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Abstract

Magnetic resonance fingerprinting (MRF) is a quantitative imaging technique that can 

simultaneously measure multiple important tissue properties of human body. Although MRF has 

demonstrated improved scan efficiency as compared to conventional techniques, further 

acceleration is still desired for translation into routine clinical practice. The purpose of this work is 

to accelerate MRF acquisition by developing a new tissue quantification method for MRF that 

allows accurate quantification with fewer sampling data. Most of existing approaches use the MRF 

signal evolution at each individual pixel to estimate tissue properties, without considering the 

spatial association among neighboring pixels. In this work, we propose a spatially-constrained 
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quantification method that uses the signals at multiple neighboring pixels to better estimate tissue 

properties at the central pixel. Specifically, we design a unique two-step deep learning model that 

learns the mapping from the observed signals to the desired properties for tissue quantification, 

i.e., 1) with a feature extraction module for reducing the dimension of signals by extracting a low-

dimensional feature vector from the high-dimensional signal evolution and 2) a spatially-
constrained quantification module for exploiting the spatial information from the extracted feature 

maps to generate the final tissue property map. A corresponding two-step training strategy is 

developed for the network training. The proposed method is tested on highly undersampled MRF 

data acquired from human brains. Experimental results demonstrate that our method can achieve 

accurate quantification for T1 and T2 relaxation times by using only 1/4 time points of the original 

sequence (i.e., four times of acceleration for MRF acquisition).

Keywords

Magnetic resonance fingerprinting; neural network; quantitative magnetic resonance imaging; 
tissue quantification

I. Introduction

QUANTITATIVE imaging, i.e., quantification of important tissue properties in human body 

such as the T1 and T2 relaxation times, is desired for both clinical and research purposes. 

Compared with conventional qualitative imaging techniques, e.g., T1- and T2-weighted 

imaging, quantitative imaging can provide more accurate and unbiased information of tissue 

properties and enable objective comparison of scans acquired in longitudinal studies [1]–[3]. 

However, one of the major barriers to translate conventional quantitative imaging techniques 

[4]–[7] for clinical applications is the prohibitively long time for data acquisition.

Recently, magnetic resonance fingerprinting (MRF) [8], a new approach for MR image 

acquisition and post-processing, has been introduced, which can significantly reduce the 

acquisition time for quantitative imaging. Compared with conventional MR imaging 

methods, the MRF framework uses pseudo-randomized imaging parameters to generate a 

unique signal evolution for each tissue type. Multiple tissue properties can be estimated by 

matching the observed signal evolution to a precomputed MRF dictionary using a template 

matching algorithm. The parallel measurement of multiple tissue properties using highly 

undersampled data acquisition enables fast quantitative imaging within the MRF framework. 

The efficacy of MRF for quantification of various tissue properties in multiple organs has 

been demonstrated in recent studies [9]–[13].

Although MRF has demonstrated better scan efficiency than conventional quantitative 

imaging techniques, further acceleration is still needed to improve spatial resolution/

coverage and translate MRF into routine clinical practice, especially for pediatric and body 

imaging. Further reduction of acquisition time is of great benefit to clinical practice as it 

allows reduction of motion artifact, improvement of efficiency and throughput, and 

alleviation of patient discomfort during the MRF scan. In this work, we aim to shorten the 

acquisition time of MRF by acquiring fewer time points for each scan. However, acquiring 

fewer time points will result in fewer sampled data available for tissue quantification and 
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thus degraded quantification accuracy. Thus, a robust tissue quantification method that can 

accurately estimate tissue properties from fewer time points is needed for further 

acceleration of MRF acquisition.

In the literature, various methods have been proposed for tissue quantification in MRF. The 

original framework [8] uses a template matching method, where the signal evolution at each 

pixel is matched to a precomputed dictionary containing signal evolutions corresponding to 

a wide range of tissue types. The tissue properties used to generate the best matching entry 

in the dictionary are then assigned to the corresponding pixel. McGivney et al. [14] propose 

to use singular value decomposition (SVD) to reduce the dictionary dimension, thus 

improving the computational efficiency. Cauley et al. [15] has introduced a fast group 

matching algorithm that assigns dictionary entries to several highly-clustered groups to 

further accelerate the matching process. Yang et al. [16] has developed randomized SVD and 

dictionary polynomial fitting to largely reduce the memory requirement of calculating low-

rank approximations for large-scale dictionaries. In [17], the authors combine the dictionary 

matching technique with the compressed sensing (CS) framework by iteratively performing 

MR image reconstruction and tissue quantification to improve the quantification accuracy. 

Furthermore, the CS-based method is improved by adding certain constraints (i.e., low-rank 

constraint [18] and wavelet domain sparsity [19]) on the reconstructed MR images and 

reconstructing the MR images at different resolution levels to suppress the noise in the 

reconstructed images [20]. However, these methods only use the signal at a single pixel to 

estimate tissue properties, without considering spatial information of the whole image. To 

incorporate spatial information, [21] introduces a spatiotemporal dictionary, with each entry 

containing signals at multiple neighboring pixels. However, this method dramatically 

increases the dimension of each dictionary entry and thus could only exploit spatial 

information from a small neighborhood (e.g., 7 × 7 pixels) due to its high computation load.

Besides the aforementioned dictionary-based methods, other methods that do not involve 

dictionary matching have also been developed for the tissue quantification process. These 

methods can be roughly divided into two categories: 1) model-based and 2) learning-based 

methods. The model-based methods [22], [23] usually employ mathematical models to 

simulate the signal generation and acquisition process of MRF, and then obtain an 

statistically optimal estimation of the tissue property maps from the observed signals. 

Although the model-based methods provide new theoretical insights into the MRF 

framework, they are subject to unavoidable mismatches between mathematical models and 

the real-world non-ideal imaging systems [24], and also need complex algorithms to solve 

the statistical optimization problem. In the second category, the learning-based methods 

[25]–[28] use deep learning models to approximate a direct mapping from MRF signals to 

the underlying tissue properties. These methods have demonstrated improved computation 

efficiency since they perform tissue quantification with feed-forward neural networks 

without iterative computations. The performance of some learning-based methods has been 

evaluated on in vivo human brain data [27], [28]. However, previous learning-based methods 

rely on signal evolution acquired from single pixel for tissue quantification, without 

exploiting spatial context information of images. Moreover, these methods aim at improving 

computation efficiency, while the potential for further acceleration of MRF acquisition has 

not been evaluated in these approaches.
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In this work, we propose a learning-based method for tissue quantification in MRF. Our 

method exploits spatial context information by using a deep learning model to learn the 

mapping from the signals at multiple neighboring pixels to the tissue properties at the central 

pixel. We hypothesize that the spatial context information is helpful for accurate 

quantification for two reasons. First, there is correlation between tissue properties at 

neighboring pixels. For example, the tissue properties at adjacent pixels in a homogeneous 

region are likely to be similar. Therefore, information from neighboring pixels could be 

utilized as spatial constraint to regularize the estimation at the central target pixel for 

improving the accuracy of tissue quantification. Second, signals at the target pixel are 

distributed to its neighboring pixels due to the aliasing effect caused by undersampling in k-

space during MRF acquisition. Therefore, using spatial information can help recover the 

scattered signals and achieve a better quantification with MRF.

A major challenge here is the high dimension of the observed signal evolution at each pixel 

due to the large number of acquired time points. To this end, we develop a unique two-step 

deep learning model for spatially-constrained tissue quantification, including 1) a feature 
extraction module in the first step used to reduce the dimension of signals by extracting a 

low-dimensional feature vector from the high-dimensional signal evolution, and 2) a 

spatially-constrained quantification module used to exploit the spatial information from the 

extracted feature maps to generate the final tissue property map. We further design a two-

step training strategy for learning this two-step model. Moreover, a relative-difference-based 

loss function is adopted to tackle with the large range of the tissue property values to be 

estimated. Experiments on 6 subjects demonstrate that our method is superior to several 

state-of-the-art methods.

The rest of this paper is organized as follows. We first present materials used in this work 

and our proposed method in Section II, and then introduce experimental results and related 

analysis in Section III. In Section IV, we compare quantification results for T1 and T2, 

compare our method with previous studies, and present the limitations of the current work 

and future research direction. We finally conclude this paper in Section V.

II. Materials and Method

In this section, we first describe the data acquisition and preprocessing approach used in this 

work. We then present our proposed tissue quantification method in detail, including our 

proposed two-step deep learning model, two-step training strategy, and implementation 

details.

A. Data Acquisition and Preprocessing

All imaging was performed on a Siemens 3T Prisma scanner. A 32-channel head coil was 

used for signal reception. MRF data of axial human brain slices were acquired using the fast 

imaging with steady state precession (FISP) sequence [29]. A total of 2,304 time points were 

acquired for each scan, and data from only one spiral readout was acquired for each time 

point (reduction factor = 48). Other imaging parameters used in this study included: field of 

view (FOV) = 30 cm; matrix size = 256 × 256; slice thickness = 5 mm; flip angle = 5°~12°. 
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A constant TR of 7.0 msec was used and the acquisition time for each 2D MRF dataset was 

~23 seconds.

The MRF dictionary used in this study contains 13,123 combinations of T1 (60 ~ 5000 ms, 

with an increment of 10 ms below 2000 ms, an increment of 20 ms between 2000 ms and 

3000 ms, an increment of 50 ms between 3000 ms and 3500 ms, and an increment of 500 ms 

above 3500 ms) and T2 (10 ~ 500 ms, with an increment of 5 ms below 200 ms, an 

increment of 10 ms between 200 ms and 300 ms, and an increment of 50 ms above 300 ms). 

The signal evolution corresponding to each combination was simulated using Bloch 

equations.

The ground-truth tissue property maps were obtained from the acquired MRF data of all 

2,304 time points by using the dictionary matching method as introduced in the original 

MRF framework [8]. Specifically, MR images are first reconstructed using non-uniform Fast 

Fourier Transform (NUFFT) [30]. Next, the signal evolution in the dictionary that best 

matches the observed signal evolution at each pixel is selected by using the cross correlation 

as similarity metric. The T1 and T2 values corresponding to the best-matching entry are 

assigned to that pixel. Repeated over the entire image, this process yields quantitative T1 and 

T2 maps simultaneously. The obtained tissue property maps are then used as the ground 

truth in the following experiments. Since the magnitudes of MRF signal evolutions vary 

largely across different subjects, the MRF signal is normalized to a common range for better 

generalization of the deep learning model. Specifically, we normalize the energy (i.e., the 

sum of squared magnitudes) of each signal evolution to one, which is similar to the 

normalization performed when calculating cross correlation in the dictionary matching 

method [8].

For simplicity, denote the normalized MRF signals of an axial slice as X ∈ ℂM×N×T, where 

M × N is the size of the imaging matrix, i.e., 256 × 256 in this study, and T is the number of 

time points used for tissue quantification. Denote the signal evolution at the pixel (m, n) as 

xm,n ∈ ℂT. Denote the ground-truth tissue property (T1 or T2) map of that axial slice as Θ ∈ 
ℝM×N.

B. Proposed Model

We design a two-step deep learning model to learn the mapping from the MRF signals X to 

the tissue property map Θ. Our model contains two sequential components, i.e., 1) a feature 

extraction (FE) module for reducing the dimension of signal evolutions, and 2) a spatially-

constrained quantification (SQ) module for estimating the tissue property maps from the 

extracted feature map. The schematic overview of our proposed model is shown in Fig. 1, 

with Figs. 2 and 3 showing the detailed network structure for each of the two modules. The 

structures of FE and SQ modules are described in details in the following sections.

1) Feature Extraction Module: In the feature extraction (FE) module, fully-connected 

neural networks (FNNs) are used to convert the input high-dimensional signal evolution into 

a low-dimensional feature vector which contains useful information for tissue property 

estimation. One FNN is used to extract the features useful for estimation of one specific 

tissue property. In total, our FE module contains two FNNs for estimation of two tissue 

Fang et al. Page 5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



properties, i.e., T1 and T2 relaxation times. Specifically, each FNN learns a nonlinear 

mapping f from the signal evolution at a certain pixel xm,n ∈ ℂT, to the feature vector at that 

pixel ym,n ∈ ℝD:

ym, n = f xm, n (1)

where T is the number of time points used for tissue quantification and D (D = 46 in this 

study) is the number of features extracted. Applying the FE module to all the pixels in the 

axial slice yields a low-dimensional feature map Y ∈ ℝM×N×D corresponding to the high-

dimensional MRF signals X:

Y = f X (2)

The FE module is needed for the following reasons. First, MRF implementation usually 

acquires a large number of time points, such as 2,304 in the FISP sequence and 576 after 4 

times of acceleration. In this case, directly feeding such high-dimensional data into the 

subsequent spatially-constrained quantification module will lead to large network size and 

challenges in efficient network training. Besides, the FE module can provide a better 

representation of the original signal for tissue quantification, by extracting only the essential 

information for estimation of the target tissue property while filtering out the noise and 

unrelated information in the original signal.

Previous studies [14], [18], [23], [31] used singular value decomposition (SVD) to reduce 

the dimension of signal evolutions. The advantage of using deep neural networks, i.e., FNN 

in this study, instead of SVD is twofold. First, the deep neural network learns a multilayer 

nonlinear mapping from the original signal to the extracted features, whereas SVD learns 

only a single-layer linear mapping. Therefore, the deep neural network can extract more 

abstract and higher-level information from the input signal, which can be used to improve 

the robustness and accuracy of tissue quantification. Second, the combination of neural 

networks for both FE and SQ modules allows end-to-end training of the entire two-step 

model through back propagation, which further improves the compatibility between two 

modules and thus the performance of our method.

There are various choices for the structure of FNN in the FE module. The particular 

structure adopted in this study is composed of 4 fully-connected (FC) layers (as shown in 

Fig. 2), where each FC layer includes a full connection followed by batch normalization and 

ReLU activation. The output dimensions of all the FC layers are the same (i.e., D = 46). The 

input of FNN, i.e., a signal evolution xm,n ∈ ℂT, is transformed to a real vector by splitting 

the real and imaginary parts, thus the input dimension of FNN is 2T.

2) Spatially-Constrained Quantification Module: In the spatially-constrained 

quantification (SQ) module, convolutional neural networks (CNNs) are used to capture 

spatial information of the feature map Y and finally generate the estimated tissue property 

map Θ ∈ ℝM × N. One CNN is used for the estimation of one tissue property. In total, our SQ 
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module contains two CNNs for estimation of two tissue properties, i.e., T1 and T2 relaxation 

times. Specifically, each CNN learns a nonlinear mapping s from the feature map Y to the 

estimated tissue property map Θ:

Θ = s(Y) (3)

There are also various choices for the structure of CNN in the SQ module. In this study, we 

use U-Net [32], [33] (as shown in Fig. 3) to capture both local and global spatial information 

of feature map Y. This network includes an encoder sub-network (i.e., left part of Fig. 3) to 

extract spatial features at multiple resolution levels from the input feature map, and a 

subsequent decoder sub-network (i.e., right part of Fig. 3) to estimate the output tissue 

property (T1 or T2) map based on the extracted spatial features from encoder subnetwork.

In the encoder sub-network, the spatial context information is incorporated into the extracted 

feature maps by feature extraction (with convolution) and 2× down-sampling (with max 

pooling). Specifically, each convolution layer incorporates spatial information from 3×3 

neighboring pixels by applying 3×3 convolution kernels to the input feature map. Moreover, 

each max pooling layer incorporates information from 2×2 pixels by retaining the max value 

of 2×2 subregion in the input. Spatial sharing further increases with the concatenation of 

convolution layers and pooling layers.

In the subsequent decoder sub-network, the feature maps at different spatial scales are up-

sampled (with transpose convolution), concatenated, and merged (with convolution), to 

combine global context knowledge with complementary local details and generate the final 

tissue property maps with spatial context information from different scales. The U-Net 

shown in Fig. 3 has a receptive field size of 54×54 pixels, which means that the signals from 

54×54 neighboring pixels in the input MRF images are used for estimation of tissue property 

at one pixel in the output tissue property map.

C. Two-Step Training Strategy

To better train the proposed two-step model, we design a two-step training strategy, 

including 1) pretraining of the FE module by signals and tissue properties at individual 

pixels, and 2) end-to-end training of the entire model by signals and tissue property maps of 

whole axial slices.

1) Pretraining of the Feature Extraction (FE) Module: As there is no ground truth 

for the output features of FE module, we extend each FNN with one FC layer and trains the 

extended FNN to estimate the desired tissue property (corresponding to the input signal 

evolution). Therefore, the features extracted by the original FNN will capture useful 

information for estimation of the desired tissue property. Denote the mapping learned by the 

added FC layer as fa and the mapping learned by the extended FNN as f a ∘ f . The objective 

function of pretraining of the FE module can be formulated as the following:
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ξ f , ξ f a
= arg min

ξ f , ξ f a

𝔼x, θ
θm, n − f a ∘ f xm, n

θm, n
(4)

where θm,n ∈ ℝ is the ground-truth tissue property at the pixel (m, n), fa ∘ f(xm,n) ∈ ℝ is the 

output of extended FNN for input signal evolution xm,n, ξf and ξ f a
 are the network 

parameters of the original FNN and the added FC layer respectively, and E[] represents 

mathematical expectation.

Note that we use relative difference between the ground truth θm,n and the network output fa 

∘ f(xm,n) as the loss function, instead of the absolute difference which is commonly used for 

regression problems. The main reason is that T1 and T2 measures in human body span a 

large range, and thus the loss function based on the conventional absolute difference will be 

dominated by the pixels with high tissue properties. Therefore, we use relative difference as 

the loss function to balance across tissues with different ranges in our proposed method.

The pretraining of FE module is helpful in providing better initial parameters of FE module 

for the subsequent end-to-end training of the entire model. Besides, during pretraining, more 

data can be used to better train the FE module since the signal and tissue property at each 

individual pixel can be used as training data. However, during the subsequent end-to-end 

training, only the whole images or image patches can be used as training data, to provide the 

spatial context information needed for spatially-constrained tissue quantification.

2) End-to-End Training of the Entire Model: After pretraining of the FE module, the 

end-to-end training is performed to train the SQ module and fine-tune the FE module. 

During the end-to-end training, the parameters in both the FE and SQ modules are tuned 

together, so that the two modules are more compatible and the performance of the entire 

model can be improved. The objective function of end-to-end training can be formulated as 

the following:

ξs, ξ f = arg min
ξs, ξ f

𝔼X, Θ
Θ − s ∘ f (X)

Θ 1
(5)

where s and f are the mappings learned by SQ and FE modules, respectively, while ξs and ξf 

are the network parameters of SQ and FE modules, respectively. Also, s ∘ f(X) ∈ ℝM×N is 

the output of entire model for the input MRF signals X, and ∥·∥1 stands for the entry-wise 

L1-norm.

3) Training Details: For both training stages, we used ADAM optimizer [34] with a 

batch size of 32 and an initial learning rate of 0.0002. At each stage, we trained the networks 

for 400 epochs, by keeping the learning rate the same for the first 200 epochs and linearly 

decaying it to zero over the next 200 epochs. For end-to-end training, we extracted image 

patches of 64×64 pixels as training data. Network weights were initialized from a Gaussian 
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distribution with mean 0 and standard deviation 0.02. We implemented the algorithm in 

Python with PyTorch library and trained the models on a GeForce GTX TITAN XP GPU.

D. Implementation

When the training is completed, the model can be applied to new testing data for tissue 

quantification. Specifically, the model calculates the desired tissue property map Θ ∈ ℝM × N

for the input MRF signals of an axial slice Z ∈ ℂM×N×T by:

Θ = s ∘ f (Z) (6)

Note that the tissue quantification is performed by a direct mapping from the observed 

signals to the tissue property map, i.e., s ∘ f, thus our method is much more computationally 

efficient than the dictionary-based or model-based methods that require iterative 

computations.

III. Experiments

In this section, we first present experimental settings and competing methods, then report 

experimental results achieved by our method and competing methods, and finally investigate 

the influence of several key components of our method.

A. Experimental Settings

Our dataset contains axial brain slices from 6 human subjects. Among the 6 subjects, 5 

subjects were acquired with 12 slices per subject and one subject was acquired with 10 

slices. The MRF image series and ground-truth T1 and T2 maps of each slice were obtained 

through the method described in Section II.A.

In this work, we accelerate MRF acquisition by using fewer time points for tissue 

quantification. Specifically, for the acceleration rate ar, we only use the first 1/ar · Ta of all 

Ta (Ta = 2,304 in this study) time points. For example, when ar = 4, T (i.e., the number of 

time points used for tissue quantification) = 1/4 × 2,304 = 576.

In our experiments, we use the relative error to measure the quantification accuracy achieved 

by different methods: em, n = (θm, n − θm, n)/θm, n , where em,n ∈ ℝ is the quantification error 

at the pixel (m, n), and θm,n ∈ ℝ and θm, n ∈ ℝ are the ground-truth and estimated tissue 

properties at that pixel, respectively. The relative error of an axial slice is calculated by 

averaging the relative errors across all brain tissues (excluding background) in the slice. The 

mean and standard deviation of relative errors of all testing slices are calculated for 

quantitative comparison between different methods.

B. Competing Methods

We first compare our proposed spatially-constrained tissue quantification (SCQ) method 

with the baseline dictionary matching (DM) method proposed in the original MRF frame-

work [8]. In the DM method, we use the same dictionary as that used to calculate the ground 
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truth (as described in Section II.A). Specifically, the dictionary is generated using the Bloch 

equations and contains 13,123 entries corresponding to different combinations of T1 and T2 

values.

Besides, we further compare our SCQ method with three state-of-the-art methods, including 

1) SVD-compressed dictionary matching (SDM) [14], 2) compressed sensing 

multiresolution reconstruction (CSMR) [20], and 3) conventional deep learning (DL) 

method [28]. The details of these state-of-the-art methods are listed as follows.

1) SVD-Compressed Dictionary Matching (SDM) [14]: A variant of DM that uses 

SVD to compress the dictionary, which is reported to have better computation efficiency 

than DM. Specifically, in SDM, SVD is applied to all the entries in the dictionary used in 

DM. Then, each entry is projected to a lower dimensional subspace spanned by the singular 

vectors. The dimension of the subspace is set as 17, which corresponds to 99.9% of the total 

energy of all singular values.

2) Compressed Sensing Multi-resolution Reconstruction (CSMR) [20]: A 

compressed-sensing-based method that uses multi-resolution reconstruction for MR images, 

which is reported to have good quantification accuracy for accelerated data with fewer time 

points. Specifically, in the CSMR method, MR image reconstruction is performed iteratively 

at different resolution levels, and tissue quantification is performed at each iteration through 

dictionary matching. The number of iterations is set as 14, and the tissue property maps 

obtained from the last (i.e., 14th) iteration are used as the final quantification results.

3) Conventional Deep Learning (DL) Method [28]: A non-spatially-constrained 

deep-learning-based method, which is reported to have better computation efficiency than 

DM. Specifically, the DL method treats each observed signal evolution as a time sequence 

and feeds it into a CNN with six 1-D temporal convolution layers followed by six fully-

connected layers. The network then outputs the desired tissue properties.

It is worth noting that DM, SDM, and CSMR are dictionary-matching-based methods, while 

DL and our SCQ method are deep-learning-based methods.

C. Comparison with Baseline Method

In this group of experiments, we compare our SCQ method with the baseline DM method 

with 3 acceleration rates: 1) ar = 2, T = 1152; 2) ar = 4, T = 576; and 3) ar = 8, T = 288. 

Here, we use slices of 5 randomly selected subjects as the training data, and slices of the 

remaining one subject as the test data. The quantification results for a representative slice in 

the test dataset yielded by the two methods are shown in Fig. 4. In general, our method 

achieves more accurate quantification results than the baseline DM method. Notably, with ar 
= 8 for T2 quantification, our method yields a reasonable result (error = 8.0%), while DM 

nearly fails to estimate the T2 map (error = 60.9%).

The means and standard deviations of the relative errors calculated from all slices in the test 

data are summarized in Fig. 5. As shown in Fig. 5, our method yields lower error than the 

baseline method for T2 quantification when ar = 8, 4, and 2, and also for T1 quantification 
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when ar = 8 and 4. In addition, the improvement is more evident when the acceleration rate 

is higher, i.e., the acquisition time is shorter.

Besides, we also compared the SCQ method with DM for the data with no acceleration. 

Note that the DM results with no acceleration are used as the ground-truth tissue property 

maps in this study. The quantification errors yielded by SCQ are 1.00% ± 0.19% for T1 and 

2.82% ± 0.19% for T2, which suggests a good agreement between the quantification results 

of SCQ and DM with no data acceleration.

D. Comparison with State-of-the-art Methods

In this group of experiments, we compare our method with three state-of-the-art methods in 

terms of quantification accuracy and processing time, with ar = 4. Here, we performed 

subject-level leave-one-out cross validation. Specifically, each time we used the slices of one 

subject as test data and slices of all the remaining 5 subjects as training data. This process 

was repeated 6 times until all subjects were alternatively used as test data. The quantification 

errors yielded by different methods for each test subject are summarized in Table I. For 

comparison, we also show the errors of DM in Table I.

From Table I, we can observe that our SCQ method consistently achieves superior accuracy 

for T1 and T2 quantification compared to the four competing methods. Also, compared with 

the conventional deep-learning-based method (i.e., DL), our method achieves higher T2 

quantification accuracy because our method can exploit spatial context information through 

CNNs in its SQ module, while the DL method cannot exploit that information through its 

network. On the other hand, compared with the dictionary-based methods (i.e., DM, SDM, 

and CSMR), our method learns a multilayer nonlinear mapping from the signal to the 

underlying tissue properties, which is potentially more noise-robust than the simple cross-

correlation-based template matching procedure performed in the dictionary-based methods. 

Also, the dictionary-based methods perform tissue quantification for each pixel separately, 

without considering the spatial context information.

In addition, we also report the average testing times for one axial slice required by different 

methods in Table II. The testing time includes all computations performed using the 

reconstructed MRF image series for the quantification of T1 and T2 maps. Specifically, both 

signal compression time and matching time are included for SDM. From Table II, we can 

clearly see that our SCQ method achieves the shortest testing time, i.e., 2.3 seconds for 

quantification of T1 and T2 for an axial slice with a matrix size of 256 × 256, while the 

second fastest method (i.e., SDM) needs 14.2s. These results suggest that, compared with 

the competing methods, our method is more efficient in tissue quantification, which is 

particularly useful in practice.

E. Effects of Important Components in Our Method

In this subsection, we study the effect of three essential components in our method for tissue 

quantification. All the experiments in this subsection were performed with ar = 4 and D = 46 

unless stated otherwise. In the Supplementary Materials, we further analyze the influence of 

another two components (i.e., network architecture and data normalization) in SCQ, with 

results shown in Fig. S1 and Tables SI–SIII.
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1) Influence of Feature Number, and Comparison between FNN and SVD: We 

evaluate the influence of the number of features extracted by the FE module, i.e., D. To 

estimate possible values for D, we first apply SVD to the MRF dictionary using the method 

in [14]. Multiple numbers of singular values corresponding to certain energy thresholds are 

then selected as the D values. Specifically, we select D = 8, 10, 22, 46, 76, 124, and 170, 

corresponding to the energy thresholds of 90%, 95%, 99%, 99.9%, 99.99%, 99.999%, and 

99.9999%, respectively.

We also compare our method (SCQ) with its variant SCQ_S which uses SVD (instead of 

FNN) for feature extraction in the FE module. We use the method proposed in [14] to apply 

SVD to the MRF signal evolutions.

The quantification errors yielded by SCQ and SCQ_S with different numbers of extracted 

features are summarized in Fig. 6. As shown in Fig. 6, SCQ generally yields lower 

quantification error than SCQ_S. Besides, the quantification error of SCQ first drops then 

rises when the number of extracted features increases. Specifically, the error of SCQ reaches 

the minimum for T1 when D = 124, and for T2 when D = 46. It is worth noting that the 

quantification error is lower from SCQ_S than SCQ when the number of extracted features 

is around 10. To further study this case, we examine the visual results for D = 10 and D = 46 

in Section I.C and Fig. S2 in the Supplementary Materials.

2) Influence of the FE and SQ Modules: In this group of experiments, we study the 

importance of the FE module and the SQ module, respectively, by removing each of them 

from the original SCQ model.

Specifically, we compare SCQ with its two degraded variants. In the first variant (denoted as 

SQ-only), we feed the high-dimensional MRF signals directly into the SQ module, without 

using the FE module for dimension reduction. In SQ-only, the number of input channels for 

the CNN in SQ module increases from D to 2T, with each channel corresponding to the real 

or imaginary part of the signal at one time point. In the second variant (called FE-only), we 

use the extended FNN obtained from the pretraining of FE module to estimate the tissue 

property from individual signal evolutions, without using the SQ module to exploit spatial 

context information.

The results yielded by our SCQ method and its two variants (i.e., SQ-only and FE-only) are 

summarized in Table III. As shown in Table III, removing the FE module (in SQ-only) 

increases the quantification errors, which is likely due to the over-fitting problem caused by 

the increased network size in SQ module. Removing the SQ module (in FE-only) increases 

quantification errors, demonstrating the importance of the proposed SQ module and the 

spatial context information it extracts for accurate tissue quantification.

3) Importance of the Phase Information in MRF Signals: In our SCQ method, 

both the real and imaginary parts of the complex MRF signals are inputted to our model for 

tissue quantification. In the previous work that applies deep learning to MRF [26], [28], only 

the magnitude of signals (without any phase information) is inputted. In this group of 

experiments, we study whether the phase in MRF signals provides valuable information for 
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tissue quantification, by comparing our method (SCQ) with its another variant, called 

SCQ_M, which uses only the magnitude of signals as input. The results are summarized in 

Table IV. As shown in Table IV, SCQ_M yields much higher quantification errors than SCQ, 

suggesting that both magnitude and phase values in MRF signals contain useful information 

for tissue quantification. It is worth noting that the error increase due to removing phase 

information is much higher than that due to removing FE or SQ module (as shown in Table 

III), which further demonstrates the importance of phase information in MRF signals for 

accurate tissue quantification. This result is consistent with recent findings in the literature 

[35].

IV. Discussion

A. Difference between T1 and T2

It has been observed in Figs. 4, 5, and 6 and Tables I, III, and IV that both our SCQ method 

and the existing methods yield higher accuracy for T1 quantification than for T2 

quantification. Previous studies have also observed this difference for longer acquisitions 

[22], which indicates that the FISP sequence is not as sensitive to T2 as to T1. Moreover, the 

FISP sequence applies an inversion preparation pulse at the beginning of the acquisition, 

stimulating T1-recovery-like dynamics that dominate the early portion of signal evolutions 

[22]. Therefore, the early portion of signal evolutions, which is used for tissue quantification 

in this study, contains more information of T1 than of T2, resulting in higher accuracy in T1 

quantification. This also explains why the optimal number of extracted features for T1 (i.e., 

124) is greater than that for T2 (i.e., 46), as shown in Section III.E.1, as more features are 

needed to encode the information of T1 contained in the MRF signals used for tissue 

quantification.

B. Flexibility of SCQ Framework

As demonstrated by the experiments with different acceleration rates, our framework is 

flexible with different acquisition lengths. Moreover, the framework can also be applied to 

various other acquisition protocols, including different MRF pulse sequences, under-

sampling designs, and 3D imaging. When applying our framework to a new acquisition 

protocol, a new set of training dataset is likely needed to train the deep neural networks (i.e., 

FNN and CNN in our framework) and the model can then be applied to the data acquired 

with the corresponding protocol.

Compared to the standard dictionary matching approach, our framework could potentially 

provide more flexibility in the estimation of tissue properties. Specifically, the MRF 

dictionary only covers a limited range of discrete tissue property values, which limits the 

precision of quantification and leads to partial volume problems. In comparison, our 

framework learns an unbounded and continuous mapping from MRF signals to underlying 

tissue properties, which could potentially improve the performance of tissue quantification.

C. Comparison with Previous Studies

Compared with the baseline DM method [8], our method can significantly improve the 

quantification accuracy for highly-accelerated data, as shown in Figs. 4 and 5. However, it is 
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worth noting that some blurring effects can be observed in the quantitative maps estimated 

by our method with 8 times of acceleration (see Fig. 4). In the Supplementary Materials, we 

further study this blurriness through frequency-domain representations of the quantitative 

maps. The blurring effect of our method potentially degrades spatial resolution and hinders 

application for high-resolution imaging [36]–[39]. To tackle with this problem, a loss 

function can be added to enhance the high frequency details of our output tissue property 

map, such as a discriminative loss within generative adversarial networks (GAN) [40]–[42], 

or a gradient loss that minimizes the difference between the gradient maps of network output 

and the ground-truth tissue property map [42], [43].

Compared with three state-of-the-art methods (i.e., SDM, CSMR, and DL), our method 

achieves higher quantification accuracy with a shorter processing time, as shown in Tables I 

and II. Among the state-of-the-art methods, SDM reduces the processing time of the 

baseline DM method by 46% but achieves poorer quantification accuracy than DM. DL 

shortens the processing time of DM by 31% while simultaneously achieving higher 

accuracy. CSMR can achieve higher quantification accuracy than the baseline DM method in 

certain cases for T2, but at a cost of longer processing time. On the other hand, our method 

can improve both the quantification accuracy and the processing speed of the baseline DM 

method. Furthermore, the dictionary-based methods, i.e., DM, SDM, and CSMR, all have a 

testing time that grows exponentially with the number of tissue properties to be estimated, 

since the dictionary dimension grows exponentially with the number of tissue properties 

[22], [25]. However, the testing time of our method only grows linearly with the number of 

tissue properties, as the number of networks used in our method grows linearly with the 

number of tissue properties. Given these relationships, our method is potentially superior to 

the dictionary-based methods in computation efficiency when more tissue properties are 

quantified with MRF in future work.

D. Limitations and Future Work

There are several limitations in the current method. First, our method, like other deep-

learning-based methods, needs large amounts of training data for network learning. All the 

training data used in this study are acquired from in vivo subjects at our institution, while the 

number of subjects (i.e., 6) is not large enough. In the future work, simulation data, obtained 

from computer simulation based on the mathematical models of the data generation and 

acquisition process, will also be used for training to increase the training data size and 

further optimize our model. Second, our method only exploits the spatial context 

information inside an axial slice, without considering the spatial information from 

neighboring slices. Inspired by [44]–[47] that extend the MRF framework from 2D to 3D, 

we will extend our 2D model for 3D application to exploit the spatial information from all 3 

spatial dimensions. Third, our method estimates different tissue properties separately, 

ignoring the inherent relationship among different tissue properties, e.g., T1 and T2. We plan 

to explicitly exploit this correlation through a multi-target joint estimation network [48] to 

improve the quantification accuracy. Finally, other advanced convolutional neural networks 

besides the U-Net [32], e.g., ResNet [49], DenseNet [50] and others [51]–[53], can also be 

used in SQ module to capture spatial context information in MRF signals in future work.
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Besides the aforementioned improvements in methodology, more experiments can be also 

conducted to better evaluate our method. First, in this work, we only test our method with 

the FISP sequence. The performance of our method on other MRF sequences, e.g., bSSFP 

[8], [54], is worth evaluating. Second, we only examine two tissue properties, i.e., T1 and T2 

relaxation times, while other properties, e.g., spin density and T2∗ relaxation time, are also 

worth evaluating. Third, our dataset contains only healthy subjects with no brain lesions. In 

the future work, data from subjects with brain lesions or other brain diseases can be also 

used for testing, to better evaluate our method’s potential for clinical usage.

V. Conclusion

In this paper, we have introduced a deep-learning-based spatially-constrained tissue 

quantification method for magnetic resonance fingerprinting (MRF). A unique two-step deep 

learning model is proposed to tackle with the high dimensionality of MRF data, including a 

feature extraction module and a spatially-constrained quantification module. A two-step 

training strategy and a relative-difference-based loss function are used to optimize the 

performance of our model. Based on the experimental results, our method can 1) achieve 

accurate quantification of T1 and T2 relaxation times from highly undersampled in vivo 
brain data, and 2) allow at least four times of acceleration for MRF data acquisition without 

significant loss of accuracy in tissue quantification.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Schematic overview of our proposed two-step deep learning model for spatially-constrained 

tissue quantification in MRF. FNN: fully-connected neural network. CNN: convolutional 

neural network. The number of channels (each with paired FNN and CNN) is equal to the 

number of tissue properties to be estimated (i.e., 2 in this study).
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Fig. 2. 
Network structure of the fully-connected neural network (FNN) in our proposed feature 

extraction (FE) module. Each blue arrow represents a fully-connected (FC) layer, and each 

blue block represents the output of an FC layer.
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Fig. 3. 
Network structure of the convolutional neural network (CNN) in our proposed spatially-

constrained quantification (SQ) module, i.e., U-Net. The blue blocks represent spatial 

feature maps obtained from spatial convolutions, and gray blocks represent feature maps 

copied from previous layers. Each feature map has one feature dimension and two spatial 

dimensions, while only one feature dimension and one spatial dimension are shown for 

simplicity. The feature dimension is labeled on the top of each block.
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Fig. 4. 
Visual results of T1 and T2 quantification by our method (SCQ) and the baseline method 

(DM). (a) Ground-truth T1 map. (b)-(e): Estimated T1 maps and associated relative error 

maps. (f) Ground-truth T2 map. (g)-(j): Estimated T2 maps and associated relative error 

maps. The overall error is labeled at the lower right corner of each error map. ar: 
acceleration rate; T: number of time points used for tissue quantification.
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Fig. 5. 
Quantification errors of (a) T1 and (b) T2 (mean ± standard deviation, unit: %) yielded by 

our method (SCQ) and the baseline method (DM) for different acceleration rates.
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Fig. 6. 
Quantification errors of (a) T1 and (b) T2 (mean ± standard deviation, unit: %) yielded by 

our method (SCQ) and its variant (SCQ S) which uses SVD (instead of FNN) for feature 

extraction in the FE module, with different numbers of extracted features. Here, ar = 4.
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TABLE II:

Average testing time required by our method (SCQ), the baseline method (DM) and the state-of-the-art 

methods (SDM, CSMR, AND DL) for T1 and T2 quantification for an axial slice with a matrix size of 256 × 

256. Units: second (S) and hour (H). Here, ar = 4.

DM SDM CSMR DL SCQ (ours)

26.2s 14.2s ∼2h 18.0s 2.3s

Experiments were performed on an iMac (2017) desktop, with CPU: 4.2 GHz Intel Core i7, and memory: 16 GB 2400 MHz DDR4. DM, SDM, 
DL, and SCQ were implemented in Python, and CSMR was implemented in Matlab R2017a. Testing time is defined as the time for all 
computations performed using the reconstructed MRF image series for the quantification of both T1 and T2 maps. Specifically, the testing time of 
SDM includes both signal compression time and matching time.
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TABLE III:

Quantification errors of T1 and T2 (mean ± standard deviation, unit: %) yielded by our method (SCQ) and its 

variants (SQ-only and FE-only) where only one of the modules exists. Here, ar = 4.

SQ-only FE-only SCQ (ours)

T1 2.34 ± 0.40 2.41 ± 0.49 2.08 ± 0.23

T2 6.42 ± 0.64 7.02 ± 0.78 5.81 ± 0.66
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TABLE IV:

Quantification errors of T1 and T2 (mean ± standard deviation, unit: %) yielded by our method (SCQ) which 

uses both the real and imaginary parts of mrf signals as input, and its variant (SCQ_M) which uses only the 

magnitude of signals as input. Here, ar = 4.

SCQ_M SCQ (ours)

T1 10.82 ± 2.12 2.08 ± 0.23

T2 13.71 ± 2.11 5.81 ± 0.66
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