figure can be viewed at wileyonlinelibrary.com]

Medical Physics, 46 (8), August 2019

3515 Huo et al.: Deep liver attenuation detection 3515

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com


Using the proposed method, the resource consuming
manual annotation is eliminated from the pipeline. More-
over, the ALARM method typically takes five minutes to
perform liver attenuation estimation from a abdomen CT

scan. Therefore, we are able to deploy the ALARM method
on the larger scale clinical cohorts without manual efforts
to understand the relationship between liver attenuation and
diseases. From the results, the proposed method achieved

FIG. 8. The left panel shows the correlations between mean periphery-regions of interests (ROIs) and mean manual ROI. The blue dots indicate the Hounsfield
Unit (HU), and the red lines are the linear regression results. The right panel shows the Bland-Altman plot between mean periphery-ROI vs. mean manual ROI.
The gray area indicates the 95% confidence interval. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE I. The liver attenuation measurements of center-regions of interest (ROI) and mean periphery-ROI for different sequence protocol.

Center-ROI Periphery-ROI
Manual

Series 1 Series 2 Series 3 Series 1 Series 2 Series 3 Series 1

Mean, HU 56.6 56.7 56.9 55.9 56.7 56.9 55.9

SD, HU 9.3 9.3 9.2 9.4 9.3 9.2 10.4

Median, HU 58.5 58.6 58.6 57.8 58.6 58.6 58.0

Minimum, HU 7.2 8.7 8.5 6.2 8.7 8.5 4.3

Maximum, HU 88.9 89.9 97.7 84.3 89.9 97.7 94.9

25%, HU 53.9 54.1 54.2 52.4 54.1 54.2 52.3

75 percent HU 62.5 62.3 62.5 61.6 62.3 62.5 62.5

HU < 40, n (%) 16 (6.4%) 17 (6.8%) 14 (5.6%) 17 (6.8%) 16 (6.4%) 19 (7.5%) 19 (7.5%)

Scan Series 1: 2.5 mm, 50 FOV; Scan Series 2: 2.5 mm, 35 FOV; Scan Series 3: 1.25 mm, 35 FOV.

TABLE II. Agreement of center-regions of interest (ROI) and periphery-ROI with manual method for detection of liver attenuation <40 HU.

ALARM center-ROI vs manual ALARM periphery-ROI vs manual

Series 1 Series 2 Series 3 Series 1 Series 2 Series 3

Κappa 0.79 0.82 0.84 0.88 0.91 0.72

95% CI 0.63–0.94 0.68–0.96 0.70–0.98 0.77–0.99 0.81–0.99 0.55–0.88

P <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Agreement 97.2% 97.6% 98.0% 98.4% 98.8% 96.0%

Sensitivity 73.7% 79.0% 73.7% 84.2% 84.2% 73.7%

Specificity 99.1% 99.2% 100.0% 99.6% 100.0% 97.9%

Κappa agreement ranges: 0.21–0.40, fair; 0.41–60, moderate; 0.61–0.80, substantial; >081, almost perfect based on Landis and Koch (1977).
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“excellent” agreement with manual measurement on the
fatty liver detection.

The present study has some limitations. One limitation of
the proposed ALARM method is that the whole pipeline has
not been implemented in a single “end-to-end” deep convolu-
tional neural network. The deep convolutional neural network
was only employed for liver segmentation, but not for the
ROI extraction. In the future, the improvement could be to
implement a single end-to-end deep network to perform mul-
titask learning on liver segmentation and ROI detection
simultaneously.35 Although performance was excellent, it
could even be enhanced by training a landmark detection
DCNN directly using labeled ROIs on >1000 subjects.

Another limitation of the proposed ALARM method is
that the liver vessels were not explicitly considered when
extracting the ROIs in automatic methods. Although the
periphery-ROI method has been designed to mimic the ROI
placement used in most manual methods and thus reduces the
effects of liver vessels, the ROIs could still contain vessels.
As a result, liver attenuation estimation could be affected
since the HU scores are different between vessels and liver
tissues and the periphery-ROI does not guarantee the elimina-
tion of the nonliver tissues (i.e., veins and arteries). In the
future, the automated liver attenuation estimation methods
would achieve comparable or even better performance com-
pared with manual protocols if the nonliver tissues segmenta-
tion is introduced into the pipeline to avoid the nonliver
tissue in ROI extraction.

Moreover, the present test of the ALARM method was per-
formed in a community-based study using careful research pro-
tocols for CT acquisition and, as such, we cannot directly
extrapolate its use to clinically obtained scans and other popula-
tions including those with clinically significant liver disease.
The peripheral ROI is designed as 2D measurements to simulate
the manual ROI protocol. In clinical scenarios, a single overlay
image with automated 2D ROIs can be visualized for efficient
quality assurance (QA), which would require fewer human
efforts for completed QA the results of 3D ROIs slice-by-slice.

The 246 AA-DHS testing scans are independent to the
100 clinical acquired training and validation scans to ensure
the fair external validation. Therefore, the manually traced
circles and slice numbers are not included in developing the
method. As a result, the slice location of the peripheral ROIs
can be different from the slice location of the manual ROIs,
and we do not force such consistency. The ALARM method
is proposed to simulate both shrinking protocol (center-ROI)
and peripheral ROI protocol (periphery-ROI) in a single fully
automated pipeline. Since the periphery-ROI is achieved
based on the center-ROI, the failure of center-ROI might lead
to the failure of periphery-ROI (although this did not happen
in the present study). ALARM method Moderate inaccuracy
in whole liver segmentation (Fig. 4) is tolerable and will still
permit accurate center-ROI and periphery-ROI placements.
However, the global failure of liver segmentation (not
encountered in this study) might lead to the global failures of
center-ROI and periphery-ROI. Using different segmentation
methods (SS-Net and U-Net), the proposed ALARM

framework achieves consistent and comparable liver attenua-
tion performance (Fig. S3, Tables S1 and S2). The results
demonstrate that the strategies for center-ROI and periphery-
ROI are tolerant to moderately inaccurate whole liver seg-
mentation in different scenarios (SS-Net and U-Net). Details
are provided in the Supporting information.

The aim of this study is to develop an automatic liver
attenuation estimation method simulating human estimation
protocols, by combining deep learning segmentation and
morphological operations. In this study, SS-Net is employed
as the deep learning segmentation method in the ALARM
method, without claiming the SS-Net is an optimal solution.
We have shown that the ALARM method is an open frame-
work that allows users to adapt different segmentation
approaches (i.e., the U-Net36 in Supporting Infromation).
Details of the quantitative performance comparing ALARM-
U (U-Net) with ALARM (SS-Net) are provided in Support-
ing Information. Other deep learning methods might have
resulted in more favorable results but are outside the scope of
this work.

7. CONCLUSION

In this paper, a fully automated liver attenuation measure-
ment method is proposed. This method computes liver atten-
uation in five minutes by incorporating deep learning and
morphological operations. Liver attenuation measured using
the ALARM method was highly correlated with attenuation
measured manually by a clinically trained, highly experienced
analyst. Moreover, when compared to the gold-standard man-
ual method for detection of NAFLD based on the attenuation
cut point of 40 HU, the proposed ALARM method produced
“excellent” agreement (K = 0.88) with manual measurement.
The present study suggests the ALARM method may be used
to reliably measure liver attenuation and assess NAFLD
prevalence in large epidemiologic studies and scan reposito-
ries potentially including tens of thousands of participants.
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SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Fig. S1: Liver segmentation performance with median Dice
similarity coefficient (DSC) of SS-Net across 100 training
epochs is provided in the blue curve. The corresponding per-
formance for training is provided in the red curve.
Fig. S2: The ablation study of the proportional coefficient a
in fatty liver detection using series 1 scans. The green bars
indicate the number of detected fatty liver cases among 246
patients in AADHS study. The red dash line shows 19 cases
are detected from manual protocol. From the results, the
default value a = 1/3 has the closest estimation. The a = 1/6

(closer to boarder) detects more false positive cases since the
HU scores are lower when the ROIs cover the areas outside
the liver boarder.
Fig. S3: The left panel shows the correlations between mean
periphery-ROI and mean manual ROI. The blue dots indicate
the Hounsfield Unit (HU), and the red lines are the linear
regression results. The right panel shows the Bland-Altman
plot between mean periphery-ROI vs. mean manual ROI. The
gray area indicates the 95% confidence interval.
Supinfo: The supporting information file contains (1) usage
of the ALARM Docker, (2) ablation study, (3) quantitative
results of ALARM-U, and (4) comparison between ALARM
and ALARM-U.
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