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Biomedical informatics has traditionally adopted a linear view of the informatics process (collect, 
store and analyse) in translational medicine (TM) studies; focusing primarily on the challenges in data 
integration and analysis. However, a data management challenge presents itself with the new lifecycle 
view of data emphasized by the recent calls for data re-use, long term data preservation, and data 
sharing. There is currently a lack of dedicated infrastructure focused on the ‘manageability’ of the data 
lifecycle in TM research between data collection and analysis. Current community efforts towards 
establishing a culture for open science prompt the creation of a data custodianship environment for 
management of TM data assets to support data reuse and reproducibility of research results. Here 
we present the development of a lifecycle-based methodology to create a metadata management 
framework based on community driven standards for standardisation, consolidation and integration 
of TM research data. Based on this framework, we also present the development of a new platform 
(PlatformTM) focused on managing the lifecycle for translational research data assets.

Introduction
Translational research (TR) is often described as a data intensive discipline. An intrinsic complexity in the trans-
lational approach is brought by the granularity, scale and diversity of data collected and observed during a study. 
Collected data include phenotype data, such as demographics, diagnosis, lab tests, clinical events, medications 
as well as sample (specimen) data are collected during clinical trials and hospital encounters. Moreover, high 
dimensional datasets are generated from molecular profiling including genomics, transcriptomics, proteomics, 
and metabolomics techniques, which are becoming routine.

Challenges in integration and analysis of such diverse and voluminous data led to the emergence of Translational  
Bioinformatics (TBI)1,2. TBI tool and infrastructure developments have consequently adopted an analysis-driven 
informatics approach. Recent reviews of non-commercial TBI solutions3,4 demonstrate their success in enabling TR 
studies to conduct integrative analysis, generation and validation of complex hypotheses, data exploration and cohort 
discovery5. Essentially, these platforms focus on supporting the analytical requirements of a research project ensuring 
its scientific goals are met during its short-term life span. Other platforms such as dbGap6 and ImmPort7 offer a data 
archive to preserve data after the termination of a project, but they do not play a role during its active phase.

Data integration and analysis, viewed in light of the data lifecycle8, are only part of a more elaborate process 
to collect, curate, store, integrate, find, retrieve, analyse, and share data (Fig. 1). Together, these stages form a 
non-linear data pipeline, which often involves a lot of communication and feedback between different user roles, 
including curators, data managers, clinicians and bioinformaticians. Managing research data assets throughout 
this data pipeline presents another challenge, namely a data management challenge, towards improving the effi-
ciency of the research process, and achieving the vision for the reuse and long term preservation of data.

Furthermore, there is an increasingly widespread recognition that data could potentially be reused and repur-
posed to support new areas of research. Academic initiatives, such as the Denton Declaration for open data 
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recognises the role of open data and open access to research data as being critical for advancing science, scholar-
ship and society9. With this recognition comes increasing pressure for researchers to do more with their data to 
ensure its availability and utility for purposes outside of the context in which they were originally generated. More 
recently, four foundational principles: Findability, Accessibility, Interoperability, and Re-usability (FAIR)10 have 
become the guiding means towards achieving successful reuse of scholarly data.

There is currently a gap in the informatics literature focusing on the ‘active management’ of data assets during 
the lifetime of a research project. In translational research studies data tend to be produced and administered “in 
the wild,” meaning that researchers typically devote very little consideration to how the data could be used beyond 
its initial purpose. Leaving data management planning as an afterthought severely reduces the long term value of 
research data assets and limits the potential for reuse. In data governance, data custodianship pertains to applied 
methodologies and infrastructure to manage the usage and preserve the value of data. We believe that establishing 
a data custodianship environment is essential to promote the importance of managing data as assets independent 
of specific analytical needs, nevertheless improving the analysis and reproducibility of research results. It will 
also ensure that data conforms to the FAIR data principles, which are established and reinstated by decisions and 
actions taken at each stage of the data lifecycle governed within this environment. The FAIR data principles are 
guidelines that define the criteria for achieving shareable and reusable data. However, this still leaves the details 
of how to actually achieve this in practice.

Various stages of the data life cycle in TM research, such as discovering, reusing, sharing, and analysing data 
are entirely dependent on the use of metadata and data standards. Several recent reviews suggest that a major 
challenge in translational bioinformatics is the lack of adoption of such standards that is often due to barriers in 
understanding, navigating and using these standards11–13. This paper begins by describing a data lifecycle man-
agement approach to develop a standard-compliant metadata management framework for translational medi-
cine research. This framework is designed to incorporate different types of metadata models, i.e. administrative, 
descriptive, structural, and provenance metadata within the context of translational research domain. Based on 
this framework, we then present the design, development, and application of PlatformTM: a standards-compliant 
data custodianship environment for all user roles involved in managing the data lifecycle between data collection 
and data analysis. Focusing on the ‘active management’ of data, the platform provides a set of core functionalities 
to handle metadata definition, file management and data loading, data storage, retrieval, visualization, export and 
data sharing. Underlying these set of features is an integrated solution that includes a data repository for consol-
idating and archiving primary datasets, a data warehouse for integrated and harmonized clinical and molecular 
observations, and user-based database for sharing analysis-ready datasets.

Methods
Characterization of translational research data lifecycle.  From its inception to its use and comple-
tion, research data will likely undergo multiple transformations in its format, application, use, and perhaps even 
its purpose. Data lifecycle management focuses on the data itself as assets and acknowledges that managing data 
requires managing its lifecycle. We adopted a data lifecycle model to identify and characterize the transformations 
that data will undergo through processing as stages in a larger lifecycle from origination to usage. These stages are:

Fig. 1  Research data life cycle highlighting in detail the different stages of the data pipeline between data 
collection and data analysis, the scope for the proposed data custodianship environment.
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	(1)	 Data elements: a question-answer pair representing the formalization of data at the most granular level 
at the stage of data design and planning. Formalized by the international standard ISO/IEC 11179, a data 
element provides the meaning behind a measurement by associating its data value (e.g. 27) with a concept 
(e.g. Age). Functionally, a data element carries the definitional information about any given data value, and 
as such, data elements can be considered the atomic unit of information.

	(2)	 Raw data files: during acquisition stage of the data life cycle, data gets created by obtaining data values for 
the set of planned and designed data elements to form raw data usually in the form of data files. Raw data 
can exist in many different forms and structures, which are optimised for managing the acquisition process 
within the environment or system generating them.

	(3)	 Primary datasets are structurally and semantically annotated datasets according to a standard data model 
designed to organize and consolidate data into a common reusable form. As managed data assets they are 
optimized for data manipulation and data curation functions, preparedness for data integration and long 
term storage, data sharing and reuse.

	(4)	 Integrated data: A state of persistent data whereby content from all primary datasets is integrated into a 
common data model for purpose of querying and asking research questions at data.

	(5)	 Analysis-ready datasets: essentially represent the usage of integrated data when sliced and diced for a 
specific analysis. Analysis datasets are reformatted, hypothesis-focused datasets optimised to efficiently 
generate and report analysis results to support research reproducibility.

Figure 2 illustrates the lineage of data through these different lifecycle stages and forms. This lays the foun-
dation to our approach to identify and describe component data management services and resources that are 
necessary for data custodianship. We also use this approach to define the metadata necessary to manage data at 
each stage, which we developed into a metadata framework discussed below.

Implementation of data and metadata standards.  One of the key functions of a data custodianship 
environment is to implement an enforcement mechanism to use data and metadata standards bringing all relevant 
existing standards into a common framework. The eTRIKS standards starter pack14 for guidance on the adoption 
and use of data standards relevant to TR recommends the use of standards from the Clinical Data Interchange 
Standards Consortium (CDISC) (https://www.cdisc.org/standards) to describe data at different stages of the clin-
ical research pipeline. Similarly, in the domain of molecular assays (‘omics), the ISA model15 is a recommended 
community driven standard for describing assays across different technologies. Translational research data man-
agement relies on bridging both worlds. The design of our framework (described below) is influenced by the 
Meta-Object-Facility (MOF) specification (https://www.omg.org/spec/MOF), the CDISC standards (SDTM, 
SDM-XML, PRM), the ISA-TAB specification16 and the Observation pattern developed by Fowler and Odell17.

Fig. 2  Our proposed data lineage management workflow. Each stage has its own data form, data service (top 
blue boxes) and data storage resource (bottom grey boxes). Decisions about what data to collect start with 
the formulation of research questions (modelled as data elements) and culminate in data collection to collect 
values for specific data elements to produce raw data files. Files are then semantically and structurally annotated 
by dataset descriptors and consolidated into primary datasets. Content from all datasets is then integrated 
according to a common observation model each observation semantically defined by an observation descriptor. 
Finally, user queried data is extracted and saved to analysis-ready annotated datasets.
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TREMF: The Translational Research Metadata Framework.  The centrepiece of the data manage-
ment framework for data custodianship is the development of the Translational Research Metadata Framework 
(TREMF) (Fig. 3). It comprises tiered data models to (1) understand the framework’s data assets (2) model how 
data assets fit together and (3) define the context for the data management framework. Each tier is concerned 
with a different aspect of metadata management. Collectively, they form a comprehensive metadata management 
framework for the standardisation, consolidation, and integration of translational research data.

The top layer is the domain model describing the study, its main elements and the relationships between 
them. It establishes the context for data consolidation. The third layer is the ‘Dataset meta-model’: a multi-layered 
meta-model based on community standards describing data in the form of a ‘dataset’ to support standardisation 
and interoperability of data exchange. The second layer is the ‘common observation model’ describing data in the 
form of an ‘observation’ to support data integration for analytical queries. The bottom layer is a data definition 
layer that describes each data element to enable interpretation, communication and processing of data. In the 
following subsections, we discuss bottom up each layer in details.

Data element metadata model.  Defining data is describing each data element in a way that leaves no ambiguity 
for humans or computers. This first layer of the model lays the foundation for defining all constructs of data for 
the purpose of interpretation and processing of data semantics. We adopted the ISO/IEC 11179 which defines a 
data element as an association of a concept (called a data element concept) with a value domain. For discrete data 
elements the value domain comprises the possible values that might be collected about the concept. For continu-
ous data elements, the value domain is defined in terms of the type of data, a valid range and the unit of measure. 
Full specification is available at (http://metadata-standards.org/11179/).

Common observation model.  One of the challenges with usage of data in handling integrated observational data 
for querying, visualization or simply browsing them is the need to get a higher level view of the data content with 
the ability to systematically drill down into the details thus allowing a manageable stepping down into the data. 
The main goal of the common observation model is to provide a model for structuring and semantically describing 
integrated data and related contextual data to enable researchers to navigate very large amounts of heterogene-
ously captured data with a consistent and systematic approach.

Fig. 3  Translational Research Metadata Framework (TREMF). The domain model (L4) defines the common 
elements of a translational research project and the relations between them establishing context for exploring 
data and cross-study comparisons. Different activities (clinical or assays) within a project generate datasets 
that are modelled according to generic interoperable meta-model (L3). Dataset content (observational data) is 
modelled against the common observation model (L2): a vector of related data elements each defined according 
to the ISO/IEC 11179 data definition model part of the standard model for metadata registries (L1).
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The key idea behind the common observation model is the underlying presumption that an ‘Observation’ can-
not be modelled as a simple fact-attribute concept, rather it consists of a set of semantically related data elements 
that together provide the desired contextual information necessary for the interpretation of a phenomenon of 
interest. It also enables the separation of the metadata elements describing the observation from the values meas-
ured/observed which in many cases is necessary for security and access management.

Similar to a phrase or a sentence the common observation model deconstructs an instance of an observation 
into the following construct data elements:

	(a)	 Object-of-observation: the feature being observed, whether in a clinical or molecular setup; e.g., weight, 
albumin, headache, TP53, CD40

	(b)	 Subject-of-observation: the entity upon which the observation is being observed
	(c)	 Observed property: qualitative or quantitative property of the observed feature being observed or meas-

ured; e.g. count, result of test, severity of headache, amount of dosage
	(d)	 Temporal properties: timing attributes that are not longitudinal such as time of collection, duration, start 

of event, interval …etc.
	(e)	 Time-series properties: properties that cause the repetition of the same observation over time, resulting in 

a longitudinal observation; e.g. visit, planned study day, time point.

Dataset meta-model.  The third layer of the framework comprises the dataset meta-model, which describes the 
metadata used to describe primary datasets. As previously explained, primary datasets provide a standardized 
way to group and organize observations and other study data into structurally and semantically annotated data-
sets to facilitate three key data management functions: data curation, data consolidation and data exchange.

Therefore it is essential to maintain extensibility for new dataset types and to achieve semantic interoperabil-
ity between different formats for datasets of the same type. For this reason we adopted a layered metamodeling 
approach based on the classical four layer metamodeling architecture18 where elements in a given layer describe 
elements in the next layer down. The key benefit of this metamodeling approach is that metadata that define the 
structure and semantics of specific types of dataset (i.e. metamodel layers) is separate from metadata that enforces 
a concrete syntax or notation (i.e. data model layer). SDTM demographics dataset, SDTM medical history data-
set, and ISA-TAB transcriptomic assay dataset are examples of a primary dataset models. Each dataset model con-
forms to a meta-model described by a dataset descriptor, which defines its domain, the structure of the dataset, 
the syntax and semantic of its fields, any enforced controlled vocabularies, and validation rules. The hierarchy of 
defining a dataset descriptor is illustrated in Fig. 4 and explained below:

	 1.	 The meta-metamodel layer (M3) describes the generic dataset descriptor. It encompasses the necessary 
metadata to describe any dataset. It defines metadata to describe the structure of dataset annotating each 
column/field of the dataset. The dataset descriptor also provides the means to manage the content of a da-
taset by associating each field with a dictionary of terms drawn from standard terminologies or ontologies. 
This has a role in the harmonization and standardisation of data between different datasets.

	 2.	 Informed by the layer above, this metamodel layer (M2) is comprised of the descriptions that define the 
structure and semantics of common types of datasets, i.e. meta-descriptors. This means that all dataset 
models implementing a particular meta-descriptor would be considered semantically equivalent and inter-
operable, even though they might be syntactically represented differently. This layer essentially maintains 
the semantic interoperability for various datasets. Meta-descriptors in this metamodel are based on a con-
ceptualization of the core elements that are expected to be in any translational research project rather than 
based on experimental features that might be methodology or technology specific. These core elements are: 
the study, the subject, the observation, and for molecular assays: the bio-sample and the molecular observ-
able features. For each of these elements a dataset meta-descriptor is defined as shown in Fig. 4.

	 3.	 Informed by the layer above, this data model layer (M1) is comprised of the metadata that describes data 
in the information layer. To ensure that the data exchange process is maximally interoperable with other 
external databases as well as to encourage data curators to adopt and implement data standards as part of 
their data management procedures, the data model prescribed in this layer is an aggregation of clinical 
and mechanistic data models from sources including Clinical Data Interchange Standards Consortium 
(CDISC; www.cdisc.org/) and Investigation Study Assay (ISA-TAB) specification (https://isa-tools.org/
format/specification.html) to support clinical and ‘omics data exchange respectively.

	 4.	 The information layer (M0) comprises the actual data we wish to describe (e.g. demographics, medical 
history or biospecimen data).

Translational research domain model.  This top layer model describes the core elements that are common to the 
domain of a translational research study and the relationships between them. Based on a generalization of the 
CDISC Study Design Model (SDM) and the ISA data model, we created a hybrid model that integrates standards 
for reporting data and meta-data elements for clinical assessments and biomarker/omics assays (Fig. 3a). The 
model comprises classes such as, subjects, activities (clinical assessments or molecular assays), bio-samples, study 
design elements and the relationships between them. Most importantly for any translational study, it establishes 
relationship between data captured from human subjects, to their in vitro specimen experiments and in some 
cases animal model in vivo experiments. Another notable relationship is between class ‘activity’ and class ‘data-
set’. Under this model, all data generated from an activity is modelled as a ‘dataset’, which is defined by the third 
layer of the TREMF (Fig. 3b). Adhering to the TR domain model maintains a consistent representation of TR 
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studies and enables cross-study data integration by establishing the study context for consolidating and relating 
the observed data to it.

Data consolidation.  Data consolidation is the data management process associated with managing data 
during its life cycle stage as primary datasets. Perhaps the most critical gap in the data lifecycle for translational 
research projects is between the stages where data are actively being collected or acquired from different data 
collection environments to where the data transition into being curated, integrated and eventually analysed. A 
key component of data custodianship is establishing a ‘primary data repository’. It provides a study-centric data 
hub for consolidating research primary datasets during the active stages of the data life cycle, ensuring the data’s 
integrity, consistency and completeness before any analysis takes place. It also offers researchers a trusted ‘single 
source of truth’ for sharing and preserving data for reuse once in an inactive stage. Unfortunately, data consoli-
dation is omitted in most translational research projects, where data marts, or star-schema data warehouses are 
populated directly after initial data cleansing. These databases provide a denormalized projection of data which is 
optimized for querying and analysis of integrated data, nevertheless not suited for preserving the integrity of data 
for long term use or re-usability outside the project’s specific needs.

Our data consolidation process depends on 1) a standard exchange model into which data from source sys-
tems is extracted as a prelude to consolidation and 2) a consolidated master representation model to act as the 
core repository. The exchange model we implemented is based on the dataset metamodel (TREMF layer 3). As 
previously described, it is a generalized meta-model that can have different standard implementations. To this end 
we developed a set of standard compliant data exchange templates covering all CDISC SDTM domains (findings, 
events and interventions) and preloaded them into the database. Similarly, for assays, we preloaded standard tem-
plates for sample and feature metadata based on ISA model and assay measured data catering for different types of 
assay technologies; e.g. microarray gene expression, flow cytometry, proteomic and immuno assays. Each dataset 
ingested into the data repository is associated with a predefined standard dataset descriptor which will include 
metadata necessary to describe each dataset’s structure, syntax, semantics and content. Datasets are consolidated 
and persisted according to the TR domain model (TREMF layer 4) providing a consistent study-centric relational 
model for relating datasets to the research project design and context thus establishing a primary consolidated 
resource for a project’s research data.

Data integration.  Data integration refers to the process that extracts data content from the primary data-
sets and transform it into queryable, explorable and navigable data irrespective of the different dataset standard 
templates used for data ingestion. As a result, the researcher’s experience for data query and visualization is not 
influenced by the data manager’s choices of standard dataset formats.

Following the data consolidation process, data from each dataset is extracted and mapped to the com-
mon observation model (TREMF layer 2). Data at this stage becomes integrated across different domains 

Fig. 4  Dataset four-layer metamodel hierarchical architecture for dataset interoperability. Data at M0 level, 
such as subject demographics, are described by models at the M1 level, such as CDISC SDTM dataset format, 
which in turn are described by metamodels at the M2 interoperability level, such as subject dataset descriptor, 
which in turn conforms to a generic dataset descriptor model described in M3 layer.
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(demographics, diagnosis, laboratory tests, medications, etc.); across studies (clinical trials); and if molecular 
data is measured, across multiple omics platforms linking subject omics data to phenotype data. The result-
ing integrated data is loaded into a data warehouse whose schema is based on common observation model. No 
separate ETL process is required to move data between the data repository and the data warehouse, which miti-
gates the inefficiencies often associated with moving data between different implementations. This is due to the 
meta-modelling approach discussed earlier, which adds the necessary semantics to the primary dataset to extract 
its content into the common observation model during the data integration process.

Results
As stated in the introduction, we adopted a lifecycle management approach to develop a comprehensive and effec-
tive metadata framework to manage the translational research data through its different lifecycle stages. We used 
this framework to develop PlatformTM: a proof-of-concept implementation of a data custodianship environment 
for managing the data lifecycle between data collection and data analysis. In the following sections, we present in 
details the platform’s different modules and features (Supplementary Figs 1 & 2). PlatformTM system architecture 
and implementation are described in Supplementary File 1.

Metadata governance.  The metadata governance module offers data managers a set of features via a simple 
and intuitive dashboard to define and manage elements of metadata. This includes defining the research project 
against TREMF layer 4 (Fig. 3a) and the acquired data against TREMF layer 3 (Fig. 3b).

Setting up a project from the metadata governance dashboard is the entry point into the system. A project can 
be a single study, a multi-study (planned related studies), or a meta-study (unrelated studies). The ‘studies panel’ 
enables managers to enter information about each study within a project such as study design, eligibility criteria, 
objectives and other study metadata elements via a web form compliant with the CDISC Protocol Representation 
Model (PRM) and CDISC Study Design Model (SDM). The ‘activity panel’ allows the data manager to create and 
manage the project’s planned clinical activities, molecular assays and their associated dataset descriptors, while 
the ‘Members and Users’ panel is used to manage user roles and their data access rights.

‘Manage activity’ page (Fig. 5) allows a data manager to create and edit dataset descriptors (dataset metadata) 
for each planned activity based on the preloaded standard templates. Features include excluding/including fields, 
setting mandatory fields, specifying controlled vocabularies for a field’s permissible values, as well as adding new 
fields.

File management and data loading.  This module provides users with the right credentials to upload and 
manage the project’s data files. Similar to online storage drives, an automated audit trail functionality tracks the 
creation of new data files, changes to existing ones, loading status, the user initiating the action, and data and time 
of the action (Fig. 6). Besides organizing the project’s files, the project drive is the entry point for loading data into 
the platform’s databases described above. This is the process whereby data files become associated with standard 
dataset descriptors and hence become primary datasets. To load a file, the user launches the loading wizard which 
takes them through a series of steps to associate the file with one of the previously defined dataset descriptors. The 
descriptor is used by the loading process as a reference for parsing and validating the file contents accordingly. 
Once validated, the loading process persists the file as an annotated primary dataset into the data repository, 
followed by the consolidation and integration processes discussed earlier to extract the dataset content and load 
it into the integrated data warehouse as illustrated in Fig. 2. The loading wizard natively supports CDISC SDTM 
formatted files.

Data retrieval & exploration.  Datasets access.  This module offers a graphical user interface that enables 
users to browse the set of projects stored in the data repository, enabling the retrieval of structurally and semanti-
cally annotated primary datasets for sharing and reuse. For each stored project, a project summary page provides 
metadata about the project and links to the associated datasets available to download (Fig. 7).

Data explorer & query module.  The data explorer is a visual browser and query interface supporting ‘slice and 
dice’ exploration and retrieval of integrated data stored in a data warehouse. It uses on-demand synchronized 
charts to provide a hypothesis-free, interactive, and easy-to-use graphical interface to explore integrated subject 
and sample related observations. This is particularly useful during the initial phases of research when no clear 
hypotheses are immediately available. The layout design is based on an domain-aware visual layout organizing 
data across three panels (Fig. 8). The first panel hosts subject and study data elements, such as subject demo-
graphics, study arms, visits …etc. The second panel is for exploring the integrated clinical observation features 
organized by the CDISC general observation class-domain hierarchy, while the third panel is for molecular obser-
vations organized by assay type. The three panels offer a faceted browsing component for the related data elements 
and an interactive dashboard showing a chart for each selected data element or observation feature. Metadata of 
the observations that make up the content of the faceted panels is retrieved from a different database than the 
one used to retrieve data for charting the data values essentially giving the option to restrict access rights to data 
values if required.

Besides offering a visual dashboard for browsing and localizing interesting features in the data, the ‘data 
explorer’ acts as a visual query builder to support hypothesis generation through interactive data selection and 
filtering directly off the charts. All charts across the three panels are synchronized. Adding a chart for an obser-
vation or a data element essentially adds it to the query. Applying filtering on any chart automatically cascades 
the effect of the filter to all other visualized charts effectively affecting the number of subjects and samples cur-
rently satisfied by the query. For example, filtering for a particular range of ‘diastolic blood pressure’ followed by 
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Fig. 5  Metadata Governance module. For each project activity, a standard-based predefined dataset descriptor 
is created to define metadata for a primary dataset. First users can browse and search through all preloaded 
templates. Once a template is selected, user can then customize the structure of the dataset to fit their data.

Fig. 6  Project Drive. This module organizes all uploaded project files and manages the loading process into the 
platform’s databases.
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applying a filter on ‘study arm’ and ‘visit’ will automatically be propagated to the related omic assays, reducing 
them to only the matching filtered subjects and vice versa. In addition to the plotted charts, a count panel dis-
played on top is dynamically updated to show the number of subjects, samples and assays satisfying the selected 
and filtered data.

A ‘data cart’ feature in the data explorer module allows the user to save their queries to retrieve later or to 
‘checkout’ whereby the query results are exported into analysis datasets. At checkout, the server prepares the 
data exports according to the data query giving the user the option to add their own descriptions and tags before 
they are ready to download or save to their analysis datasets library. An analysis dataset stores the query that 
the user specified to extract the required data rather than the actual resulting data. This allows export files to 
be automatically generated every time there are changes to the primary data source including the contents of 
any derived fields. The analysis dataset also holds general metadata information about its contents, as well as 
field-level metadata describing the columns in each of its data files. Sharing permissions enable users to share or 
publish their datasets promoting open data ethics and reproducibility of research results. Analysis datasets are 
stored in a separate storage collection that is user-focused and not project based. They are accessible via the API 
using their unique URL to download associated export files. The analysis datasets library page provides a user 
workspace to manage their own created datasets, shared datasets from other users and published datasets made 
public by other users.

Case-studies.  The work presented here was developed at Imperial College London Data Science Institute 
(ICL-DSI) as part of its collaborations with the Innovative Medicine Initiative (IMI) (https://www.imi.europa.eu/) 
funded projects: eTRIKS and BioVacSafe. eTRIKS is a service project aimed at supporting data management and 
analytical needs of other IMI projects through the delivery of an open sustainable translational research infor-
matics and knowledge management platform. PlatformTM was developed to support data management services 
for the eTRIKS platform. Throughout the eTRIKS project, we had the opportunity to gather requirements and 
learn about real problems drawn from many eTRIKS supported projects such as U-BIOPRED19, OncoTrack20, 
PreDiCT-TB21 to cite a few. Here we present our proof-of-concept implementation drawn from one of the eTRIKS 
supported projects. We also present the first production implementation of the platform developed for BioVacSafe 
(Biomarkers for Enhanced Vaccine Safety)22: an IMI funded project that investigates vaccine reactogenicity to 
enhance immunosafety of novel vaccines.

The ERS case study.  To demonstrate the applicability of the developed framework and the usability of our 
platform in supporting cross-study research and re-use of data, we conducted a pilot study with the European 
Respiratory Society (ERS) to compare various subpopulations of asthma and COPD patients from two inde-
pendent studies: ‘U-BIOPRED’ (Unbiased BIOmarkers in PREDiction of respiratory disease outcomes) and ‘EvA’ 
(Emphysema versus Airway disease) respectively. Using the metadata module, a meta-study project was created 
for the pilot, defining two studies with different subject cohorts, four clinical activities: laboratory tests, vital 
signs, spirometry and reversibility tests, and a gene expression assay. For each activity, a dataset descriptor was 
pre-defined based on one of the preloaded CDISC SDTM standard templates to guarantee that overlapping clin-
ical variables are uniquely represented across the two studies. Data files selected for the pilot were then uploaded 
to the dedicated project drive space and each loaded into the data repository and data-warehouse simultaneously 
via the loading wizard. Once loaded, data from a total of 1,294 subjects and 39 unique and harmonized clinical 
variables were readily integrated in the observation data-warehouse. Using the data explorer, lead investigators 
were able to explore the integrated data without requiring any programming background, come up with hypoth-
eses using visually coordinated plots of the clinical features of interest, and determine instantly whether there are 

Fig. 7  Datasets module. Browse and download project’s consolidated datasets.
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sufficient samples available to conduct a certain analysis, and finally save and extract the desired subsets ready to 
be analyzed. One of these hypotheses was to test if asthma and COPD sufferers with abnormally high eosinophil 
cell count and airflow obstruction share similar gene expression profiles. This proof-of-concept demonstrated 
the feasibility of reusing data for secondary research gathered from two independent consortia by utilizing our 
platform and its underlying metadata framework.

Fig. 8  Data explorer and query interface. (a) Subject Panel, (b) Clinical data panel, (c) Molecular observations 
panel. Each panel lists observation features (metadata) on the left and data plots for each clicked observation on 
the right. Filtering data through the plots, subjects and samples satisfying the filters are automatically updated 
on top. Clicking on the cart icon in the top right corner lists all observations selected with an option to checkout 
and generate analysis-ready dataset for the queried data.
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BioVacSafe Data Management System.  Following the ERS case study, we continued developing PlatformTM 
as part of delivering a data management system for the BioVacSafe project. BioVacSafe is a multi-study and 
multi-site project that generated clinical, pre-clinical and ‘omics data for assessment of vaccine responses with 
an emphasis on immunosafety and immunogenicity22. Data were collected and stored from 2 different sites, 
running 5 clinical trials investigating 7 different cohorts with overlapping clinical and molecular observations. 
Clinical data23 included subject demographics, laboratory tests (haematology, urinalysis, chemistry), vital signs 
and MedDRA coded adverse events (solicited and non-solicited). Data from molecular assays included: microar-
ray gene expression profiling24, cytokine/chemokine profiling25 and Immunophenotyping of Monocytes using 
FACS flow cytometry26. The platform and its underlying metadata framework provided a systematic and standard 
compliant approach to streamline the process of data consolidation and integration across the consortia’s work 
streams. Once loaded, the explorer module also offered researchers a systematic hypothesis-free method to nav-
igate through the whole range of data, and to export different research focused analysis datasets. For instance, a 
common exploratory use-case was to select subjects based on some combined clinical observations specifying a 
potential reactogenicity profile, and export their corresponding assay data to run differential analysis to look for 
correlated molecular signatures.

Discussion
This paper argues that translational informatics efforts should shift from being analysis-driven to become data 
lifecycle-driven. This shift acknowledges research data objects as assets of value that go through different lifecycle 
stages and take different forms throughout the research process. This approach improves the manageability of 
these assets and subsequently should improve the efficiency of the research process as a whole. It also facilitates 
sharing and re-use of data thereby more effectively exploiting the often costly investment that went into the data 
generation. Without a process and a framework for active management of TR data assets, well-intentioned goals 
and policies for improved sharing of research data will not succeed. We believe that establishing a data custodi-
anship environment is essential to promote the importance of managing data as assets independent of specific 
analytical needs, nevertheless improving the analysis and reproducibility of research results.

Managing the data lifecycle between data collection and data analysis is a complex one involving different 
user roles, different tasks and different inputs and outputs. To solve this problem we sought in this paper to cre-
ate a lifecycle methodology to develop a new multi-layered metadata framework to organize and describe the 
process of data management for translational medicine research studies. Based on this framework, we created 
PlatformTM as a first translational informatics platform focused on TM data management offering a common 
platform for the different tasks involved in the data pipeline between data collection and data analysis.

In its strategic research agenda, the IMI has highlighted the need for building an integrated biomedical data 
platform and interactive scientific exploration tools for their European public-private partnerships27. tranS-
MART28 is an open source knowledge TM management platform that enables scientists to develop and refine 
research hypotheses. tranSMART was recognized as the candidate solution to establish this IMI-wide platform. 
However, tranSMART was designed to support cohort-based analyses by offering a data warehouse model for 
integration of data based on the i2b2 Entity-Attribute-Value (EAV) star schema29. In light of the data lifecy-
cle view, tranSMART is well placed for later analytical stages but it cannot provide the necessary metadata or 
underlying infra-structure to support the whole data pipeline as described earlier. However, a data pipeline using 
PlatformTM API could be easily established to push data into a tranSMART based analytical environment. The 
IMI envisions a platform that will allow data to be searched, queried, extracted, integrated and shared in a sci-
entifically and semantically consistent manner. We believe that PlatformTM offers a solution that is in line with 
the vision that IMI has projected for the future of data and knowledge management in translational medicine 
research.

In the next few years, we foresee research data management to become an essential component of the research 
process. We envisage a network of data custodianship environments will be established to promote data reuse and 
the sustainability of data beyond single use. In its current implementation, the platform takes a few steps towards 
achieving this goal by giving individual projects their own local environment to manage and share their data. 
Future work will focus on extending the platform to support a hub and spoke implementation. We have already 
started adding a data curation module, which will enable data curators to transform and tabulate non-standard 
data files against the standard templates. This module utilizes a dedicated metadata registry (MDR) that we have 
built in compliance with the ISO 11179 standard for metadata registries to provide the necessary management 
for data elements. We have also set up a controlled vocabulary service based on the Ontology Look-up Service 
(OLS)30 to facilitate and enhance the data curation tasks. Future work will also concentrate on enhancing the 
performance of the platform, building data import pipelines from popular data capturing systems as well as data 
publishing pipelines to link to data journals.

Data Availability
The datasets used for the use-cases are available in Harvard Dataverse with the identifier(s) https://doi.
org/10.7910/DVN/QPHMKX, https://doi.org/10.7910/DVN/SCFQ1F, https://doi.org/10.7910/DVN/CKSLGB 
and https://doi.org/10.7910/DVN/34EMZ6.

Code Availability
Source code and Docker distribution is freely available for download at https://github.com/dsi-icl/PlatformTM, 
implemented in C#, Javascript, MariaDB, MongoDB and supported on all platforms. Public demo instance 
available at: platformtm.cloud/app.
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