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Abstract

Despite the exponential increase in fear research during the last years, few studies have included 

female subjects in their design. The need to include females arises from the knowledge gap of 

mechanistic processes underlying the behavioral and neural differences observed in fear 

extinction. Moreover, the exact contribution of sex and hormones in relation to learning and 

behavior is still largely unknown. Insights from this field could be beneficial as fear-related 

disorders are twice as prevalent in women compared to men. Here, we review an up-to-date 

summary of animal and human studies in adulthood that report sex differences in fear extinction 

from a structural and functional approach. Furthermore, we describe how these factors could 

contribute to the observed sex differences in fear extinction during normal and pathological 

conditions.

Keywords

Fear; Extinction; Human; Rodent; Sex; Male; Female

1. Introduction

1.1. Fear learning: Fear conditioning and fear extinction processes

Fear is a neurological process aimed at executing rapid behaviors to preserve ones individual 

integrity in the presence of a threat (LeDoux, 2014). All fear responses can be categorized as 

innate or acquired, and those acquired are usually added to the behavioral repertoire of the 

organism through classical (or Pavlovian) conditioning (Davis 1994). Classical conditioning 

is the procedure by which, after a series of repeated matches of a safe stimulus, known as 
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neutral stimulus, with a naturally threatening one, the unconditioned stimulus (US), the 

neutral stimulus becomes a conditioned stimulus (CS) with the ability to elicit a fearful 

response, conditioned response (CR) (Pavlov, 1927). The CR can be specific to the tone, 

showing an effective discrimination, or might occur in presence of different tones, 

demonstrating generalization of the CR (Dunsmoor et al. 2009; Dunsmoor et al. 2011; 

Huckleberry et al. 2016). Other stimuli can be used as a CS rather than a tone, as in the case 

of contextual fear conditioning (FC). Fear memory consolidation is the process by which 

recent fearful associations are stabilized through the storage in a long-term reservoir (Dudai 

et al. 2015). Typically, this process is carried out in three temporally segregated stages with 

some overlap between them (Dudai et al. 2015): first, during synaptic consolidation, 

synaptic buttons strengthen in response to Ca2+ dependent pathways activation after CS 

presentations (Long Term Potentiation, LTP) (Lynch, 2004; McKenzie & Eichenbaum, 

2011). Concurrently, in system consolidation other structures (such as the extended 

amygdala or the medial prefrontal cortex (mPFC)) are recruited permitting the long term 

recall of fear memories (Winocur and Moscovitch, 2011). Lastly, fear memories undergo 

reconsolidation during the recall of the CR and are integrated with new environmental 

information, permitting the creation of an updated fear memory representation (Schiller et 

al. 2010). Fear extinction (FE) refers to the process in which the CRs decline by the 

successive presentation of a fear-eliciting CS in the absence of an aversive US (Myers and 

Davis, 2007). This process is also time segregated, and involves the weakening (Long Term 

Depression, LTD) of previous potentiated synapses, and LTP of other inhibitory pathways 

(Myers et al., 2006). According to classical LTP studies (Miserendino et al., 1990), FE is 

mediated by N-methyl-D-aspartate–receptor (NMDA-R) and the signaling action of protein 

kinases and phosphatases (Michael Davis, 2011; Myers et al. 2006). Furthermore, the 

extinguished CR might reappear in a different context from that in which FE took place, 

showing renewal of the CR. Also, the CR might show spontaneous recovery if the animal is 

presented the CS some time after FE acquisition took place. Moreover, the CR can also be 

recovered by merely presenting the US sometime after extinction, in a process called 

reinstatement. These three processes (spontaneous recovery, reinstatement and renewal of 

the CR) highlight that the undergoing processes of FE are aimed towards the acquisition of a 

new inhibitory learning rather than the weakening of a previously potentiated one.

1.2. Fear related disorders

In this review we will refer to fear-based disorders as the group of psychiatric conditions that 

share pathological fear processing and prominent anxiety symptoms as core features in their 

development, or maintenance (Flores et al., 2018). We will specifically focus on 

posttraumatic stress disorder (PTSD), phobic disorders and panic disorder. Patients suffering 

from these conditions show alterations in fear learning that include: a greater conditioning to 

danger cues, impairments in FE and impairments in inhibitory conditioning to safety signals 

(Garfinkel et al., 2014; Jovanovic et al., 2012; Jovanovic and Norrholm, 2011; Lissek et al., 

2005; Milad et al., 2009; Rougemont-Bücking et al., 2011). In addition, the main 

psychological treatment available for these patients includes FE procedures (i.e., exposure 

therapy), thus providing a model with good face validity for exposure therapy (Scheveneels 

et al., 2016; Vervliet et al., 2013).
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Anxiety and fear-based disorders are increasingly recognized as conditions producing a 

great disease burden and economic impact, also being projected as one of the leading causes 

of disability and healthcare costs for the next decade (Kessler et al., 2012; Whiteford et al., 

2013; Wittchen et al., 2011). Notably, these disorders affect men and women 

disproportionately. Women are double the risk for panic attacks, specific and social phobias 

compared to men, and PTSD can reach three times the prevalence in women (de Jonge et al., 

2016; Gradus et al., 2017; Steel et al., 2014; Wardenaar et al., 2017). Women are also more 

likely to have a long disease course, and to present comorbidities (Kessler et al., 2015; 

McLean et al., 2011; Pigott, 2003). Although the reasons for this biased burden remain 

largely unknown, they are thought to arise from multiple interactions between physiological, 

neurobiological, environmental and socio-cultural factors (Kessler et al., 2017; McCutcheon 

et al., 2010; Olff, 2017; Tolin and Foa, 2006). Due to the the high economical and social 

burdens of fear-related disorders, there is a need to increase research in this field, especially 

in translational studies, since current treatments work for most, but not all patients. Besides, 

a considerable proportion of patients drops out of treatment or experiences relapses of 

symptoms, even after medicial completion (Batelaan et al., 2017; Edlund et al., 2002; 

Hofmann and Smits, 2008; Imel et al., 2013; Koen and Stein, 2011; Loerinc et al., 2015; 

Roshanaei-Moghaddam et al., 2011). Research aimed at identifying novel molecular targets 

and markers of circuit dysfunction will lead to improved interventions, and better quality of 

life for the people suffering from these disorders.

1.3. Sex differences and similarities: a change in the framework

In most mammals, including humans, sex is the biological trait determined genetically by 

the presence of XX or XY chromosomes. Soon after the XX or XY genotype is set, genes 

like the Sry or Xist promote sexo-dimorphic processes that influence brain structure, cellular 

function, gene expression and a wide range of behaviors (Arnold, 2017, 2009; Davies and 

Wilkinson, 2006; Du et al., 2004; McCarthy and Arnold, 2011; Sanchis-Segura and Becker, 

2016). Apart from these influences, sex hormones shape the organism in three different 

ways: first, by defining wiring patterns and brain structures during neurodevelopment, also 

regarded as “organizational effects” (Wallen, 2005). Later, by altering intrinsic functions in 

the brain depending on their cyclic or sustained presence; like the modulation of 

hippocampal spines by fluctuating estradiol (E2) levels (Woolley, 1998). The last source of 

influence arises from the interaction of these sexually determined traits with the 

environment, making men and women shape their behavior according to social norms, other 

individuals or their personal adequacy (Berenbaum and Beltz, 2016; Springer et al., 2012). 

Still, most brain areas are not strictly sexually dimorphic, rather they appear as a continuum 

of characteristics, or what some authors have described as a mosaic, with several degrees of 

variability attributable to sex (Joel and McCarthy, 2017). Notably, it must be accounted that 

many of these differences manifest in the framework of compensation, meaning that 

organisms of opposite sex use different neurobiological substrates to solve the same problem 

and converge on the same behavior (De Vries, 2004; Wang et al., 1994). For this reason, 

once a sex difference is found, it must be contextualized depending on the setting where it is 

detected (Joel and McCarthy, 2017).
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The study of sex differences (or similarities) is not fully considered in the field of 

neuroscience. In the last years, researchers have produced 5.5 studies in males per 1 in 

females (Zucker and Beery, 2010); pointing out the evident and growing need to change our 

approach to science by including female subjects at all levels of research (Clayton and 

Collins, 2014; Prendergast et al., 2014). Undoubtedly, scientists will need to adapt their 

approach to research questions (Fields, 2014), but the benefits will overcome the costs by 

providing improvements in the generalizability of results, increasing the control over data 

variability and prompting the possibility to develop personalized or even sex-based 

interventions. Lastly, human research often interchangeably uses the term sex or gender as 

one variable. Gender is now defined as the social, environmental, cultural and behavioral 

factors, or choices that influence a person’s self-identity and health (Clayton and 

Tannenbaum, 2016). From all the reviewed studies here, if any, none performed further 

confirmation of sex by genotype, or specific analyses of gender preference. For these 

reasons, we will focus only on studies reporting sex differences.

1.4. The study of sex differences in fear extinction

Mixed results are reported when comparing males and females upon cued-FE tasks, with 

some studies finding impairments for females and others not (Baker-Andresen et al., 2013; 

Baran et al., 2010, 2009; Fenton et al., 2014; Gruene et al., 2015; Maeng and Milad, 2015; 

Milad et al., 2009; Voulo and Parsons, 2017). A more consistent picture emerges when the 

influence of hormones or the estrous (animal)/menstrual (human) cycle is considered: 

females undergoing FE training during proestrus (high E2/ high progesterone (P4)) have 

similar FE recall than males. In contrast, females undergoing FE during metestrus (low E2/ 

low P4) have impairments in FE recall compared to proestrus females or males (Gruene et 

al., 2015; Lebrón-Milad et al., 2013; Milad et al., 2009; Colin D. Rey et al., 2014). Fear 

learning studies that focused on contextual fear conditioning (FC) usually detect that 

females have lower freezing levels during FE training, and greater extinction rates when 

compared to males (Maren et al. 1994; Gupta et al. 2001; Dalla and Shors 2009; Barker and 

Galea 2010; Daviu et al. 2014; Bangasser and Wicks 2017 but see Matsuda et al., 2015, 

Baran et al., 2009). Although these studies do not control for the estrous cycle, rather they 

administered E2 or ovariectomized females, finding improvements and impairments in FE 

respectively. In human studies, men and women acquire fear and extinction similarly but sex 

differences are observed for FE recall. Women undergoing FE training during the mid-phase 

of their menstrual cycles, with low E2 levels, or women taking hormonal contraceptives 

(HC) have less FE recall. In contrast, women with high E2 levels demonstrate better FE 

recall (Graham and Milad, 2013; Hwang et al., 2015; Lebron-Milad and Milad, 2012; Milad 

et al., 2010, 2006; Zeidan et al., 2011). In sum, these studies point at important influences of 

sex hormones over fear memories that could be directly influencing FE consolidation 

(Lebron-Milad and Milad, 2012). Also, the spontaneous recovery of the CR is more likely to 

happen in female individuals (Fenton et al., 2016; Matsuda et al., 2015).

1.5. Limitations in the study of sex differences in FE

Before reviewing the pertinent studies, it is worth noting some of the limitations found when 

studying FC and FE. It is possible that the observed sex differences in FE may arise from 

inherent differences in fear acquisition, fear memory consolidation or fear expression 
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(Dachtler et al., 2011; Dalla and Shors, 2009; Keiser et al., 2017). This is the case of studies 

finding significant sex differences in contextual fear acquisition (Blume et al., 2017; Chang 

et al., 2009). In fact, it is known that males and females possess differently weighted 

molecular mechanisms for fear memory formation including synaptic kinases, transcription 

factors and activated genes (Dachtler et al., 2011; Keiser and Tronson, 2016; Mizuno and 

Giese, 2010; Tronson, 2018). However, just some of these mechanisms are known for FE or 

FE recall. Also, the molecular signatures of FE in each sex may reflect the engagement of 

specific cognitive and behavioral strategies used to approach and learn from threats (Mizuno 

and Giese, 2010; Shansky, 2018; Silva et al., 2013; Tronson, 2018). Researchers have 

pointed out, that females are more likely to engage in active responses, like darting in rats or 

the tend-and-befriend response in humans (Gruene et al., 2015; Olff, 2017; Taylor et al., 

2000). Therefore, studies in rats relying just on freezing behavior, may be not capturing the 

full behavioral response of females. Notably, there are no studies to date suggesting that 

female mice present darting behavior. Additional factors like the dynamics of sex hormones 

or social interactions leave ample room for methodological differences that could influence 

results. Examples of this include the techniques and timing used to monitor the estrous 

cycle, or the effects of social interaction between males (Kikusui, 2013; Maeng et al., 2015; 

Prendergast et al., 2014). Furthermore, we must account for all the inherent limitations of 

FC, which include the inability to assess the organism’s subjective response, the nature and 

type of conditioned responses, or the considerable methodological discrepancies between 

animal and human studies. As an example, most human studies perform FE immediately 

after FE training, while in animal studies, FE is assessed after a time lapse usually longer 

than 6 hours, being known that both processes recruit specific molecular signatures (Myers 

and Davis, 2007). Some of these elements are covered in depth elsewhere (Sevenster et al. 

2014; Cook et al. 2014; Top Jr. et al. 2016) but call for the adaptation of FC and FE 

methodologies in human and animal studies in order to improve the translationability of 

results (Flores et al., 2018). Below, we will review FE studies that report sex differences and 

unless stated, they do not detect significant differences in fear acquisition. Nevertheless, we 

must encourage readers to make careful considerations given the aforementioned limitations.

2. Sex differences in brain systems and molecular pathways involved in 

fear extinction

2.1. Brain structures and neuronal circuits

The structures and circuits implicated in FC and FE act as a dynamic network of 

connections, with some areas being essential for fear acquisition or fear expression, while 

others work as relay stations or parallel processing points (Anglada-Figueroa and Quirk, 

2005; Nader et al., 2001). Therefore, the correct interaction within this circuitry, and the 

integrity of its components, are major determinants of the behavioral output. Moreover, 

circuits involved in fear acquisition, fear expression, FE and anxiety overlap, although using 

different neuronal substrates. For example, microcircuits in the central amygdala (CeA) or 

the projections from the basolateral amygdala (BLA) to the mPFC promote fear learning but 

are also involved in FE and can induce anxiogenic or anxiolytic states (Tovote et al., 2015). 

The neuroanatomical and functional correlates help us identify key nodes in this distributed 
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network where FE memories are encoded and stored; we review them here considering 

studies performed in both sexes.

2.1.1. Amygdaloid complex—The amygdala is a key hub for fear processing that is 

mainly composed of a cortical-like structure, the BLA, and a striatum-like structure, the 

CeA. During FC, auditory (CS) and nociceptive (US) inputs converge in the lateral 

amygdala (LA) triggering plastic changes (Herry and Johansen, 2014; McGaugh, 2004). The 

basal amygdala (BA) has prominent connections with the hippocampus and cortical 

structures, being able to integrate relevant contextual information and internal states 

(Calandreau et al., 2005; Gründemann et al., 2018; Phillips and LeDoux, 1992). Information 

flows from these nuclei to the CeA, which is the essential output station that triggers 

behavioral and homeostatic responses. Besides this, the CeA is also involved in plasticity, 

nociception and the hierarchical organization of defensive behaviors (Balleine and Killcross, 

2006; Cardinal et al., 2002; Ehrlich et al., 2009; Fadok et al., 2017; Isosaka et al., 2015; Li et 

al., 2013). During FE, different neuronal populations in the BLA signal the CS-US 

contingency, and partially encode prediction errors (Herry and Johansen, 2014). Moreover, 

BA projections to the ventral hippocampus, or the prelimbic cortex (PrL) promote fear 

expression, while BA projections to the infralimbic cortex (IL) promote fear inhibition 

(Herry et al., 2008; Knapska et al., 2012; Senn et al., 2014). FE requires plastic changes in 

the amygdala, that can further reduce fear expression by increasing the perisomatic 

inhibition of fear neurons and by potentiating inhibitory synapses from intercalated cells 

under IL influence (Amano et al., 2010; Davis et al., 2017; Herry et al., 2008, 2006; Sotres-

Bayon et al., 2007; Trouche et al., 2013). Thus, the interactions within these circuits 

modulate fear expression and enable FE encoding and consolidation (Adhikari et al., 2015; 

Bukalo et al., 2015; Herry et al., 2010). Recent evidence points out additional functions of 

the amygdala, specifically the CeA, in valence assignment, feeding behavior, and reward-

related actions that could render this structure, as an integrator of internal states promoting 

the engagement into different behaviors (Beyeler et al., 2018; Fadok et al., 2018; 

Gründemann et al., 2018; Herry and Johansen, 2014; Kim et al., 2017; Paré and Quirk, 

2017; Xu et al., 2016). In humans, neuroimaging studies show that the amygdala has 

restricted activity during FC, and inconsistently activated during FE training (Alvarez et al., 

2008; Fullana et al., 2016; Knight et al., 2004; LaBar et al., 1998; Milad et al., 2007b; 

Phelps et al., 2004). During FE recall, most studies do not report activity in the amygdala 

(but see Zeidan et al. 2011). However, studies that have observed amygdala activations 

usually report it to be correlated with activity in the dorsal anterior cingulate cortex (dACC) 

and greater fear expression (Linnman et al., 2012c).

Anatomical comparisons reveal that males have larger and denser medial amygdalas, 

whereas females demonstrate more GABAergic neurons and fluctuations in the density of its 

dendritic spines across the estrous cycle. Notably these differences are not present in the 

BLA or CeA (Cooke and Woolley, 2005; Morris et al., 2008; Rasia-Filho et al., 2004; 

Stefanova and Ovtscharoff, 2000). At the functional level, females present a more inhibited 

LA during proestrus and a more inhibited BA during diestrus that correlate with faster cued-

FE and contextual-FE respectively (Blume et al., 2017). Studies that have focused on 

humans report mixed findings when comparing the amygdala of males and females 
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(Goldstein et al., 2001; Marwha et al., 2017; Ruigrok et al., 2014). However, sex differences 

are evident when assessing functional activations and resting state functional connectivity 

(rsFC). The rsFC refers to the spatiotemporal patterns of coupled brain activity that integrate 

a variety of intrinsic networks involved in cognitive function, memory or salient stimuli 

detection (Damoiseaux et al., 2006). Regarding fear behavior, there are increases in 

amygdala-dACC/dorsomedial prefrontal cortex (dmPFC) rsFC after fear learning, that are 

positively correlated with behavioral and autonomic measures of fear (Schultz et al., 2012). 

Likewise, drug-induced decrements in the amygdala-hippocampal rsFC after FE learning 

relate to greater hippocampal activation and thus enhancements in FE recall (Rabinak et al., 

2018). Therefore, it is hypothesized that rsFC changes observed after fear procedures may 

reflect ongoing memory consolidation, also relating to several behavioral impairments 

observed in patients with fear-related disorders such as PTSD (Zhu et al., 2017). At rest, 

men have higher amygdala-ventromedial prefrontal cortex (vmPFC) rsFC and women with 

low E2 show increased rsFC with the dACC (Engman et al., 2016). When presented with 

threatening cues, women show greater amygdala reactivity during low E2 phases of the 

menstrual cycle and this activity is not correlated with arousal measures or cortical activity 

(Goldstein et al., 2005). A finding that may be explained by the attenuating effects of E2 

over the activation of subcortical structures of the arousal system (Goldstein et al., 2010). 

Most FC-FE studies that include both sexes report no sex differences for the CRs during FE 

training (Knight et al. 2004; Gottfried and Dolan 2004; but see Fullana et al. 2018), but 

some differences are observed for the activity in the amygdala during fear acquisition 

(Hwang et al., 2015; Lebron-Milad and Milad, 2012). Only one study has found greater 

activations in the left amygdala and vmPFC during FE recall in women with high E2 

compared to women with low E2 (Zeidan et al., 2011).

In the clinical field, PTSD and phobic patients have structural and functional alterations in 

the amygdala, commonly presenting hyperactivity that is coupled with hippocampal and 

vmPFC hypoactivity (Engel et al., 2009; Etkin and Wager, 2007a; Ipser et al., 2013; 

McLaughlin et al., 2014; Michael et al., 2007; Sripada et al., 2012a; Stevens et al., 2013). 

Likewise, their FE recall impairments correlate with hyperactivations in the amygdala 

(Milad et al., 2009). In summary, the amygdala is a relevant structure for processing and 

eliciting conditioned responses regardless of sex. Its basal function seems to be influenced 

by hormonal levels, with some studies showing decreased reactivity during high E2 states 

and hyperactivity during low E2 states; although, this effect may be restricted to specific 

subnuclei. The CeA, along with the extended amygdala, are under heavy neuromodulatory 

control and they may be able to integrate multiple inputs to set internal states that facilitate 

appropriate and scalable behaviors (Fadok et al., 2018; Herry and Johansen, 2014; Paré and 

Quirk, 2017)

2.1.2. mPFC—The mPFC is a region implicated in fear learning that integrates sensory 

and contextual information to elicit flexible behavioral adaptations (Giustino and Maren, 

2015). Two subdivisions of the mPFC receive the most attention when studying FE in 

rodents, the IL and the PrL, and they are thought to work as functional homologues of the 

human vmPFC and dACC respectively (Milad and Quirk, 2012). The IL cortex is involved 

in the formation of FE memories, activated during FE recall and its IL-BLA projections are 
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necessary for extinction-related plasticity, but its function can be spared during FE recall 

(Adhikari et al., 2015; Bloodgood et al., 2018; Bukalo et al., 2015; Do-Monte et al., 2015; 

Herry et al., 2010; Kalisch et al., 2006; Lissek et al., 2013). In comparison, the PrL is 

implicated in the acquisition and expression of conditioned fear responses by integrating 

inputs from the BLA, hippocampus and thalamus into cortical networks (Courtin et al., 

2014; Do-Monte et al., 2015; Sotres-Bayon et al., 2012). Further detail is discussed in 

Sotres-Bayon and Quirk 2010; Giustino and Maren 2015. In humans, the dorsal parts of the 

ACC and mPFC (dACC, dmPFC) are relevant for attention, negative emotional responses 

and the expression and evaluation of fear (Etkin et al., 2011; Milad et al., 2007a). While the 

ventral parts of the ACC and mPFC (sgACC, pgACC, rACC, vmPFC) exert an inhibitory 

control over subcortical structures and promote the consolidation of emotional memories, 

including FE memories (Milad et al., 2007b; Pace-Schott et al., 2015). FE training activates 

both, the dorsal and ventral parts, from which the vmPFC shows gradual increases (Delgado 

et al., 2008; Etkin et al., 2011; Fullana et al., 2018). In contrast, during FE recall, prefrontal 

activations are observed mostly in the ventral ACC and vmPFC when comparing the CR to a 

CS that underwent FE training against the CR to an unextinguished CS (Fullana et al., 2018; 

Lebron-Milad et al., 2012; Milad et al., 2007b, 2005).

The mPFC portrays intrinsic and extinction-related sex differences: structurally, the 

pyramidal neurons in the PrL of female rodents have smaller and less complex apical 

dendritic arbors (Koss et al., 2014). Also, pre-training electrolytic damage to the IL impairs 

FE acquisition and its maintenance in females, but in males it only impairs FE recall. 

Interestingly, this lesion also makes females acquire fear faster (Baran et al., 2010). 

Successful FE recall induces IL activations in males and females, but females with FE recall 

impairments (trained during low E2 phases) show persistent PrL activity and hypoactivation 

of the IL (Gruene et al., 2014; Knapska and Maren, 2009). By measuring prefrontal activity 

with local field potentials, researchers showed that females have greater freezing levels that 

correlate with persistent theta (4-12 Hz) and gamma (30-120 Hz) activity in the PrL during 

FE training. In addition, they fail to produce gamma activations in the IL during FE recall 

compared to males (Fenton et al., 2016, 2014). Animal studies have revealed that 

synchronized theta rhythms in the amygdala, mPFC and hippocampus are observed after FC 

and during fear expression. Moreover, gamma oscillations are involved in cognitive and 

attentional functions mediated by the prefrontal cortex (PFC) (Karalis et al., 2016; Likhtik et 

al., 2014; Seidenbecher et al., 2003). These oscillations are important for encoding 

information, long-range network synchronization, cognitive function, allowing the formation 

of neuronal ensembles in the short recurring time windows that facilitate synaptic 

interactions (Herry and Johansen, 2014; Pelletier and Paré, 2004). Thus, the observed sex 

differences in prefrontal synchronization may contribute to the distinct behavioral responses 

of males and females during FE.

In humans, anatomical and functional differences result in greater amygdala-vmPFC rsFC in 

men and greater amygdala-dACC rsFC in women with low E2 levels (Engman et al., 2016; 

Goldstein et al., 2005, 2001; Ruigrok et al., 2014). Prefrontal activity seems to be more 

prominent in women during FE training (dACC and mPFC) and men show higher vmPFC 

activity during FE recall (Lebron-Milad et al., 2012). However, if hormonal levels are 

considered, women with high E2 have greater activations in prefrontal structures (rACC, 
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MCC) during FE training and FE recall compared to men and women with low E2 (Hwang 

et al., 2015; Zeidan et al., 2011). These studies do not report significant differences in fear 

acquisition but find diverging prefrontal activations among sexes. Notably, women taking 

hormonal contraceptives (HC) have impairments in FE that relate to greater activations in 

the ACC, vmPFC, amygdala and thalamus compared to men or women in the luteal phase 

(high E2/ high P4) (Merz et al., 2012).

In the clinics, PTSD patients exhibit basal and functional alterations in prefrontal function; 

with additional impairments in FE recall that relate to hypoactivations in the vmFPC-

hippocampus and hyperactivations in the dACC (Bluhm et al., 2009; Etkin and Wager, 2007; 

Milad et al., 2009; Rougemont-Bücking et al., 2011; Shvil et al., 2014). A tractographic 

study performed in traumatized women reported a positive correlation between FE and the 

integrity of the cingulum, the main white tract connecting the cingulate and the entorhinal 

cortex, so that better hippocampal-ACC connectivity predicted lower fear responses during 

FE (Fani et al., 2015). In sum, the reviewed studies suggest that mPFC function, specifically 

IL signaling, is important to trigger FE memory formation in both sexes but females are 

more likely to show persistent PrL activity and lower IL activity resulting in lower FE recall. 

The observed differences in theta and gamma oscillations may relate to a differential 

coupling between mPFC-hippocampus-amygdala that render females unable to switch 

between fear and safety states (Courtin et al., 2014; Lesting et al., 2013; Likhtik et al., 2014; 

Pelletier and Paré, 2004; Stujenske et al., 2014). However, these studies did not account for 

hormonal status and it is still unknown if low E2 states influence amygdala-dACC 

connectivity like suggested by human studies (Engman et al., 2016; Goldstein et al., 2005). 

For example, high E2 or estrogen receptor beta (ER-β) activation can influence excitatory 

transmission and synaptic plasticity in the IL through glutamatergic mechanisms (Galvin 

and Ninan, 2014). Still, it remains to be explored if E2 or P4 levels can influence prefrontal 

interneurons and thus promote a differential engagement of cortical networks that eventually 

impacts FE memory encoding or its consolidation (Burgos-Robles et al., 2009, 2007; 

Courtin et al., 2014).

2.1.3. Hippocampus—FE memory is time and context-dependent, and the hippocampus 

relays information regarding the location and time where FE learning took place. Its role is 

crucial for memory processes, and the spatial and non-spatial representation of 

environmental stimuli (Maren et al., 2013). It enables organisms to encode internal or 

external contexts to generate optimal predictions and adjustments in their behavior. 

Moreover, fear reinstatement, renewal and spontaneous recovery implicate time and space-

dependent contextual changes that trigger the reappearance of fear behavior (Ji and Maren, 

2007). The dorsal hippocampus is involved in the acquisition, contextual encoding and 

context-dependent retrieval of FE memories (Corcoran et al., 2005; Lissek et al., 2013; 

Maren et al., 2013; Sierra-Mercado et al., 2011). In comparison, the circuits arising from the 

ventral hippocampus contribute to fear renewal and promote fear relapse (Knapska et al., 

2012; Marek et al., 2018). Human neuroimaging studies that evaluated hippocampal 

activation during FE find mixed results, probably because of the different degrees of 

contextual involvement. Deactivations during FE training and activations during FE recall 

Velasco et al. Page 9

Neurosci Biobehav Rev. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are observed, mostly when FE recall takes place in safe contexts (Fullana et al., 2018; Hatch 

et al., 2013; Kalisch, 2006; Knight et al., 2004; Milad et al., 2007b).

Sex differences in hippocampal function are found in a variety of tasks (Koss and Frick, 

2017). In fear paradigms, males show greater freezing to context which has been related to 

NMDA-R mediated mechanisms (Maren et al., 1994). An effect that is likely related to the 

estrogen actions on hippocampal function. Estrogen-dependent positive modulation of 

hippocampal spines may result in females having increased spines during high E2 states of 

their estrous cycle, and ovariectomized rats without estrogen replacement having decreased 

hippocampal spines (Gupta et al., 2001; Li et al., 2004; Woolley, 1998). In addition, 

hippocampal NMDA-R activated downstream signaling could be important for these sex 

differences in FE, because phosphorylation of extracellular signal-regulated kinase (ERK) 2 

appears to be less sensitive in female mice (Matsuda et al., 2015). A rodent study focused in 

contextual fear conditioning found that an ER-β agonist dosed in the hippocampus of 

females enhanced FE recall, thus providing a mechanism for E2 actions in this structure 

(Chang et al., 2009). Likewise, a human study that considered E2 levels found a positive 

correlation between E2 levels and FE recall. Also, better FE recall was related to greater 

activations in the hippocampus, vmPFC, dACC and amygdala (Zeidan et al., 2011).

Regarding clinical populations, PTSD patients have prominent structural and functional 

hippocampal abnormalities. Men with PTSD show lower amygdala-hippocampus rsFC and 

women with panic disorder have decreases in hippocampal metabolism (Bisaga et al., 1998; 

Etkin and Wager, 2007b; Garfinkel and Liberzon, 2009; SHIN et al., 2006; Sripada et al., 

2012b; Trzesniak et al., 2010; van Rooij et al., 2015). These hippocampal dysfunctions 

coupled with an overactive amygdala and dACC result in a failure to inhibit fear responses 

when safety cues or safe contexts are presented (Garfinkel et al., 2014; Jovanovic et al., 

2012; Rougemont-Bücking et al., 2011). In conclusion, the encoding of temporal and 

contextual stimuli is vastly influenced by hormonal states. Females undergo constant shifts 

in hippocampal function, so that the formation of FE memories using safe contexts as a 

trigger may be hindered in restricted periods or upon damage, ft remains to be determined if 

hormone-dependent shifts in hippocampal function can influence circuits relevant for FE 

(Åhs et al., 2015; Knapska et al., 2012; Marek et al., 2018) or the hippocampal inputs to 

structures that integrate internal states like the CeA, PrL or BNST (Rozeske et al., 2018; Xu 

et al., 2016; Zelikowsky et al., 2014).

2.1.4. Periaqueductal gray (PAG)—The PAG, also called “central gray”, is a region in 

the midbrain that coordinates functions like anxiety, fear learning, pain modulation and the 

onset of rapid defensive responses (Bandler and Shipley, 1994; Rabellino et al., 2016; 

Tovote et al., 2016). It is recognized as the central output pathway of threat processing, and 

involved in complex functions, such as the encoding of prediction errors and the relay of 

expectancy information to higher-order structures (Arico et al., 2017; McNally et al., 2011; 

Ozawa et al., 2017; Watson et al., 2016). Sex differences in the PAG are documented for 

sexual behavior, anxiolysis and antinociception (Linnman et al., 2012a; Loyd and Murphy, 

2009; Schwartz-Giblin and McCarthy, 1995). Moreover, E2 can enhance GAB Aergic 

transmission and induce μ-opioid receptor (MOR) internalization, while drops in P4 can 

alter GABAA receptor subunit composition, decreasing its inhibitory output (Griffiths and 
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Lovick, 2005; Lovick, 2012; Loyd et al., 2008; Schwartz-Giblin and McCarthy, 1995). In 

humans, PAG activity is observed in relation to the anticipation of pain, imminent threat 

confrontation and during FE training (Fullana et al., 2018; Linnman et al., 2012b; Qi et al., 

2018). Sex differences exist for PAG’s basal rsFC, with less activation observed in women 

with high E2 upon fearful stimuli presentation (Goldstein et al., 2010; Kong et al., 2010). 

Moreover, in FC-FE tasks it is specifically activated to cues that signal danger or anticipate 

pain (CS+) (Lindner et al., 2015). In the clinics, PTSD patients have shown to have a greater 

recruitment of the PAG at rest and during threatening or non-threatening situations compared 

with controls (Harricharan et al., 2016; Rabellino et al., 2016; Steuwe et al., 2014). Overall, 

the PAG is involved in pain modulation and the execution of behavioral responses, some of 

which are the main outcomes measured in FE. Sex differences in the PAG are largely 

understudied, and it is still unknown if hormonal regulation of opioid and GABAergic 

transmission can influence FE or nociceptive encoding (Ozawa et al., 2017). Moreover, it 

must be explored if hormonal cycling results in shifting functional states in the PAG that 

impact how inputs are integrated and behaviors are selected (Fadok et al., 2018; Li et al., 

2013).

2.1.5. Hypothalamic nuclei—The hypothalamus regulates autonomic, endocrine and 

behavioral responses to learned and innate threats (Keifer et al., 2015; LeDoux et al., 1988; 

Myers et al., 2014; Silva et al., 2016, 2013). It portrays extensive anatomical and functional 

sex differences related to parenting and sexual behaviors (Bailey and Silver, 2014; Cheung et 

al., 2015; Forger et al., 2004; Rhodes and Rubin, 1999; Simerly, 2002; Yang et al., 2013). 

However, the hypothalamus’s involvement in FE is largely unexplored. The expression of 

estrogen receptors in several hypothalamic nuclei fluctuate throughout the estrous cycle 

possibly altering its intrinsic activity (Acevedo-Rodriguez et al., 2015; Brown et al., 1992; 

Frank et al., 2014). When fearful stimuli are presented, the ventromedial hypothalamus 

(VMH), lateral hypothalamus, and the left amygdala are more activated in men, than 

women. But when the menstrual cycle phase is considered, women in the late follicular/ mid 

cycle phase (high E2/ low P4) have attenuations in the stress response circuitry, including 

the paraventricular hypothalamus, VMH, PAG, dACC and CeA compared to women in the 

early follicular phase (low E2/ low P4) (Goldstein et al., 2010, 2005). Furthermore, VMH 

activity may relate to some behavioral alterations seen in patients with fear-based disorders, 

since electrical stimulation of the VMH elicits panic attacks in humans and some animal 

models (Kunwar et al., 2015; Wang et al., 2015; Wilent et al., 2010). In line with this, 

knocking down the vesicular glutamate transporter 2 in the VMH results in decreased fear 

expression in males only (Cheung et al., 2015). Just few studies have addressed the 

hypothalamus during FE learning reporting mixed results for its activation (Lebron Milad 

2012, Hwang et al. 2015). One study found greater activity in the left-hypothalamus in 

women, whereas greater activity in the right-hypothalamus was found in men during FE 

learning, but no further differences were detected during FE recall (Lebron-Milad et al., 

2012). In contrast, another study reported no sex differences in hypothalamic activation 

during FE training or recall, but found that the hypothalamus was highly active along with 

the threat detection system (amygdala, insular cortex, medial cingulate cortex) in women 

undergoing FC during high E2 states compared to men or women taking HC (Hwang et al., 

2015). Future studies examining the role of the hypothalamus will add to the understanding 
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of the sex differences in fear and FE learning. For example, the VMH is regulated by 

hormones, but also integrates sensory (medial amygdala, basomedial amygdala) and 

nociceptive inputs (parabrachial nucleus) to influence relevant structures (dorsal PAG, 

BNST) that elicit and maintain CRs (Bester et al., 1997; Kunwar et al., 2015; Yang et al., 

2013).

2.1.6. Bed Nucleus of the Stria Terminalis (BNST)—The BNST, part of the 

extended amygdala, acts as an integration node between external sensory information and 

internal homeostatic or autonomic states (Avery et al., 2014). It can activate the 

hypothalamus when facing stress, and its multiple subnuclei are strongly regulated by 

neuropeptides and sex hormones (Glangetas and Georges, 2016; Jennings et al., 2013; Kash 

et al., 2015; Marcinkiewcz et al., 2016; Tillman et al., 2018). Its function has been related to 

a sustained state of apprehension or fear, usually defined as anxiety, but it is also implicated 

in threat processing and responds to phasic and sustained stimuli (Alvarez et al., 2011; Fox 

et al., 2015; Gungor and Pare, 2016; Lebow and Chen, 2016; Shackman and Fox, 2016; 

Torrisi et al., 2018). In fear learning tasks, the BNST contributes to the acquisition, 

expression, reinstatement and some forms of contextual fear (Fullana et al., 2018; Goode 

and Maren, 2017; Hammack et al., 2015), but its role in FE is largely unexplored (Ranjan et 

al., 2017). There is a big gap in research regarding the influence of the sex differences in the 

BNST upon fear learning (Allen and Gorski, 1990; Avery et al., 2014). This structure 

undergoes a sexually dimorphic masculinization early in life and its function is also 

influenced by hormones in a state-dependent manner (Bangasser and Shors, 2008; Chung et 

al., 2002; de Vries and Forger, 2015; Kelly et al., 2013; Morishita et al., 2017; Pol et al., 

2006; Zhou et al., 1995). Little is known regarding BNST’s role in phasic threat response or 

fear inhibition processes, but its involvement is possibly under reported, at least in human 

studies (Fox et al., 2015; Shackman and Fox, 2016). Few studies have observed greater 

BNST activations in phobic orPTSD female patients (Brinkmann et al., 2017; Münsterkötter 

et al., 2015; Straube et al., 2007). Furthermore, its role in FE may be of importance due to its 

capacity to integrate internal states with contextual stimuli, future research will delineate the 

specific influences of hormones upon its function and how they may relate to FE (Chung et 

al., 2002; Cooke and Simerly, 2005; Oler et al., 2017).

2.1.7. Insula—The insula is located beneath the lateral sulcus, having an important 

function detecting salient stimuli and integrating somatosensory, motor and autonomic 

information with cognitive functions (Craig, 2009; Menon and Uddin, 2010; Namkung et al., 

2017; Uddin, 2015). Therefore, it is not surprising that FC studies find it consistently 

activated during fear acquisition, upon the anticipation of pain or during the delivery of 

different types of USs (Benson et al., 2014, 2012; Fullana et al., 2016; Gramsch et al., 2014; 

Sehlmeyer et al., 2009). FE training activates the insular cortex, especially when it takes 

place in the same context where FC took place (Fullana et al., 2018; Gramsch et al., 2014; 

Sehlmeyer et al., 2009). Likewise, activations during FE recall are mostly seen when 

comparing CS+ vs CS− (Fullana et al., 2018). Basal differences in its structure and function 

are described for men and women (Kann et al., 2016; Ruigrok et al., 2014). Importantly, 

men receiving electric shocks have greater activations in the insula-hippocampus, whereas 

women taking HC seem to have this activation dampened (Hwang et al., 2015). During FE 
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recall, women have higher insular activity compared to men, but the difference seems to be 

driven by women with high E2 levels (Hwang et al., 2015; Lebron-Milad and Milad, 2012). 

Notably, insular dysfunctions are related to several psychiatric disorders, including anxiety 

and fear-based disorders (Etkin and Wager, 2007; Goodkind et al., 2015; Shin and Liberzon, 

2010; Stein et al., 2007). For example, PTSD patients show insular hyperactivity at rest, and 

during exposure to traumatic and non-traumatic stimuli (Bruce et al., 2013; Fonzo et al., 

2010; Simmons et al., 2008; Sripada et al., 2012a, 2012b; Stevens et al., 2013). Only one FE 

study reported increased insular blood flow during FE training in women with PTSD 

compared to women without (Bremner et al., 2005). Altogether, the insula plays a crucial 

role in salient stimuli detection regardless of sex; with some evidence indicating that its 

function may be modulated by endogenous and exogenous hormones (Hwang et al., 2015; 

Lebron-Milad and Milad, 2012). Insights into insular dysfunction mechanisms will be of 

uttermost value to several psychiatric disorders (Goodkind et al., 2015; Menon, 2011).

2.1.8. Summary—In summary, we can conclude that the amygdala, mPFC and 

hippocampus are implicated in the sex differences observed in FE, but more research is 

needed to examine the potential role of the BNST, hypothalamus, PAG and insula. The 

amygdala is consistently shown to react to threats regardless of sex, although it seems that 

some of its subnuclei may be overactive in females during low E2 phases. Moreover, its role 

as an integrator of internal states is relevant for FE, allowing females to switch and engage 

into different response patterns. Regarding the mPFC, IL function is relevant for FE memory 

formation-consolidation, and females demonstrate persistent PrL and lower IL activations 

during FE compared to males, which also correlate with greater freezing levels. According 

to the reviewed studies, mPFC function may follow the menstrual/ estrous cycle shifts 

rendering it hypoactive in low E2 phases. However, it is not clear if these effects are related 

to circuits displaying sexual dimorphism, distinct neuromodulation, or changes in 

connectivity with other structures (e.g., amygdala, hippocampus). Furthermore, the 

hippocampus is an important structure for the contextual embedding of FE memories 

receiving a large hormonal influence. E2 positively regulates its dendritic spines and can 

enhance FE through ER-β activation. The integrity of the hippocampus and its connectivity 

with the mPFC may be pivotal components of FE memory formation, especially in women 

and patients with fear-based disorders. Regarding the PAG, it seems that fluctuations in E2 

and P4 can promote changes in GABAergic and opioid signaling that further impact its 

intrinsic activation and inhibitory output. Nevertheless, these effects are largely 

understudied. Concerning the other reviewed structures, the insula signals and detects salient 

stimuli regardless of sex but some evidence suggests that women may activate it differently 

depending on their hormonal levels. Lastly, the BNST and hypothalamus are understudied 

structures that receive a strong hormonal modulation, which could be relevant for the 

integration of internal states that impact the appearance and magnitude of the CRs during 

FE.

2.2. Sex Differences in Molecular Mechanisms of Fear Extinction

FE memory signals the safety of a previously conditioned stimulus in a specific context and 

this process is highly regulated by several neurotransmitters and intercellular signals at 

precise time points (Ehrlich et al., 2009). Depending on the temporal characteristics of FE 
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training, immediate or delayed, and the molecular signals presented prior or after training, 

different mechanisms can be recruited (Maren and Chang, 2006; Myers et al., 2006). The 

adequate coordination of neurochemical signals allows organisms to learn and ensure that 

future threats are adequately faced. Nevertheless, dysregulations under certain genetic and 

environmental conditions can give rise to pathological behavioral responses. Here we will 

review studies exploring some of these systems in FE, as well as their interaction with sex 

and hormones.

2.2.1. Glutamate and GABA—Glutamate is an excitatory neurotransmitter that belongs 

to the family of aminoacidic neurotransmitters. It is synthesized from glutamine in a wide 

variety of neurons (Meldrum, 2000). γ-Aminobutyric Acid (GABA), an aminoacidic 

neurotransmitter with inhibitory actions, is produced from the degradation of glutamate by 

the enzyme Glutamic-Acid Decarboxylase (GAD), which is presented in two isoforms: 

GAD65 and GAD67 (Meldrum, 2000; Petroff, 2002). The excitatory effects of glutamate are 

typically produced through ionotropic NMDA-R, α-amino-3-hydroxy-5-methyl-4-isoxazole 

Propionic Acid receptor (AMPA/ Kainate receptor) or metabotropic receptors (mGluR 1-8) 

(Sanacora et al. 2008); whereas GABA hyperpolarizes neurons acting on GABAA, GABAB 

or GABAC receptors (Enz, 2001).

Sex differences have been identified within the glutamatergic system in both rodents and 

humans. First, concentrations of glutamate and GABA are sexually dimorphic in discrete 

brain nuclei important for FC, such as the nucleus accumbens or the VMH (Frankfurt et al., 

1984). Further, concentrations of these neurotransmitters also differ across the estrous cycle 

in healthy adult female rats. Glutamate presents higher concentrations within the nucleus 

accumbens in males, but females possess higher levels in the diagonal bands of Broca and 

the VMH. On the other hand, GABA is more concentrated in the lateral hypothalamus, the 

habenular nuclei and the VMH of male rats. Notably, these differences arise during the 

metestrus stage of the estrous cycle, but not in proestrus. Also, there is an increased 

GABAergic function in response to E2 and the regulation of female sexual behavior by the 

VMH (Frankfurt et al., 1984). Furthermore, these nuclei are involved in different traits of 

fear processing, such as predator fear memory by the VMH (Silva et al., 2016) or freezing 

behavior during the exposure to a CS by the dorsal habenula (Agetsuma et al., 2010). 

Although the specific contribution to FE of each of the previous structures is still to be 

elucidated, they are known to be necessary for normal threat processing. Disruption of 

GABAergic and glutamatergic neurotransmission, especially during low sex-hormone states 

in females, might contribute to the prevalent phenotype in fear pathology.

Glutamate is of special interest to FE research due to its implication in LTP. During LTP, 

glutamate binds to AMPA-R producing a tetanic pulse necessary for the activation of 

NMDA-R. Further, glutamate binds to NMDA-R allowing Ca2+ influx only after magnesium 

leaves the cation channel in response to a tetanic stimulation. During the early 90’s, it was 

demonstrated that NMDA-R antagonism within the amygdala, but not other areas, blocked 

the acquisition of the CR in a dose-dependent manner (Miserendino et al., 1990). Upon 

consideration of the extinction of the CR as a LTP of remote inhibitory synapses, new 

studies were carried out to examine the involvement of NMDA-R in FE. Surprisingly, 

pretraining administration of NMDA-R antagonists blocks the acquisition of extinction, 
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while AMPA-R antagonist infusions before FE training have no effect (Zimmerman and 

Maren, 2010). The AMPA-R is essential for NMDA-R activation and subsequent LTP that 

leads to memory formation. Interestingly, GluA1, one of the most common AMPA-R 

subunits, is essential for FC in male mice, but not in females (Dachtler et al., 2011), 

although it is more expressed in females’ hippocampus compared to males (Katsouli et al., 

2014). In regards to NMDA-R, female rodents usually perform poorer in NMDA-R 

dependent tasks, presumably because of a lower activation of NMDA-R during LTP when 

compared to males (Maren et al., 1994). Notwithstanding, aging produces a downregulation 

of Glu2N NMDA-R subunit, causing slight LTP decline in males; while this effect is not 

reported in females (Monfort and Felipo, 2007).

In contrast, the GABAergic system oppositely regulates fear memory formation. While 

glutamate is involved in depolarization of postsynaptic neuron and associative learning 

(Riedel et al., 2003), GABA hyperpolarizes postsynaptic membranes (Kalueff and Nutt, 

1996). GABAA-R has been widely studied due to its involvement in fear memory within the 

amygdala, hippocampus and PFC (Davis and Myers, 2002; Makkar et al., 2010). From all 

GABA receptors, GABAA-R is the main target of a wide variety of available drugs, with 

their potential anxiolytic effects well described (Holmes and Chen, 2015). In the IL cortex, 

the pharmacological enhancement of GABAA-R transmission before FE training increases 

FE acquisition and consolidation in the long term. Also, pre-training infusions of a GABAA-

R agonist in the BLA, as well as post-training infusion in the IL cortex, facilitate within-

session FE, but produce no effects in successive recalls of that FE memory (Akirav et al., 

2006). Particularly, α4-GABAA-R and α5-GABAA-R subunits of the GABAA-R are the 

most reported sex-dependent mediators of fear memories within the GABAergic system. In 

males, α4-GABAA-R knockout (KO) present increased fear to context in delay, but not trace 

auditory FC. In contrast, females lacking α4-GABAA-R subunit express increased fear to 

context in trace auditory FC, but not delayed (Moore et al., 2010). Additionally, 

hippocampal deletion of α5-GABAA-R subunit disrupts auditory FC in male and female 

mice; but producing lower fear expression in males with trace FC, while females display 

similar fear expression levels in trace and no trace conditions (Yee et al., 2004). 

Unfortunately, we are not aware of more studies exploring the involvement of these subunits 

in FE.

2.2.2. Cholinergic and Monoaminergic systems

2.2.2.1. Noradrenaline: Noradrenergic neurons in the locus coeruleus (LC) portray 

heterogeneous responses during fear and extinction learning that can strongly influence FE 

processes through its wide projections to the amygdala and mPFC (Quirk and Mueller, 2008; 

Uematsu et al., 2017). NA acts upon β-adrenergic receptors to increase neuronal excitability 

and upregulate protein kinase A (PKA) which are crucial processes for neuronal plasticity 

and FE memory formation (Berlau and McGaugh, 2006; Mueller et al., 2008). Moreover, 

NA promotes the retrieval of contextual fear memories and rodents with genetic NA 

depletion, or injected with propranolol (non-selective β-receptor antagonist), have deficits in 

fear memory retrieval (Murchison et al., 2004; Ouyang and Thomas, 2005). In addition, NA 

signaling is implicated in the “immediate extinction deficit”, an impairment in extinction 

learning observed when FE is performed immediately after fear acquisition (Giustino et al., 
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2017). The pharmacological blockade of NA signaling confirms its necessity for normal FE 

acquisition and FE consolidation (Mueller et al., 2008; Rodriguez-Romaguera et al., 2009). 

Nevertheless, enhancing NA signaling less consistently improves FE and instead promotes 

anxiety (Lonsdorf et al., 2014; Morris and Bouton, 2007; Tuerk et al., 2018).

Regardless of the multiple effects of NA on fear acquisition and FE, we are not aware of any 

study addressing specific sex differences. This is unexpected because it is known that 

testosterone regulates monoaminergic neonatal development in a sex dependent manner 

(Stewart and Rajabi, 1994) and that anatomical and functional sex differences exist in the 

LC (Bangasser et al., 2016, 2011; Mulvey et al., 2018; Valentino et al., 2012). Notably, 

females are more sensitive to the arousal-enhancing effects of corticotropin-releasing factor 

(CRF) due to a decreased ability to desensitize CRF1 receptors and differential receptor 

coupling and trafficking (Bangasser et al., 2018, 2010; Curtis et al., 2006; Valentino et al., 

1991). In addition, females present decreases in μ-opioid receptor (MOR) function in the LC 

compared to males, that can render it overactive specially in stressful situations (Curtis et al., 

2012; Guajardo et al., 2017). Besides this, cyclic surges of E2 increase NA synthesis, 

decrease its degradation but also promote adrenergic receptor internalization; pointing at a 

plausible mechanism by which females maintain arousal levels at the expense of a decreased 

ability to influence downstream signaling (Bangasser et al., 2016). The increases in NA tone 

and the greater LC function in females may confer a heightened susceptibility to develop NA 

dysregulations and hyperarousal symptoms after increased CRF exposure (Bangasser et al., 

2018). Studies in humans performing adrenergic manipulations have found sex-specific 

effects for emotional processing, amygdala activation and patients’ response to treatments 

(Cahill and van Stegeren, 2003; Kornstein et al., 2000; Lonergan et al., 2013; Poundja et al., 

2012; Schwabe et al., 2013) but some others have not (Rothbaum et al., 2008; Steenen et al., 

2016). With these data we can assume that FE-related increases in NA may synergize with 

higher NA levels during high E2 phases, together inducing a stronger recruitment of 

structures relevant for FE encoding or its consolidation. It is also possible that retrieved fear 

memories undergo a weaker reconsolidation due to decreased NA influence over 

intracellular processes, altogether resulting in stronger FE memory formation (Isiegas et al., 

2006; Johansen et al., 2011). It remains to be explored if there is a differential recruitment of 

LC neurons in males and females that could impact its influence over target structures like 

the mPFC or amygdala.

2.2.2.2. Dopamine: DA is involved in arousal, motor control, stress response and several 

learning theories implicate it in the formation of fear and extinction memories (Abraham et 

al., 2014; Menezes et al., 2015; Mueller et al., 2010; Rodriguez-Romaguera et al., 2012; Shi 

et al., 2017). D1 and D2 receptors in the mPFC are involved in FE memory consolidation, 

and D1 receptor in the BLA is important for within-session FE (Hikind and Maroun, 2008; 

Mueller et al., 2010). Neuronal activity in the ventral tegmental area is necessary for normal 

FE learning, likewise promoting mitogen-activated protein kinase (MAPK) phosphorylation 

in the IL and LA (Brischoux et al., 2009; Gore et al., 2014; Luo et al., 2018). 

Pharmacological manipulations show that L-dopa and D1 agonists generally enhance FE and 

FE recall whereas D1 antagonists impair them, and D2 manipulations produce mixed results 

(Abraham et al., 2016; Haaker et al., 2015; Hikind and Maroun, 2008; Mueller et al., 2010; 
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Zbukvic et al., 2017). Sex differences in DA system are described for baseline or drug-

induced DA release, receptor dynamics, DA levels, catechol-O-metyltransferase (COMT) 

activity and mesocortical projections (Harrison and Tunbridge, 2008; Kritzer and Creutz, 

2008; Munro et al., 2006; Paolo, 1994; Riccardi et al., 2011). Additionally, the COMT gene 

polymorphism (Val158Met), enhances DA levels and cortical function alongside interactions 

with E2. Women with the met/met genotype show improvements in working memory and 

dorsolateral prefrontal cortex function during the early phase of their cycle (low E2 levels), 

while val/val women have impairments. This relationship changes in phases near ovulation 

(high E2 levels), so that met/met women now show impairments, and val/val women have 

improvements (Jacobs and D’Esposito, 2011). In line with this data, a study reports that D1 

agonism in females during low E2 phases reverts their usual FE recall impairment, while 

females trained during high E2 phases have their FE recall impaired by the drug (Colin D. 

Rey et al., 2014). Together pointing out that DA signaling follows E2 dynamics and 

influences PFC function, including FE, as an “inverted U-shape”; exerting a positive 

influence during low E2 phases and impairing an “optimal” signaling in high E2 phases 

(Jacobs and D’Esposito, 2011; Colin D. Rey et al., 2014). The basis of this effect is 

unknown but can relate to the observed differences in mesocortical projections or to a lower 

DA function that protects females from prefrontal overactivation during high reactivity 

states, like in low E2 phases. Finally, it must be accounted that DA may also act upon the 

striatum and influence the cortico-subcortical network connectivity relevant for FE (Correia 

et al., 2016; Luo et al., 2018; Myers and Davis, 2007).

2.2.2.3. Serotonin: Serotonin (5-HT) is produced in the raphe nuclei of the brainstem and 

implicated in several fear memory processes (Bauer, 2015; Gaspar et al., 2003). Selective 

serotonin reuptake inhibitors (SSRIs) are one of the most prescribed drugs in psychiatric 

practice and the first-line pharmacological treatment for mood, anxiety and fear-based 

disorders (Ravindran and Stein, 2010). When dosed acutely, they inhibit the serotonin 

transporter (SERT) and lead to a net increase in 5-HT, enhancing anxiety symptoms and 

increasing fear expression (Marcinkiewcz et al., 2016). On the contrary, chronic doses are 

needed to obtain clinically significant effects and anxiolysis (Invernizzi et al., 1996; 

Krishnan and Nestler, 2008). The effects of SSRIs upon FE vary depending on the type of 

drug, treatment duration and timing of administration. Chronic fluoxetine or escitalopram 

facilitate FE (Arce et al., 2008; Bui et al., 2013; Deschaux et al., 2013, 2011; Karpova et al., 

2011), but chronic citalopram impairs fear acquisition and FE through NR2B NMDA-R 

subunit downregulation in the BLA (Burghardt et al., 2013). Sex differences in this system 

include 5-HT receptor distribution, SERT binding potential and the regulation of 5-HT 

synthesis by E2 through ER-β receptors (Donner and Handa, 2009; Jovanovic et al., 2008; 

Rubinow et al., 1998; Suzuki et al., 2013). Moreover, studies in animal models report mixed 

findings for E2-SSRIs interactions. For example, E2 can negatively impact the efficacy of 

fluvoxamine, but provides benefits for women in the perimenopause (Benmansour et al., 

2012; Damoiseaux et al., 2014). A fear learning study found that acute doses of fluoxetine 

increased fear responses in both sexes during FE training and FE recall. But 14 days of 

chronic fluoxetine enhanced FE learning and FE recall in females only during low E2 phases 

(Lebrón-Milad et al., 2013). This effect is similar to the one obtained with D1 agonism and 

highlights the possibility that increases in monoaminergic signaling may enhance mPFC 
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function during low E2 phases, thus facilitating FE formation. However, this assumption 

may be overgeneralized, as each monoamine is implicated in discrete processes of FE 

learning and their interactions with other systems should be considered (Jolas and 

Aghajanian, 1997; Nestler et al., 1990; West et al., 2009). It will be important to delineate 

the magnitude of monoaminergic FE enhancement during low E2 phases because they may 

act as adjuvants to exposure therapy under restricted conditions but may also promote 

greater fear retrieval.

2.2.2.4. Acetylcholine (ACh): ACh binds to muscarinic and nicotinic receptors to regulate 

several physiologic functions in the central nervous system that include arousal, attention 

and cognition. Cholinergic transmission is also implicated in neuronal activity 

synchronization, thereby improving the “signal-to-noise” ratio in the amygdala and 

facilitating memory encoding in the PFC (Hasselmo, 2006; Unal et al., 2015). Within the FE 

network, cholinergic neurons act as a relay of sensory pathways and regulate FC and FE by 

altering synaptic plasticity, firing patterns and neuronal excitability (Knox, 2016). Increases 

in muscarinic signaling are related to improvements in FE learning and FE recall, while 

decreased muscarinic signaling usually impairs FE processes (Jiang et al., 2016; Knox and 

Keller, 2016; Santini et al., 2012; Wilson and Fadel, 2017; Zelikowsky et al., 2013). The role 

of cholinergic neurotransmission through nicotinic receptors in FE is less clear, since the 

effects are highly dependent on the length of administration and the hippocampal 

involvement during a task (Elias et al., 2010; Kutlu and Gould, 2015, 2014).

A contextual fear learning study that explored sex differences reports that muscarinic 

blockade in males impairs fear memory recall, while females seem unaffected. Nevertheless, 

animals were exposed to the context only for 5 minutes and it would be desirable to explore 

if this male-specific impairment in fear retrieval extends into FE learning (Rashid et al., 

2017). Sex differences are observed for nicotinic receptor dynamics, with males (and men) 

upregulating nicotinic receptors after chronic nicotine exposure, but remaining unaltered in 

females (Koylu et al. 1997). Moreover in women, P4 levels are associated with lower β2-

nicotinic receptor expression in cortical and cerebellar areas (Cosgrove et al., 2012). A FC 

study demonstrated that nicotine exposure affects males and females differently. Males 

showed impairments in FE when acute low or high doses of nicotine were used, whereas 

females only were affected by high doses. In contrast, chronic nicotine exposure increased 

the spontaneous recovery of fear in females only (Oliver et al., 2018; Tumolo et al., 2018). 

To summarize, although it has been demonstrated that muscarinic and nicotinic receptor 

activity can modulate fear learning and FE, it is not well defined how they specficially 

influence FE in each sex. Some studies point out that cholinergic signaling can act upon 

cortical and BLA interneurons to promote fear learning through disinhibition, but the 

contribution of this mechanism to FE is largely unexplored (Gozzi et al., 2010; Letzkus et 

al., 2015). Moreover, tobacco smoking is highly prevalent in patients with psychiatric 

disorders (Cook et al., 2014; Lawrence et al., 2009) and some of the reviewed studies 

suggest that chronic nicotine exposure may produce a resistance to FE in men, whereas 

women are more vulnerable to the spontaneous recovery of fear.
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2.2.3. Neuropeptides and Neurotrophins

2.2.3.1. Cannabinoids: Endocannabinoid (eCB) signaling is crucial for FC and FE. 

Research has shown that the manipulation of eCBs can alter the acquisition and expression 

of contextual, but not cued fear memories (Chhatwal and Ressler, 2007; Marsicano et al., 

2002). Studies in animals and humans support the notion that agonizing eCB signaling 

facilitates FE learning (Chhatwal et al. 2005; Lutz 2007; Das et al. 2013; Dincheva et al. 

2015 but see Bowers and Ressler 2015; Soria-Gómez et al. 2015). Proposed mechanisms for 

this positive effect include the modulation of synapses in an activity-dependent manner and 

the stimulation of plasticity at inhibitory synapses (Hill et al., 2010; Trouche et al., 2013; 

Vogel et al., 2016). In contrast, deletions or blockade of CB1 receptor produces severe 

impairments in FE due to the blockade of kinase and phosphatase activity (Cannich et al., 

2004; Hill et al., 2010; Marsicano et al., 2002; Papini et al., 2015). Also, human studies 

show that dronabinol (synthetic THC) decreases amygdala reactivity during FE training, 

whereas increasing hippocampal and vmPFC activity during FE recall (Das et al., 2013; 

Rabinak et al., 2014, 2013). Notably, the positive effects of eCBs over FE are only 

demonstrated with acute administrations, as chronic dosing impairs between and within-

session FE and threat-safety discrimination (Lin et al., 2008; Papini et al., 2017).

There are several region-specific sex differences in eCB levels and CB1 receptor expression. 

Compared to naturally cycling females, males and ovariectomized females have higher 

density of CB1 receptors in the hippocampus, greater CB1 receptor binding in the 

hypothalamus and lower CB1 binding in the amygdala. Interestingly, the increased 

hippocampal CB1 expression in ovariectomized females is negatively regulated by the 

administration of E2 (Bradshaw et al., 2006; Reich et al., 2009; Riebe et al., 2010). Further, 

cycling females are reported to have fluctuations of eCB levels throughout the estrous cycle 

in several brain regions (Bradshaw et al., 2006). And various studies accounted cycling 

females as being more sensitive to the effects of eCBs over nociception, motor movements 

and neurogenesis (Craft et al., 2013; Krebs-Kraft et al., 2010). Functionally, high E2 levels 

can potentiate CA1 excitatory transmission in a sex-dependent manner by increasing eCB 

signaling through the activation of ER-α and promoting a retrograde suppression of 

GABAergic inhibition (Huang and Woolley, 2012). Lastly, the administration of an eCB 

antagonist in males can induce differences in the activity of the hypothalamic-pituitary-

adrenal (HPA) axis, producing a greater and longer ACTH-dependent corticosteorne diurnal 

peak (Atkinson et al., 2010). Despite these findings, little research has specifically addressed 

for sex differences during FE. One study investigated the effects of CB1 agonism and 

antagonism in females, showing that FE was enhanced with eCB agonists and impaired with 

antagonists, concluding that eCB effects on FE are not sex-dependent (Simone et al., 2015). 

Finally, increases in eCB signaling can reverse the stress-dependent alterations in FE in both 

sexes, but producing different effects in the hippocampus (Zer-Aviv and Akirav, 2016). In 

sum, few studies have addressed eCB-hormonal interactions upon FE, probably fueled by 

the positive results obtained with cannabinoid signal enhancements (Gunduz-Cinar et al., 

2013). Studies exploring the pharmacokinetics and sex-divergent effects of chronic usage 

would be useful if considering cannabinoids as adjuvants to exposure therapy.
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2.2.3.2. Opioids: Opioid peptides are classically involved in pain regulation; and for this 

reason, used as first line drugs to treat physical trauma. However, they are also consumed as 

drugs of abuse because of their addictive properties. Several areas of the fear circuitry 

expressing opiate receptors are also involved in the processing of aversive, cognitive and 

physiological aspects of pain (Sandkühler and Lee, 2013). For example, opioids act on the 

intercalated cells of the amygdala and on the PAG to promote FE, hence regulating the 

encoding of prediction errors and the inhibition of aversive stimuli processing (Ozawa et al., 

2017; Roy et al., 2014). Notably, dynorphin and μ opioid receptor (MOR) signaling are 

implicated in the formation of FE memories in rodents and humans (Bilkei-Gorzo et al., 

2012; Likhtik et al., 2008; McNally et al., 2005; Parsons et al., 2010). Gonadal hormones, 

specifically E2, can interact with the opioid system promoting their release, inducing 

receptor internalization and altering the rates of receptor homo-heterodimerization (Loyd et 

al., 2008; Loyd and Murphy, 2009). MOR expression is higher in males compared to cycling 

females in the ventrolateral PAG, with the lowest expression found during the proestras 

phase (Loyd et al., 2008). Moreover, some studies point out that sex and hormones are 

factors that can influence how painful stimuli are perceived or processed (Chartoff and 

Mavrikaki, 2015; Craft, 2008; Eckersell et al., 1998; Kelly et al., 2003; Liu et al., 2011; 

Torres-Reveron et al., 2009).

A study that administered intra-LC doses of a MOR agonist found that females had 

decreased sensitivity to MOR-mediated inhibition of LC neuronal activity, along with an 

overall decreased expression of MOR. Also, researchers measured behavioral outcomes 

using an operant set shifting task, showing that females made more preservative errors, 

whereas males made more the total errors and premature responses (Guajardo, Synder et al., 

2017). This study highlights an important sex dimorphism in opioid function in the LC of 

females. Opioids are known to counteract the effects of stress-induced LC activation, and to 

promote the recovery of LC activity to pre-stress levels (Valentino and Van Bockstaele, 

2015). A decreased ability to diminish LC hyperactivity after facing stressful events would 

leave females prone to develop hyperarousal states. A study that focused on the effects of 

opioid administration on fear learning showed that dosing subcutaneous morphine after fear 

acquisition resulted in increased fear responses during FE only in females that had low E2 

levels. This effect was absent in males, proestrus females or when dosed prior to FE training, 

demonstrating that acute morphine shortly after trauma can enhance fear responses in a 

subset of females. However, no further differences were observed during FE recall in any 

group (Perez-Torres et al., 2015). In sum, the decreased sensitivity of MOR in the LC of 

females, may hinder their capacity to downregulate LC hyperactivity after facing stressful 

events. Also, the fluctuation of E2 levels during the estrous cycle can impact the expression 

of MOR in the PAG; an essential structure that encodes expectancy errors and processes 

painful stimuli during fear learning tasks. Studies exploring the intracellular mechanisms 

underlying sex differences in FE will be valuable, opioid receptor activation can influence 

cAMP expression, and it is known that increased cAMP can delay FE memory formation 

(Myers and Davis, 2007). Additionally, morphine is commonly dosed after acute trauma and 

it may promote adverse behavioral outcomes in a subset of women.
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2.2.3.3. Corticotropin-releasing factor (CRF): CRF is a peptide hormone involved in the 

activation of the HPA axis, also regulating neuroendocrine, behavioral and emotional 

adaptations to stressors (Sherin and Nemeroff, 2011). Localized CRF increases in the BLA 

during FE training, impair further FE recall but without affecting FE acquisition. On the 

contrary, CRF decrements improve FE recall (Abiri et al., 2014; Hollis et al., 2016). Fear 

learning processes are tightly regulated by this peptide, CRF can induce hyperexcitability of 

principal neurons in the BLA and decrease eCB signaling (Gray et al., 2015; Rainnie et al., 

2004). Further, specific impairments of NMDA or GABAA-R function in CRF neurons 

increase fear expression and impair FE respectively (Gafford et al., 2012; Gilman et al., 

2015). Interestingly, CRF is related to the “immediate extinction deficit”, pointing out 

actions over NA transmission, but also a possible convergence of their intracellular signaling 

cascades (Hollis et al., 2016; Isogawa et al., 2013; Roozendaal et al., 2008). The 

transcription of CRF is modulated by E2. Higher basal CRF is found in the PVN of females 

during the proestrus phase, demonstrating also greater upregulation after physical (foot 

shock) or emotional stressors (Bingaman et al., 1994; Iwasaki-Sekino et al., 2009). 

Moreover, CRF1 and CRF2 receptors undergo sexually dimorphic changes after puberty, and 

differences in CRF1 dynamics in the LC are related to an enhanced sensitivity to CRF in 

females. Specifically, females have a greater coupling of CRF1 receptor with the GTP-

binding protein, Gs in unstressed conditions. Also, the association of CRF1 receptor with β-

arrestin2, a molecule promoting receptor internalization, occurs in the LC of males only, 

compromising CRF1 receptor internalization in females (Bangasser and Shors, 2010; 

Bangasser and Wicks, 2017; Weathington and Cooke, 2012). When administered centrally, 

CRF induces similar activations in males and females, except for the LC and lateral PAG 

which are activated only in females (Wiersielis et al., 2016). Nevertheless, another study that 

evaluated neuronal activity after central CRF administration found negative correlations for 

E2 levels and c-fos activation in the extended amygdala (Salvatore et al., 2018). In addition, 

KO of NMDA-R subunit NR1 (Grin1) in CRF neurons increased CRs during FE session 

only in males (Gilman et al., 2015). In sum, CRF enhancements of neuronal excitability 

seem to be detrimental for FE probably by encouraging an internal state of increased 

alertness and mobilization of resources (Binder and Nemeroff, 2010). Also, its signaling 

produces greater activations in the LC of females that are related to a different modulation of 

CRF1 which may posit females prone to develop arousal dysregulations under high or 

constant CRF secretion (Bangasser et al., 2018; Bangasser and Wicks, 2017; Curtis et al., 

2006). Moreover, it remains to be explored if CRF projections from structures like the CeA 

or BNST can influence FE learning or its consolidation in a sex-dependent manner (Ehrlich 

et al., 2009; McCall et al., 2015; Sanford et al., 2017). The stress-induced sex differences in 

FE are reviewed somewhere else (Maren and Holmes, 2016; Merz et al., 2018; Merz and 

Wolf, 2017; ter Horst et al., 2012; Wolf et al., 2015).

2.2.3.4. Brain-derived neurotrophic factor (BDNF): BNDF is a neurotrophin that 

influences neuronal function and survival, also playing roles in neurodevelopment, stress 

response and memory (Andero and Ressler, 2012). It promotes neuronal excitability 

(Minichiello, 2009), fear acquisition (Andero et al., 2011) and it is important for FE 

consolidation (Chhatwal et al., 2006; Choi et al., 2010; Heldt et al., 2007; Peters et al., 

2010). Remarkably, intra-hippocampal BDNF produces cue-dependent FE even in the 
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absence of training (Peters et al., 2010). Studies have revealed that BDNF acts as a signaling 

mediator of estrogen in the brain (Carrer et al., 2003; Scharfman and MacLusky, 2006). 

High E2 levels upregulate BDNF mRNA and protein levels in the hippocampus, which also 

fluctuate across the estrous cycle (Gibbs, 1998). The VAL66Met polymorphism in the pro-

region of BDNF decreases its secretion, produces deficits in FE, and lower amygdala 

habituation to emotional stimuli (Gasic et al., 2009; Hariri et al., 2003; Lonsdorf et al., 2015; 

Soliman et al., 2010). Furthermore, male and female mice with the BDNFMet/Met genotype 

have impairments in hippocampal function, with females showing additional alterations in 

the normal fluctuation of plasticity molecules in the hippocampus (Spencer et al., 2010).

Sex differences exist for BDNF function; females with a resistance to FE have lower basal 

BDNF mRNA levels in the IL and greater methylation at exon IV (Baker-Andresen et al. 

2013). In comparison, males subjected to FE have increased BDNF exon I and exon IV 

mRNA in the mPFC (Bredy et al., 2007). A study that performed a conditional KO of TrkB 

receptor in parvalbumin interneurons found impairments in FE consolidation for males 

compared to littermate controls or females (Lucas et al., 2014). Moreover, the authors 

emphasized on the importance of this differential TrkB-dependent effect, because SSRIs are 

known to upregulate BDNF in the BLA and promote greater plasticity in parvalbumin 

interneurons (Karpova et al., 2011). Although the specific mechanism is not known yet, it 

may follow secondary impairments of NMDA-R function due to the bidirectional 

glutamatergic-BDNF interactions (Andero and Ressler, 2012; Minichiello, 2009). It remains 

to be tested if females are endowed with a compensatory mechanism to consolidate FE even 

in the absence of TrkB signaling. The association of BDNF with psychiatric disorders and 

its interaction with inter-individual factors like genotype or hormonal status place this 

neurotrophin at a central point for further studies, especially the ones addressing mental 

disorders with a sex-biased prevalence (Andero et al., 2014).

2.2.3.5. Oxytocin-Vasopressin: Oxytocin (OXT) and vasopressin (AVP) are molecules 

that act as neuropeptides and neurohormones exerting central and peripheric effects. They 

regulate stress, social behavior and can shape defensive responses, especially to 

unpredictable threats (Dębiec, 2005; Grillon et al., 2013; Leppanen et al., 2018; Meyer-

Lindenberg et al., 2011; Neumann, 2008). Moreover, central OXT promotes weaker fear 

memory formation, but can also impair FE if dosed prior to FE training (Toth et al., 2012). 

Nevertheless, the effects of OXT over FE are influenced by factors like the strength of fear 

memories, the timing of OXT doses and the targeted structures, sometimes producing 

opposite effects (Huber et al., 2005; Knobloch et al., 2012; Lahoud and Maroun, 2013; 

Viviani et al., 2011; Zoicas et al., 2014) (Campbell-Smith et al., 2015). Interestingly, in the 

centro lateral amygdala, OXT can activate a subpopulation of neurons that feedforward 

inhibit the centro medial amygdala, thereby reducing passive fear responses (freezing, fear 

potentiated startle) and promoting active fear responses (Terburg et al., 2018; Viviani et al., 

2011). In humans, intranasal OXT enhances FE recall but producing transient increases in 

the CRs of men during FE training (Acheson et al., 2013; Eckstein et al., 2015).

OXT and AVP systems portray structure and species-specific sex differences, with the AVP 

system usually being more prominent in males and the OXT system in females (de Vries, 

2008; De Vries and Panzica, 2006; Dumais and Veenema, 2016; Lee et al., 2009; 
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MacDonald, 2013). Also, both systems are regulated by sex hormones in an organizational 

and state-dependent manner, but the positive influence of E2 upon OXT is the most 

notorious (de Vries and Södersten, 2009; Gimpl et al., 2002; Grazzini et al., 1998; Meyer-

Lindenberg et al., 2011; Olff et al., 2013; Sippel et al., 2017). Intranasal OXT produces sex-

dependent activations in the amygdala and changes in its rsFC (Bethlehem et al., 2017; 

Domes et al., 2010, 2007; Ebner et al., 2016; Eckstein et al., 2017; Kovács and Kéri, 2015; 

Lischke et al., 2012; Petrovic et al., 2008; Sripada et al., 2013). In addition, OXT can 

modulate PFC activity in a sex dependent manner, possibly through actions of interneurons 

(Li et al., 2016; Luo et al., 2017; Nakajima et al., 2014). It is notable that the effects of OXT 

are influenced by inter-individual factors such as lifetime experiences and genotype (Bartz et 

al., 2011; Bradley et al., 2013; Heim et al., 2009; Meinlschmidt and Heim, 2007; Sippel et 

al., 2017). In the clinics, intranasal OXT exerts positive effects in PTSD patients by 

activating different neuronal substrates in men and women, also showing beneficial effects 

for a subset of people after trauma (Koch et al., 2016a, 2016b; Sack et al., 2017; van Zuiden 

et al., 2017). Unfortunately, these benefits do not seem to generalize to other anxiety 

disorders (Acheson et al., 2015). Overall, it seems that OXT is a neuropeptide that can 

influence fear retrieval, acute CRs to threats and FE memory consolidation. Some evidence 

indicates that OXTR expression is different in males and females in structures like the 

VMH, but not in the CeA (Uhl-Bronner et al., 2005). However, its functional role in FE, 

especially in females, remains to be elucidated. When exploring the effects of OXT over FE, 

researchers must account for sex, hormonal status, genotype and lifetime experiences in 

order to define the specific conditions under which OXT can positively regulate FE 

memories (Meyer-Lindenberg et al., 2011)

2.2.4. Regulation of fear extinction by gonadal hormones—Fear processes, 

especially FE, have shown to be strongly regulated by circulating sex hormones. Despite the 

higher life prevalence of stress and fear related disorders in women, the specific influence of 

sex hormones on FE remains poorly understood (Bangasser and Valentino, 2014). E2 has 

proved to enhance FE, either when administered systemically in ovariectomized rats or in 

the putatively high E2 stages across the estrous cycle (Graham and Daher, 2016; Milad et al., 

2009). Further, inhibition of E2 synthesis during FE has shown to reduce auditory FE 

(Graham and Milad, 2014). In contrast, P4, another hormone that also peaks with E2 during 

the proestrus phase, is hypothesized to exert opposite functions on FE compared to E2, but 

mixed results are commonly reported. Allopregnanolone, a P4 metabolite, acts as a positive 

allosteric modulator of GABAA-R with the capacity to alter its subunit composition. In 

addition, studies have described a concentration-dependent biphasic effect over GABAA-R 

that can lead to an allopregnanolone tolerance at high concentrations (Andréen et al., 2009; 

Pinna et al., 2000; Turkmen et al., 2011). In naturally cycling rats, systemic administration 

of a P4 receptor antagonist prevents the impairment in FE recall observed in females 

undergoing FE training during metestrus (Graham and Daher, 2016). Interestingly, if 

allopregnanolone is artificially infused in the BNST before both, fear acquisition and FE 

training, it no longer enhances FE. This outcome reflects that the BNST may integrate the 

temporal profile of internal hormonal states with other ongoing processes (Acca et al., 

2017). Altogether, these findings suggest that in naturally cycling females, E2 may exert 

facilitating effects over FE, while P4 exerts the contrary, probably by involving genetic and 
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epigenetic mechanisms regulating the synthesis of proteins necessary for FE memory 

consolidation.

Low circulating E2 has shown to be a vulnerability factor for the development of PTSD 

(Lebron-Milad and Milad, 2012). Moreover, the chronic suppression of E2 synthesis by 

monophasic hormonal contraceptives in women or by the administration of progestin in rats, 

results in a low-extinction phenotype, which can be easily reverted by terminating treatments 

or by systemically administering an E2 receptor agonist (Graham and Milad, 2013). 

Additionally, women with low salivary E2 present higher skin conductance response during 

FE training in comparison to women with high E2 (Wegerer et al., 2014). Serum E2 

concentrations can predict exposure therapy efficacy in women with spider phobia (Graham 

et al., 2018). Moreover, women with fear-based disorders taking HC display reductions in 

treatment efficacy and increased post-treatment symptoms (Li and Graham, 2016). Little 

research has been conducted regarding E2 role in other fear-based disorders such as panic 

disorder. Women at high risk for panic attacks have shown precipitation of panic disorder 

after taking HC (Deci et al., 1992). In contrast, estrogen replacement therapy is reported to 

be effective at reducing panic symptoms (Chung et al., 1995). Likewise, in men, 

pentagastrin-induced panic symptoms are reduced after a 3-day pretreatment with ethinyl E2 

(an estrogen receptor agonist) (McManus et al., 2001).

The role of testosterone, the primary sex hormone in males which lacks fluctuating 

properties, in regard to FE remains controversial. On the one hand, some studies report 

testosterone does not play a role in male rodents in FC, FE or FE recall (Anagnostaras et al. 

1998; McDermott et al. 2012). On the other hand, several studies report a strong modulation 

of FE acquisition and retention by male and female gonadal hormones. Further, blocking 

aromatase enzyme with fadrozole during FE training impairs FE recall 24 hours later in 

males (Graham and Milad, 2014). Also, dosing males with a GnRH agonist that increases 

the synthesis of testosterone enhances FE memory consolidation (Maeng et al., 2017). One 

hypothesis for this effect is that testosterone acts by its conversion to E2, producing over FE 

all the facilitating effects that were previously described (Graham and Milad, 2014). This 

could explain why FE appears more stable in males, while it presents disruptions in females 

during low E2 stages. Although it’s controversial, the current literature on E2 in males is 

hypothesized to be as important as in females for the consolidation of the FE memory. 

Testosterone levels seem unaltered in male patients with PTSD, but when analyzing a subset 

of PTSD patients without any comorbidity, higher testosterone levels are observed in 

comparison to controls and males with comorbid PTSD (Karlović et al., 2012). In line with 

this study, abnormalities in testosterone concentration have also been found in American 

survivors of the Iranian Hostage Crisis, presenting higher salivary testosterone than healthy 

controls (Rahe et al., 1990). In contrast, some other studies report lower testosterone in 

cerebrospinal fluid of combat veterans with current PTSD (Mulchahey et al., 2001). The 

existence of a SNP within the gene encoding for the 5-α-reductase (SRD5A2), an enzyme 

that degrades testosterone into dihydrotestosterone, correlates with more serious PTSD 

symptoms in men, but not women (Gillespie et al. 2013).

2.2.5. Summary—There are several molecular mechanisms implicated in the sex 

differences observed in FE, some of which are directly influenced by the dynamics of 
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gonadal hormones. E2 and testosterone emerge as crucial elements in FE memory formation 

with the capacity to positively regulate its consolidation. As reviewed here, women with 

high E2 levels, or rodents undergoing FE training during the proestrus phase, have better FE 

memory recall compared to women with low E2 levels or rodents trained during other 

estrous phases. Studies also show that glutamatergic transmission is crucial for fear learning 

and FE acquisition, although GluA1 seems to be essential for fear acquisition in males. 

Furthermore, several sex dimorphisms are reported for GABAA-R subunits that may impact 

fear acquisition and FE learning, having additional interactions with P4 metabolites. 

However, studies exploring the glutamatergic and GABAergic mechanisms of FE in both 

sexes are scarce. Neurotransmission in the LC is tightly modulated by sex and hormones. 

Differences in CRF1 receptor dynamics and MOR sensitivity leave females vulnerable to the 

effects of sustained CRF signaling, and prone to NA overactivation under stressful 

situations. Further, the effects of CRF over target structures may interact with hormonal 

levels, because females with high E2 have shown less activation of the extended amygdala in 

response to CRF. Neurotransmission by eCBs and BDNF generally improves FE in both 

sexes, from which the latter is positively regulated by E2 and may be related to the enhanced 

FE recall in females undergoing FE training during high E2 phases. In the case of DA and 5-

HT transmission, studies have shown differential effects over FE that depend on the type of 

drug and the targeted receptor. However, females benefit from increases in DA and 5-HT 

transmission only during stages with low E2 levels. The other reviewed neurotransmitters 

produce different effects over FE in each sex, but not always following the same direction. It 

seems that their actions are subject to factors like the dose, timing of administration and 

specific effects over target structures.

3 Future directions

Our knowledge about FE and the implicated neural circuits will be greatly improved with 

the arrival of revolutionary technologies. The combination of tools that determine specific 

neuronal profiles, with others that track neuronal dynamics in vivo, will enable researchers 

to precisely manipulate neuronal populations driving FE behavior. Additional factors like 

age, social interactions and the environment have not received much focus despite their 

powerful impact on health and behavior. Future studies must target these variables and 

provide evidence for additional within-sex effects that have not been accounted in detail yet, 

potentially improving our understanding of when and how sex differences arise in FE. 

Examples include, female’s reproductive status (Milligan-Saville and Graham, 2016), the 

role of social interactions in males (Horii et al., 2017), and the changes in fear learning 

across the lifespan (Kim and Richardson, 2010; Remmes et al., 2016). In humans, 

accounting for gender as a research variable is gaining recognition in psychiatric and 

behavioral research (The Lancet Psychiatry, 2016). Gender and gender conformity may be 

considered as an additional context (i.e. socioeconomic status, marital status) in which a 

person develops with the capacity to influence perceptions, choices, health and behavior 

(Short et al., 2013). Its role upon FE is fairly unrecognized, but its inclusion as a 2-step 

approach questionnaire where participants are asked for their sex assigned at birth and their 

current gender identity may provide insights about its contributions to fear learning (Clayton 

and Tannenbaum, 2016).
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Research frontiers will expand by the translation of basic research into the clinics. FE 

mimics exposure therapy procedures and it can be regarded as an useful model to test novel 

approaches to treat fear-based disorders despite its intrinsic limitations (Milad et al., 2014). 

Drugs that increase BNDF or cannabinoid signaling could be beneficial interventions for 

exposure therapy regardless of sex. In the case of hormonal interventions, males have shown 

to improve their FE with the use of a GnRH agonist (Maeng et al., 2017), while females may 

benefit from exogenous E2 or an ER-B agonist during their naturally low E2 stages (Maeng 

and Milad, 2015). However, a tight monitoring of the menstrual cycle/ hormonal levels is 

necessary since adverse outcomes are possible if E2 dosing is not timely constrained (Cover 

et al., 2014). Drugs increasing monoaminergic function in the mPFC during low E2 stages in 

females may render similar benefits as E2 (Inagaki et al., 2010).

Other aspects that may be relevant for women undergoing exposure therapy include the 

acknowledgement of SSRIs intake and a high nicotine consumption. Furthermore, hormonal 

contraception seems to be related with lower levels of FE, altered rsFC and changes in HPA 

axis reactivity (Engman et al., 2018; Graham and Milad, 2013; Hertel et al., 2017; Petersen 

et al., 2014). Thus, it seems urgent to explore the specific outcomes of exposure therapy in 

women using hormonal contraception. Lastly, the tailored timing of exposure therapy 

sessions during putatively high E2 phases may result in better clinical outcomes. 

Nevertheless, we lack studies that track fear learning in a within-subjects design throughout 

the menstrual cycle. It is still necessary to define the exact time windows in which E2 

benefits FE as it is not known if the benefits can be obtained during the peri-ovulatory phase, 

the mid luteal phase or following drastic hormonal shifts? (Maeng and Milad, 2015). Future 

studies performing a systematic control of the menstrual/estrous cycle and the hormonal 

status will inform about the specific factors to account for when performing fear research in 

women and females.

4 Conclusions

Here we have discussed all the studies on sex differences in FE that we are aware of. Despite 

an exponential growth in the number of papers focused on FE during the last 20 years, few 

studies using animal models have included both sexes in their design. Moreover, studies in 

humans and FE scarcely test for sex differences or systematically control for hormonal 

status. During the last years, this research bias has started to change, and now more studies 

are focused on sex differences in FE in both animals and humans. The main reason fueling 

this change implies the consensus about the need to focus on the female brain. For example, 

it is evident that including sex as a variable in FE is giving us a better understanding of the 

mechanistic processes underlying it, either by delineating the influence of sex hormones, or 

by revealing different brain connectivity patterns, among others. In addition, actual medical 

interventions begin to focus on personalized treatments. Thus, the understanding of how sex 

and hormonal status alter FE will be beneficial for designing specific treatments for men and 

women when appropriate.

The need to account for sex and the hormonal status when performing fear research is 

highlighted by studies that demonstrated women and female rodents seem to be generally 

hyper-responsive to threats during low E2 hormonal phases, also presenting impairments in 
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FE. The results from this review can be summarized into 5 points: 1) Sex hormones 

modulate FE and its consolidation but the exact underlying molecular mechanisms remain 

largely unknown. Seemingly, putative high E2 levels and P4 shifts exert positive and 

negative effects on FE respectively. 2) Hormonal fluctuations may determine different 

functional states in females, as some neurotransmitter/ neuropeptides follow these hormonal 

shifts, potentially influencing neuronal circuits relevant for FE. Examples include the 

changes in hippocampal spine density, differences in PAG’s inhibitory output, and the 

persistence of CeA/BNST-mediated behaviors. 3) The prominent sex differences in LC 

function, render it overactive in females under certain conditions. Moreover, greater NA 

signaling can impact fear retrieval, FE encoding, and FE consolidation. 4) PFC function 

seems to be regulated differently by monoamines throughout the menstrual/estrous cycle, so 

that increases in monoaminergic transmission during low E2 phases generally exert a 

positive influence over FE and the opposite occurs in phases with high E2. An observation 

that warrants further research since most drugs used to treat fear-based disorders target these 

systems. 5) There are apparent sex differences in the molecular mechanisms of FE 

consolidation related to glutamate, males with impaired glutamatergic function are unable to 

consolidate FE while females seem unaffected. The possibility of an alternative 

compensatory mechanism for FE consolidation in females should be explored.

Besides the small amount of research focused on females in FE, we must also account for 

the additional limitations in this review: There are considerable gaps in the mechanisms and 

circuits implicated in the retrieval of memories, specially FE memories. This is a crucial 

factor since memories become embedded into distributed networks with the passage of time 

and much of the reviewed studies are focused on the retrieval of FE in the short term. For 

example, it seems that FE memories are weakly stored into long-lasting engrams and the 

role of the striatum, thalamus and dorsolateral prefrontal cortex remains to be explored. 

Added to this, molecular signatures for FE and FE recall are scarce, and some of the 

conflicting findings may be explained by mechanisms applying only to a subset of neurons 

e.g. interneurons vs pyramidal neurons. Thus, the polymodal profiling of the studied neurons 

along with technical improvements in single-cell research will increase our understanding 

about their role in the micro and macrocircuits that regulate fear learning. Coupled with 

these theoretical frontiers, the ample methodological differences make it difficult to directly 

compare studies. Immediate and delayed FE are known to recruit specific molecular 

machinery, making them not completely interchangeable. Also, most studies submit subjects 

to non-naturalistic tasks or scenarios and rely solely on freezing response to measure fear 

learning. Thus, improvements in fear research will be achieved by the measurement of 

multiple CRs, the standardization and inclusion of subject’s hormonal status and the 

increased use of pathological fear learning animal models. Overall, the analysis of the sex 

differences in FE can give important insights about possible circuit and molecular 

dysregulations underlying the pathophysiology of fear-based disorders.
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Figure 1. 
Scaled representation of estradiol and progesterone levels during the distinct phases of the 

estrous (rodent) and menstrual cycle (human). The result of subjecting females to Fear 

Extinction (FE) training during each phase is shown at the top as fear extinction recall 

(FER). The FER of females undergoing FE training under high or low estrogen states appears 

on the right. * denotes additional within-session effects of the cycle during FE training. D: 

diestrus, E: estrus, E2: estradiol, EF: early follicular phase, LF: late follicular phase, LL: late 

luteal phase, M: metestrus, ML: mid luteal phase, P: proestrus. Information obtained from: 
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1. Milad et al., 2009, 2. Gruene et al., 2015, 3. Rey et al., 2014, 4. Milad et al., 2010, 5. 

Zeidan et al., 2011, 6 Pineles et al., 2016, 7. Graham & Milad 2013
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Figure 2. 
Schematic representation of the brain structures where sex differences in fear extinction are 

reported. The main findings of animal and human research appear enlisted under each 

structure. BA: basal amygdala, dACC: dorsal anterior cingulate cortex, E2: estradiol, EMD: 

estrus, metestrus, diestrus phases of estrous cycle, ER-β: estrogen receptor beta, F: females, 

FC: fear conditioning, FE: fear extinction: FER: fear extinction recall, FETR: fear extinction 

training, HC: hormonal contraceptives, IL: infralimbic cortex, LA: lateral amygdala, M: 

male, M/ F: male and female, PrL: prelimbic cortex, PTSD: posttraumatic stress disorder, 

vmPFC: ventromedial prefrontal cortex.
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