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In Brief
Weighted set cover and affinity
propagation algorithms are used
to combine results from multiple
enrichment analyses. Weighted
set cover first condenses en-
riched gene sets to use the few-
est number of gene sets that
cover all relevant genes. Affinity
propagation then clusters the
enriched pathways and selects
the most representative set. To-
gether they facilitate interpreta-
tion of multiple enrichment anal-
ysis results. A demonstration of
its utility highlights both general
and unique pathways associated
with cancer survival across
seven cancer types.

Graphical Abstract

Highlights

• Weighted set cover significantly condenses gene sets after enrichment analysis.

• Affinity propagation clusters gene sets from multiple enrichment analyses.

• Clustering pathways using selected genes is more biologically relevant.

• Pathways associated with poor or good survival from seven cancer types.
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Graph Algorithms for Condensing and
Consolidating Gene Set Analysis Results*□S

Sara R. Savage‡�, Zhiao Shi‡�, Yuxing Liao‡, and Bing Zhang‡§¶

Gene set analysis plays a critical role in the functional
interpretation of omics data. Although this is typically
done for one omics experiment at a time, there is an
increasing need to combine gene set analysis results from
multiple experiments performed on the same or different
omics platforms, such as in multi-omics studies. Integrat-
ing results from multiple experiments is challenging, and
annotation redundancy between gene sets further ob-
scures clear conclusions. We propose to use a weighted
set cover algorithm to reduce redundancy of gene sets
identified in a single experiment. Next, we use affinity
propagation to consolidate similar gene sets identified
from multiple experiments into clusters and to automati-
cally determine the most representative gene set for each
cluster. Using three examples from over representation
analysis and gene set enrichment analysis, we showed that
weighted set cover outperformed a previously published
set cover method and reduced the number of gene sets by
52–77%. Focusing on overlapping genes between the list of
input genes and the enriched gene sets in over-represen-
tation analysis and leading-edge genes in gene set enrich-
ment analysis further reduced the number of gene sets. A
use case combining enrichment analysis results from RNA-
Seq and proteomics data comparing basal and luminal A
breast cancer samples highlighted the known difference in
proliferation and DNA damage response. Finally, we used
these algorithms for a pan-cancer survival analysis. Our
analysis clearly revealed prognosis-related pathways com-
mon to multiple cancer types or specific to individual can-
cer types, as well as pathways associated with prognosis in
different directions in different cancer types. We imple-
mented these two algorithms in an R package, Sumer,
which generates tables and static and interactive plots
for exploration and publication. Sumer is publicly available
at https://github.com/bzhanglab/sumer. Molecular &
Cellular Proteomics 18: S141–S152, 2019. DOI: 10.1074/
mcp.TIR118.001263.

The generation of large omics datasets is increasingly pop-
ular for studying biological and pathological systems. Analysis
of these datasets frequently involves the identification of bi-
ological pathways, or more broadly defined gene sets, that

are associated with the biological or clinical features of inter-
est. To perform this analysis, predefined gene sets can be
downloaded from a variety of databases, such as the Gene
Ontology (GO)1 (1, 2), KEGG (3), WikiPathways (4), Reactome
(5), and the Pathway Interaction Database (PID) (6). In addi-
tion, meta-databases combining multiple databases to gen-
erate large collections of gene sets, such as the MSigDB (7),
have also been developed. The two most popular gene set
analysis methods are over-representation analysis (ORA) (8)
and gene set enrichment analysis (GSEA) (9). Application of
these methods to data generated from a single omics exper-
iment is well standardized with many available tools (10–12).
However, integrating gene set analysis results from multiple
experiments performed on the same or different omics plat-
forms, such as multi-omics or pan-cancer studies, remains an
open challenge. This problem is further complicated by re-
dundancy in gene set databases.

Gene set redundancy is common both within a single da-
tabase and across databases. Within a single database, some
gene sets may be more specific subsets of larger gene sets.
This is particularly evident in GO, which is set up as hierar-
chical sets with increasing functional specialization. Crosstalk
between biological processes and pathways can also result in
shared genes between different gene sets within a single
database. Across databases, redundancy can occur when the
same gene set is included in multiple databases, or similar but
non-identical sets of genes were associated with the same
pathway in different database annotations, typically because
of different perspectives in defining pathway boundaries. For
example, the Reactome and KEGG databases contain two
overlapping but different gene sets for the apoptosis pathway,
and both of these gene sets are included in the MSigDB C2
collection of curated pathways.

Several methods have been developed to handle gene set
redundancy. Pathcards and ReCiPa both use algorithms to
combine similar sets into larger super-sets (13, 14). However,
this method must be performed before enrichment analysis
and may favor large, general pathways over highly specialized
functional sets, although the latter provide more precise
biological mechanisms. Recently, Stoney et al. developed a
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method using a modified set cover algorithm to select gene
sets without changing the genes in the sets (15). Set cover is
an algorithm that tries to identify the smallest sub-collection of
sets that covers the elements in the entire collection, but this
method is biased toward selecting the largest subset (15).
Stoney et al. modified the set cover algorithm to select gene
sets in order of increasing significance until all genes are
covered. Because gene set prioritization is driven only by
statistical significance, this method is not optimized for re-
moving redundancy. In this study, we used a weighted set
cover algorithm, which allows simultaneous consideration of
both gene set size and significance.

The integration of enrichment analysis results from multiple
experiments is a further challenge. PaintOmics 3 uses a joint
p value to combine results from different omics platforms (16).
RAMONA can compare two enrichment analysis results using
Bayesian networks (17). These methods focus on common
rather than platform-specific gene sets. Moreover, their im-
plementations only work for a certain type of enrichment
analysis method or specific gene set databases. Network-
based methods, such as ClueGO and Enrichment Map (18,
19), connect similar gene sets into a network and then rely on
network clustering to consolidate enrichment analysis results.
Using Enrichment Map as an example, it connects gene sets
from any number and type of enrichment analyses into a
network based on the Jaccard or overlap similarity and colors
gene sets (i.e. nodes in the network) based on the results from
each experiment (19). Although network visualization and the
gene set grouping achieved by the graph layout algorithms
are very helpful, clusters of functionally related gene sets need
to be manually identified and interpreted. This quickly be-
comes infeasible if many significant gene sets need to be
consolidated. In this study, we used the affinity propagation
algorithm (20), which not only groups functionally related gene
sets identified from multiple experiments or omics platforms
into clusters but also automatically determines the most rep-
resentative gene set for each cluster.

We implemented both weighted set cover and affinity prop-
agation algorithms into an R package named Sumer. Sumer first
reduces annotation redundancy in the results from an individual
enrichment analysis using weighted set cover. It then clusters
the results from multiple enrichment analyses using affinity
propagation and provides tables, static and interactive plots,
and downloadable results for exploration and publication.
Sumer is flexible in allowing results from any gene set and any
type of enrichment analysis. We use multiple examples to dem-

onstrate its efficiency in gene set redundancy removal and its
application to multi-omics and pan-cancer studies.

EXPERIMENTAL PROCEDURES

Overrepresentation Analysis—Colorectal cancer-associated genes
were downloaded from GLAD4U (21) with the search term “colorectal
cancer”. ORA was performed by WebGestalt (10) using the GO bio-
logical process sets with a minimum overlap of 5 genes and a
maximum overlap of 500 against a background of all human protein-
coding genes. GO terms were considered enriched with a Benjamini-
Hochberg corrected p value less than 0.05.

Data Processing for Gene Set Enrichment Analysis—Processed
breast cancer RNA-Seq (1093 samples) and proteomics data (105
samples) from the Cancer Genome Atlas (TCGA) and the Clinical
Proteomic Tumor Analysis Consortium (CPTAC) were downloaded
from LinkedOmics (22). Genes and proteins were compared between
basal and luminal A samples using the Wilcoxon rank sum test with
the requirement of at least 3 non-missing values in both groups. They
were ranked according to -log10(p value) and signed according to the
difference in median between the two groups.

Association of RNA-Seq gene expression data with survival was
performed for seven TCGA cancer types using Cox regression anal-
ysis in LinkedOmics (22). The seven cancer types included acute
myeloid leukemia (LAML), bladder urothelial carcinoma (BLCA),
breast invasive carcinoma (BRCA), colorectal adenocarcinoma (COA-
DREAD), kidney carcinoma (KIPAN), lung adenocarcinoma (LUAD),
and uterine endometrial carcinoma (UCEC). Genes were ranked by
-log10(p value) and signed by the log10(hazard ratio).

Gene Set Enrichment Analysis—GSEA was performed using default
parameters in WebGestalt (minimum overlap of 5, maximum overlap of
500, and 1000 permutations). The MSigDB C2 canonical pathways
gene set collection and Wikipathways were used (7, 9). Gene sets with
a false discovery rate (FDR) � 0.05 were considered enriched, where
the FDR is the estimated probability that a gene set with a given
normalized enrichment score represents a false positive finding (9).

Weighted Set Cover Algorithm to Reduce Gene Set Redundancy—
Given a universe of finite set U with �U� � n and sets C � {C1, . . . , Cm}
� U, a set cover is a collection S of some of the sets from C whose
union is the entire universe. In this study, C corresponds to all gene sets
of interest, and U corresponds to the union of all genes within these
gene sets. Here we consider a generalized version of weighted set cover
and maximum coverage (23) called size-constrained weighted set cover
(24) where each set is also associated with a weight wi, which is
calculated as -log10(p value). Therefore, higher weights are assigned to
gene sets with smaller enrichment p values. The input to the problem
further includes a size constraint k. The goal is to find S, a sub-collection
of up to k sets, whose sum of weights is maximal and whose union
covers as many elements as possible. Assume that one or more sets
have been selected into S. We denote the marginal benefit set of a
candidate set s given S, Bm (s, S), as the set of elements from U covered
by s but have not yet been covered by any set in S. In addition, we
define the marginal gain of selecting s into S as G(s, S) � �Bm(s, S)�wS.
The algorithm starts with computing the marginal benefit set for all sets
in C. Next, it selects the set with maximal marginal gain and adds it to
the solution S. The algorithm then updates the marginal benefit set of
the remaining candidate sets and removes those candidates with empty
marginal benefit set before repeating the selection step. The algorithm
returns as soon as it has covered all elements in U or after k iterations.
It outputs the selected sets and fraction of coverage ŝ. Fig. 1 lists the
pseudocode of this algorithm.

Affinity Propagation for Gene Sets Consolidation—Given a list of
input gene sets, the affinity propagation algorithm (20) clusters similar
gene sets into groups and identifies one representative gene set (termed
“exemplar”) that best represents each group. This algorithm simultane-

1 The abbreviations used are: BLCA, bladder urothelial cancer;
BRCA, breast invasive carcinoma; COADREAD, colorectal adenocar-
cinoma; CPTAC, Clinical Proteomic Tumor Analysis Consortium;
FDR, false discovery rate; GO, gene ontology; GSEA, gene set en-
richment analysis; KIPAN, pan kidney cancer cohort; LAML, acute
myeloid leukemia; LUAD, lung adenocarcinoma; ORA, over-represen-
tation analysis; PID, Pathway Interaction Database; TCGA, The Can-
cer Genome Atlas; UCEC, uterine endometrial carcinoma.
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ously considers all gene sets as potential exemplars and exchanges
messages between gene sets until a satisfying set of clusters emerges.

The algorithm takes as input a similarity matrix M where Mij implies
the appropriateness of selecting gene set j to be the exemplar for
gene set i. We use the following formula to set M:

mij � � Jaccard (i, j) if Jaccard (i, j ) � 0
�� if Jaccard (i, j ) � 0

Therefore, if a pair of gene sets i and j overlap, the Jaccard distance
is set as its similarity value. Otherwise, its similarity is set to �� as it
is not appropriate for gene set i to represent gene set j if they do not
overlap.

The algorithm further requires an input preference, which can be
interpreted as the suitability of a gene set to serve as an exemplar.
Highly significant gene sets, for example, should have increased
tendency to be selected as an exemplar. We use the following pro-
cedure to set the preference values. Assume that the gene set en-
richment significance levels, i.e. -log10(p value), are in the range of

[pmin, pmax] and let mmed denote the median of all finite values in the
similarity matrix M. We set the maximum preference to mmed and the
minimum to 0. For gene set i its input preference is interpolated
linearly as:

ipi �
mmed�x � pmin�

pmax � pmin
, where x � �log (p-valuei)

After the first set of exemplars is selected, the algorithm is repeated
to cluster the exemplar gene sets and select a final set of exemplars.
These final exemplars are the most representative gene sets that
connect the initial gene set clusters.

Implementation of Sumer—The weighted set cover algorithm and
affinity propagation algorithm were combined into a single R package,
Sumer, for convenient analysis of gene set analysis results. Sumer
requires two input files for up to seven experiments: a tab-delimited
table of pathway names and their associated enrichment score and a
GMT file (7) of pathway names with their associated genes. Higher
enrichment scores should indicate greater significance. The program
takes a JSON file of filenames and a limit for the maximum number of
sets chosen by weighted set cover.

Analysis Using Sumer—The weight for significantly enriched path-
ways was calculated as the signed -log10(p value). Here the nominal
p value was used because it is comparable across multiple enrich-
ment analyses with varying gene set database sizes. The sign was
according to the direction of the normalized enrichment score (NES)
and used for visualization. The weight for a p value of 0 was given the
value of 16 (-log10(1 	 10�16)), as this was the smallest p value
available because of computational limits. We set k, the maximum
number of selected sets, to 250 so that the weighted set cover
algorithm ended with 100% gene coverage.

Comparison with Enrichment Set Cover—The python script for
enrichment set cover was downloaded from github (15) and the
enrichment analysis set cover algorithm was run using enriched path-
ways with FDR � 0.05 and the same pathway genes as Sumer. The
enrichment analysis p values were provided as the pathway scores.

RESULTS

Weighted Set Cover Condensed Enrichment Results—To
demonstrate the general applicability of Sumer, we performed
three examples of enrichment analyses (one ORA and two
GSEA) using three different data sets and two different gene
set collections (Table I). For the ORA analysis, 407 genes
identified as being associated with colorectal cancer in the
literature were used. A total of 910 gene sets passed a Ben-
jamini-Hochberg corrected p value of 0.05.

GSEA was used for pathway enrichment of genes and
proteins differentially expressed between the basal and lu-
minal A breast cancer subtype tumors in the TCGA study.

TABLE I
Gene sets reduction after weighted set cover for three different enrichment analyses

Data type Gene sets
Number of

enriched gene sets

Number of enriched
gene sets

after set cover

Genes
covered

Colorectal cancer-associated genes (ORA) GO Biological Process 910 212 10,220
Gene expression in Basal vs Luminal A

breast cancer (GSEA)
MSigDB C2 Canonical

Pathways
123 51 1,716

Protein abundance in Basal vs Luminal
A breast cancer (GSEA)

MSigDB C2 Canonical
Pathways

97 47 1,432

FIG. 1. Set-constrained weighted set cover algorithm.
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Basal and luminal A are two major subtypes of breast can-
cer with distinct survival outcomes (25). RNA-Seq identified
20,148 genes in 147 basal and 426 luminal A samples,
whereas a subset of these samples (21 basal, 27 luminal A)
had proteomic data for 9733 proteins. Of the 1329 pathways
in the MSigDB C2 database, 123 were significantly enriched
(FDR � 0.05) in the RNA data and 97 in the proteomics
data.

The weighted set cover algorithm tries to select the fewest
number of gene sets that cover all genes associated with the
enriched sets, with priority for the most significant sets. Using
the -log transformed enrichment p value to prioritize the gene
sets, the algorithm reduced the original number of gene sets
by 52–77% (Table I).

Weighted Set Cover Provides an Improved Method for Re-
dundancy Reduction—Previously, Stoney et al. used a mod-
ified set cover algorithm named enrichment set cover to re-

duce the number of gene sets identified from enrichment
analysis by selecting gene sets in order of enrichment p value
until all genes associated with all enriched gene sets were
covered (15). Here the priority is given only to enrichment
significance, which may not provide an optimal solution. Sup-
pose gene set A has a p value of 0.010 and gene set B has a
p value of 0.011 and one additional gene that was not in the
first gene set. The enrichment set cover will choose both sets
to remain in the results, whereas a balanced solution simul-
taneously optimizing both enrichment significance and parsi-
mony would select just gene set B.

This effect was shown when using the enrichment set cover
algorithm on the same datasets. Out of 910 GO terms en-
riched for colorectal cancer-associated genes, the weighted
set cover algorithm required only 212 GO terms to cover the
same genes, whereas the enrichment set cover algorithm
retained 302 terms (Fig. 2A). Similarly, the enrichment set

0.
0

1.
0

2.
0

3.
0

A

B

C

D

E

F

Enrichment 
Set Cover

Weighted
Set Cover

7205
97

4929

Enrichment 
Set Cover Weighted

Set Cover 1

46

20
0

1
2

3
4

0
2

4
6

8
10

12
14

M
ea

n 
N

um
be

r 
of

 G
O

 T
er

m
s 

P
er

 G
en

e

All Gene
Sets

Enrichment
Set Cover

Weighted
Set Cover

M
ea

n 
N

um
be

r 
of

 G
O

 T
er

m
s 

P
er

 G
en

e

All Gene
Sets

Enrichment
Set Cover

Weighted
Set Cover

M
ea

n 
N

um
be

r 
of

 P
at

hw
ay

s 
P

er
 G

en
e

All Gene
Sets

Enrichment
Set Cover

Weighted
Set Cover

Enrichment 
Set Cover

Weighted
Set Cover

2

FIG. 2. Enrichment results after per-
forming enrichment set cover and
weighted set cover. A, Number of GO
terms enriched with colorectal cancer-
associated genes. B, Number of en-
riched pathways in RNA data for basal
compared with luminal A breast cancer.
C, Number of enriched pathways for ba-
sal compared with luminal A breast can-
cer in proteomic data. D–F, The mean
number of gene sets per gene in the full
enrichment results, after enrichment set
cover, and after weighted set cover for
(D) colorectal cancer-associated genes,
E, basal versus luminal A gene expres-
sion, and F, basal versus luminal A pro-
tein abundance.
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cover algorithm selected 78 of the enriched pathways asso-
ciated with basal compared with luminal A breast cancer in
RNA data, whereas the weighted set cover only required 51 of
those same pathways (Fig. 2B). Finally, weighted set cover
required 47 pathways to cover the proteins in the enriched
pathways in the proteomic data, whereas enrichment set
cover required 66. For each enrichment analysis, the weighted
set cover algorithm had more genes covered by a single gene
set compared with the enrichment set cover algorithm (Fish-
er’s exact test p � 1.6 	 10�14, p � 3.0 	 10�4, and p �

2.2 	 10�16, respectively) and the mean number of pathways
per gene was reduced (Fig. 2D–2F).

Discriminating Genes within a Gene Set Improves Biological
Relevance in Gene Set Selection—Existing methods for gene
set redundancy reduction consider the entire list of genes in a
gene set equally, regardless of individual genes’ association

with the phenotype of interest. However, for ORA analyses,
the overlapping genes between the genes of interest in the
submitted list and the gene set are more relevant than the
remaining genes in an enriched gene set. We reason that
performing weighted set cover on only overlapping genes is
more biologically relevant than performing weighted set cover
on all genes in an enriched gene set.

To illustrate this idea, we further examined the ORA analysis
that found 910 GO terms enriched for colorectal cancer-
associated genes against a background of the human ge-
nome. Of these terms, 290 had the same set of colorectal
cancer-associated genes as another term. For example, three
related GO terms contained the same 17 colorectal cancer-
associated genes (Fig. 3A) despite having a different number
of total genes. “Xenobiotic metabolic process” is a subset of
“cellular response to xenobiotic stimulus,” which is also a
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genes for annotation redundancy
elimination. A, An example of different
GO terms with the same overlapping
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bolic process” is a part of “cellular re-
sponse to xenobiotic stimulus,” which is
a “response to xenobiotic stimulus.” The
gray bars indicate genes present in the
background dataset. The red bars indi-
cate genes in each set that overlap with
the colorectal cancer-associated genes.
B, Overlap of GO terms after weighted
set cover using all genes in the enriched
GO term or only colorectal cancer-asso-
ciated genes. C, Enrichment analysis re-
sult for the PID MYC Active pathway for
basal versus luminal A breast cancer us-
ing RNA-Seq data. Genes are ranked by
signed -log(p value), with genes more
highly expressed in basal samples on
the left and genes more highly ex-
pressed in luminal A samples on the
right. The dotted line indicates the lead-
ing-edge genes.
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subset of “response to xenobiotic stimulus.” If the weighted
set cover algorithm was performed for these three sets with all
genes, it would have to select the most general set, “response
to xenobiotic stimulus” to cover all the genes. However, be-
cause these sets are identical for genes overlapping with the
list of colorectal cancer-associated genes, the weighted set
cover algorithm would select the set with the most significant

p value if only the list of interesting genes were used.
Weighted set cover will therefore select the most specific
gene set, which better describes the actual function of the
colorectal cancer-associated genes.

We repeated the weighted set cover analysis focusing only
on the colorectal cancer-associated genes. As shown in Fig.
3B, only 52 GO terms were required to cover all of the colo-
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FIG. 4. Barplots of significantly enriched pathways in basal versus luminal A breast cancer after weighted set cover. Enriched
pathways from (A) RNA-Seq and (B) proteomics data. The names of some pathway databases are abbreviated: r � Reactome, KG � KEGG,
BC � BIOCARTA.
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rectal cancer-associated genes, whereas 212 sets were re-
quired to cover all genes in enriched GO terms. This indicates
that most of the uniqueness of the 212 sets arises from the
uninteresting background genes rather than colorectal can-
cer-associated genes.

Similarly, the GSEA enrichment signal is driven by a subset
of genes with strong association with the phenotype of inter-
est (i.e. leading-edge genes, Fig. 3C). Other genes in the gene
set do not contribute to the enrichment of the gene set.
Performing weighted set cover based on the leading-edge

genes will focus results on the gene sets that are the most
relevant to the phenotype of interest, a strategy we used in the
following analyses.

Integration of Multi-Omics Enrichment Analyses—Once the
enrichment analysis results have been condensed for each
experiment, results from multiple experiments can be com-
bined to highlight both concordant and discordant findings
across experiments. In this case, similar gene sets both within
an experiment and across experiments should be grouped
together. The affinity propagation algorithm not only groups
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similar gene sets, but also identifies the most representative
gene set for each group.

Here we present a use case combining enrichment analysis
results from RNA-Seq and proteomics data comparing basal
and luminal A breast cancer samples. As noted in Table I,
GSEA analysis of the RNA-Seq data against the MSigDB C2
Canonical Pathways identified 123 pathways enriched in the
basal samples compared with the luminal A samples (supple-
mental Table S1). The 123 pathways from RNA-Seq data were
condensed to 50 after weighted set cover using only the
leading-edge genes (Fig. 4A). A parallel analysis of the protein
data identified 91 pathways enriched in the basal samples and
6 pathways enriched in the luminal A samples (supplemental
Table S2). The 97 pathways from protein data were con-
densed to 49 after weighted set cover using the leading-edge

genes (Fig. 4B) and the names of only 18 pathways over-
lapped with those from the RNA-Seq data.

The 99 pathways (50 from RNA-Seq and 49 from proteom-
ics) were clustered using affinity propagation. As shown in
Fig. 5, affinity propagation clustered these gene sets into 19
groups with 1 to 12 pathways in each group. The algorithm
selected the most representative gene set, termed “exem-
plar,” to represent each initial cluster (nodes with the
smaller black font in Fig. 5) and further clustered the exem-
plars to pick one ultimate exemplar for each final cluster
(nodes with the largest black font in Fig. 5). This ultimate
exemplar is the gene set that best describes all the gene
sets in the final cluster. To evaluate the exemplars selected
by the algorithm, we further investigated the five groups
with at least six connected gene sets (i.e. one exemplar plus
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five or more other sets) by computing pairwise Jaccard
similarity scores between all gene sets in a group. As shown
in Fig. 6, compared with the non-exemplars, the exemplars
selected by affinity propagation had the highest mean Jac-
card similarity score to the other gene sets in all five inves-
tigated groups.

Pathways identified by the same omics platform that have
similar leading-edge genes, but different pathway names
were grouped together (Fig. 5). For example, the KEGG spli-
ceosome pathway was grouped with the Reactome pathway
mRNA Processing. These are both processes that prepare
mature RNA, although this conclusion would require manual
searching without affinity propagation. Affinity propagation is
also useful to group gene sets across platforms. Gene sets
with identical names, such as the PID ATR Pathway enriched
in both the RNA-Seq and proteomics data, were grouped
together. Moreover, gene sets with dissimilar names but sim-
ilar leading-edge genes, such as the Reactome Cell Cycle and
the KEGG DNA replication pathway enriched in the protein
data, were also grouped together. Although most groups
included pathways enriched in both platforms, a few groups,
such as the groups exemplified by KEGG Proteasome and by
NABA Core Matrisome, included only pathways identified in
RNA-Seq and proteomics, respectively.

Pan-Cancer Survival Analysis Using Sumer—In addition to
integrating results from multiple omics platforms within a sin-
gle study, Sumer can be applied to integrate single omics

results from multiple studies. Here we present a use case
identifying pathways associated with survival across multiple
cancer types.

TCGA provides both RNA-Seq data and clinical data for
over 30 types of tumors from individual patients. Using Cox
regression analysis, association of gene expression with sur-
vival were performed for seven cancer types (bladder (BLCA),
breast (BRCA), colorectal (COADREAD), kidney (KIPAN), leu-
kemia (LAML), lung adenocarcinoma (LUAD), and endometrial
(UCEC)) that had a significant number of samples (Table II).
GSEA analysis using Wikipathway gene sets of the RNA-Seq
data ranked by association to survival was performed for the
seven cancer types. Between 6 and 52 pathways were sig-
nificantly associated with survival in these cancer types (Table
III). Weighted set cover did not significantly reduce the num-
ber of pathways, likely because of the low gene set redun-
dancy within the Wikipathway database and the minimal num-
ber of significant pathways (Table III).

Affinity propagation clustered these gene sets into 29
groups with 1 to 21 pathways in each group (Fig. 7). ECM-
related pathways were associated with poor prognosis in
several cancer types (bladder cancer, kidney cancer, and
lung adenocarcinoma). Amino acid metabolism, which clus-
tered with other metabolic-related signaling pathways, was
associated with good prognosis in kidney and colorectal
cancer.

Sumer furthermore clearly shows cancer-specific differ-
ences in pathways. In colorectal and endometrial cancers, the
expression of a set of genes in DNA damage response path-
ways is associated with survival, whereas a similar set of
genes is negatively associated with survival in lung adenocar-
cinoma and kidney cancer (Fig. 7). Additionally, the pathway
Retinoblastoma (RB) in Cancer was associated with poor
survival in lung adenocarcinoma and kidney cancer, but it was
associated with good survival in colorectal cancer. Finally,
cancer-specific pathways were highlighted by Sumer. A clus-
ter of pathways related to ESC pluripotency and WNT signal-
ing were almost exclusively associated with poor survival in
bladder cancer.

TABLE II
Pan-cancer survival analysis data

Cancer type
Total

number of
patients

Number
of deceased

patients

Number of
genes with
expression

data

Bladder 398 176 20041
Breast 1051 151 20108
Colorectal 367 86 19733
Kidney 861 226 20169
Leukemia 149 93 19208
Lung 492 178 19980
Endometrial 162 32 19801

TABLE III
Enrichment results from a pan-cancer survival analysis

Cancer type

Number of
enriched

pathways,
upregulated

Number of enriched
pathways after

set cover, upregulated

Number of
enriched pathways,

downregulated

Number of
enriched pathways after

set cover, downregulated

Bladder 45 43 7 7
Breast 0 0 16 16
Colorectal 0 0 22 20
Kidney 15 14 11 11
Leukemia 29 24 0 0
Lung 39 34 1 1
Endometrial 1 1 5 5

Integrating Multiple Enrichment Analyses Using Sumer

Molecular & Cellular Proteomics 18.14 S149



coadread_Electron 
Transport Chain 

kipan_Electron 
Transport 

Chain 

coadread_Oxidative 
phosphorylation 

blca_Electron 
Transport Chain 

luad_Oxidative 
phosphorylation 

laml_Nanoparticle 
triggered regulated 

necrosis 

brca_TYROBP 
Causal Network 

blca_Prostaglandin 
Synthesis and 

Regulation 

laml_Prostaglandin 
Synthesis 

and 
Regulation 

laml_TYROBP 
Causal 

Network 

kipan_TCA 
Cycle and 

Deficiency of 
Pyruvate 

Dehydrogenase 
complex (PDHc) 

kipan_Amino 
Acid 

metabolism 

kipan_Oxidative 
phosphorylation 

coadread_TCA 
Cycle and 

Deficiency of 
Pyruvate 

Dehydrogenase 
complex (PDHc) 

kipan_Synthesis 
and Degradation of 

Ketone Bodies 

blca_GABA 
receptor Signaling 

ucec_Synaptic 
Vesicle 

Pathway 

laml_Mevalonate 
pathway 

coadread_Proteasome 
Degradation 

blca_Cholesterol 
Biosynthesis 

laml_Proteasome 
Degradation 

luad_Proteasome 
Degradation 

kipan_Sphingolipid 
Metabolism 

coadread_Tryptophan 
catabolism 
leading to 

NAD+ 
production 

laml_B Cell 
Receptor Signaling 

Pathway 

laml_Nucleotide-binding 
Oligomerization 
Domain (NOD) 

pathway 

laml_SREBF and 
miR33 in 

cholesterol and 
lipid homeostasis 

laml_Cholesterol 
Biosynthesis 

blca_EMT in 
colorectal cancer 

blca_ESC 
Pluripotency 

Pathways 

blca_LncRNA 
involvement in 
canonical Wnt 
signaling and 

colorectal 
cancer 

blca_Regulation of 
Wnt/B-catenin 

Signaling by Small 
Molecule 

Compounds 

blca_Breast cancer 
pathway 

blca_Differentiation 
Pathway 

blca_Wnt Signaling 
Pathway 

kipan_TCA Cycle

luad_RalA 
downstream 

regulated genes 

blca_Regulation of 
Actin Cytoskeleton 

blca_Physiological 
and 

Pathological 
Hypertrophy  of 

the Heart 

blca_Spinal Cord 
Injury 

blca_Lung fibrosis

blca_TarBasePathway 

blca_BMP Signaling 
Pathway in Eyelid 

Development 

blca_Cardiac 
Progenitor 

Differentiation 

blca_Endochondral 
Ossification 

blca_TGF-beta 
Signaling Pathway 

blca_Hypothesized 
Pathways in 

Pathogenesis of 
Cardiovascular 

Disease 

blca_Arrhythmogenic 
Right Ventricular 
Cardiomyopathy 

blca_Focal 
Adhesion-PI3K-Akt-mTOR-signaling 

pathway 

kipan_miRNA 
targets in 
ECM and 

membrane 
receptors 

luad_miR-509-3p 
alteration of 

YAP1/ECM axis 

blca_PI3K-Akt 
Signaling Pathway 

blca_miR-509-3p 
alteration of 

YAP1/ECM axis 

kipan_miR-509-3p 
alteration of 

YAP1/ECM axis 

coadread_mRNA 
Processing 

luad_mRNA 
Processing 

kipan_Inflammatory 
Response 
Pathway 

blca_Focal 
Adhesion 

brca_IL-2 Signaling 
Pathway 

brca_Inflammatory 
Response Pathway 

luad_miRNA targets 
in ECM and 
membrane 
receptors 

brca_Allograft 
Rejection 

laml_Ebola Virus 
Pathway on Host 

luad_Allograft 
Rejection ucec_Allograft 

Rejection 

brca_Cytokines 
and 

Inflammatory 
Response 

laml_Cytokines and 
Inflammatory 
Response 

blca_Cori 
Cycle 

luad_Cori Cycle
laml_Cori Cycle

luad_Pathways in 
clear cell renal cell 

carcinoma 

blca_Pathways in 
clear cell renal cell 

carcinoma 

luad_Regulation of 
Apoptosis by 
Parathyroid 

Hormone-related 
Protein 

coadread_Glucuronidation 
luad_Hepatitis C 

and Hepatocellular 
Carcinoma 

luad_Photodynamic 
therapy-induced 
HIF-1 survival 

signaling 

luad_Glycogen 
Metabolism 

coadread_miRNA 
Regulation of DNA 
Damage Response 

coadread_DNA 
IR-damage and 

cellular response 
via ATR 

coadread_Non-homologous 
end joining 

luad_DNA 
IR-Double Strand 

Breaks (DSBs) and 
cellular response 

via ATM 
coadread_Nanomaterial 

induced apoptosis 

coadread_DNA 
IR-Double 

Strand Breaks 
(DSBs) and 

cellular 
response via 

ATM 

coadread_Retinoblastoma 
(RB) in Cancer 

ucec_miRNA 
regulation of p53 

pathway in prostate 
cancer 

luad_Integrated 
Breast Cancer 

Pathway 

luad_miRNA 
Regulation of 
DNA Damage 

Response 

kipan_Retinoblastoma 
(RB) in Cancer 

luad_DNA 
Replication 

luad_DNA 
IR-damage and 

cellular response 
via ATR 

luad_ATM
Signaling Pathway 

luad_ATM Signaling 
Network in 

Development and 
Disease 

luad_Homologous 
recombination 

luad_Cell Cycle

coadread_Mismatch 
repair 

luad_Retinoblastoma 
(RB) in 
Cancer 

kipan_ATM 
Signaling Pathway 

kipan_miRNA 
Regulation of DNA 
Damage Response 

kipan_Cell Cycle
luad_G1 to S cell 

cycle control 

kipan_G1 to S 
cell cycle 
control 

luad_Mismatch 
repair 

kipan_Lipid 
Metabolism 
Pathway 

laml_T-Cell 
antigen 

Receptor (TCR)  
Signaling 
Pathway 

laml_Regulation 
of toll-like 
receptor 
signaling 
pathway 

laml_Chemokine 
signaling 
pathway 

laml_EBV LMP1 
signaling 

brca_Chemokine 
signaling pathway 

luad_Parkin-Ubiquitin 
Proteasomal 

System pathway 

blca_Zinc 
homeostasis 

coadread_Mitochondrial 
Gene 

Expression 

kipan_Fatty Acid 
Beta Oxidation 

kipan_Mitochondrial 
LC-Fatty Acid 
Beta-Oxidation 

coadread_Mitochondrial 
LC-Fatty Acid 
Beta-Oxidation 

luad_Regulation 
of sister 

chromatid 
separation 

at the 
metaphase-anaphase 

transition 

brca_Cytoplasmic 
Ribosomal 
Proteins 

laml_Simplified 
Depiction of MYD88 

Distinct 
Input-Output 

Pathway 

ucec_Cytoplasmic 
Ribosomal Proteins 

luad_Translation 
Factors 

blca_Translation 
Factors 

blca_Photodynamic 
therapy-induced 
NFE2L2 (NRF2) 

survival signaling 

brca_T-Cell antigen 
Receptor (TCR)  

Signaling Pathway 

blca_Deregulation 
of Rab and 

Rab Effector 
Genes in 
Bladder 
Cancer 

coadread_Fatty 
Acid Biosynthesis 

luad_Pyrimidine 
metabolism 

coadread_DNA 
Replication 

kipan_DNA 
Replication 

kipan_Fatty 
Acid 

Biosynthesis 

luad_Metabolism 
of 

Spingolipids 
in ER and 

Golgi 
apparatus 

kipan_Regulation of 
sister chromatid 
separation at the 

metaphase-anaphase 
transition 

laml_Microglia 
Pathogen 

Phagocytosis 
Pathway 

laml_Thymic 
Stromal 

LymphoPoietin 
(TSLP) Signaling 

Pathway 

laml_Integrin-mediated 
Cell Adhesion 

blca_Hair Follicle 
Development: 

Cytodifferentiation 
(Part 3 of 3) 

blca_TGF-B 
Signaling in Thyroid 

Cells for 
Epithelial-Mesenchymal 

Transition 

blca_Senescence 
and Autophagy in 

Cancer 

blca_TGF-beta 
Receptor 
Signaling 

blca_Canonical 
and 

Non-Canonical 
TGF-B signaling 

luad_Canonical and 
Non-Canonical 
TGF-B signaling 

brca_Interferon type 
I signaling 
pathways 

brca_The 
human 
immune 

response to 
tuberculosis 

laml_Development 
of pulmonary 

dendritic cells and 
macrophage 

subsets 

kipan_Type II 
interferon 

signaling (IFNG) 

laml_Type II 
interferon signaling 

(IFNG) 

blca_Type II 
interferon signaling 

(IFNG) 

brca_Type II 
interferon signaling 

(IFNG) 

blca_Dopaminergic 
Neurogenesis 

brca_Development 
and heterogeneity 
of the ILC family 

coadread_Gastric 
Cancer 

Network 2 

kipan_Dopaminergic 
Neurogenesis 

luad_Gastric 
Cancer Network 

1 

ucec_Wnt/beta-catenin 
Signaling Pathway 

in Leukemia 

kipan_Gastric 
Cancer Network 1 

luad_Gastric 
Cancer Network 2 

blca_Serotonin 
Receptor 4/6/7 and 
NR3C Signaling 

blca_Endothelin 
Pathways 

luad_Primary Focal 
Segmental 

Glomerulosclerosis 
FSGS 

blca_Common 
Pathways 

Underlying 
Drug 

Addiction 

luad_Pathogenic 
Escherichia coli 

infection 

blca_Myometrial 
Relaxation and 

Contraction 
Pathways 

laml_Pathogenic 
Escherichia coli 

infection 

blca_Calcium 
Regulation in the 

Cardiac Cell 
blca_Phosphodiesterases 

in neuronal function 

blca_Nuclear 
Receptors in Lipid 
Metabolism and 

Toxicity 

blca_Drug 
Induction of 

Bile Acid 
Pathway 

kipan_Vitamin
B12 Metabolism 

blca_Pregnane X 
Receptor pathway 

brca_TNF 
related 
weak 

inducer of 
apoptosis 
(TWEAK) 
Signaling 
Pathway 

laml_The human 
immune response 
to tuberculosis 

blca_Codeine and 
Morphine 

Metabolism 

brca_Apoptosis

brca_T-Cell antigen 
Receptor (TCR) 
pathway during 
Staphylococcus 
aureus infection 

brca_T-Cell 
Receptor and 

Co-stimulatory 
Signaling 

ucec_T-Cell 
Receptor and 
Co-stimulatory 

Signaling 

coadread_Amino 
Acid metabolism 

Weight

-17 17
Label
Label
Label

Top Exempler
Second Exemplar
Non-exemplar

BLCA

BRCA

COADREAD

KIPAN

LAML

LUAD

UCEC
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DISCUSSION

We have shown here a method to reduce gene set redun-
dancy after enrichment analysis and to consolidate results
from multiple enrichment analyses. First, removing annotation
redundancy vastly reduces the overwhelming number of sig-
nificant sets from a single enrichment analysis when the orig-
inal database contained significant gene set redundancy and
allows focused analyses on the most interesting gene sets.
Affinity propagation clustering can then identify common
themes from the remaining gene sets both in a single enrich-
ment analysis and across multiple experiments. Although
other related algorithms require manual interpretation of each
gene set cluster, affinity propagation automatically recom-
mends one exemplar for each gene set cluster.

We demonstrated the utility of Sumer to integrate enrich-
ment analyses from multi-omics data in a single study. Breast
cancer can be separated into several subtypes based on gene
expression. The basal and luminal subtypes have very differ-
ent prognoses, treatment options, and outcomes. The enrich-
ment analyses identified the well-known differences between
the groups. The luminal A subtype tends to slowly proliferate
and has better outcomes, whereas the basal subtype has an
impaired DNA damage response and poor clinical outcomes
(26). This was recapitulated by the enrichment of cell cycle-
related pathways (i.e. KEGG DNA Replication, Reactome Cell
Cycle, KEGG Cell Cycle, and PID E2F Pathway) and the DNA
damage-related pathways (i.e. PID Fanconi Pathway, PID ATR
pathway, and Reactome DNA Repair) in the basal subtype.
Integrating enrichment results from proteomics data empha-
sized the common up-regulation of cell cycle genes and DNA
repair genes at both the transcription and translation levels.
Finally, pathways specific to an omics type were highlighted
by the clustering analysis. The Core Matrisome pathway,
which contains core extracellular matrix genes, was more
highly enriched in luminal samples solely in the proteomic
data. This might suggest post-translational regulation of the
proteins in this pathway.

Sumer can further be used to integrate results from multiple
studies. Poor survival in several cancer types correlated with
high expression of ECM-related genes, indicating this may be
a common mechanism across cancer. However, there were
also differences among cancer types. Interestingly, the Reti-
noblastoma (RB) in Cancer Pathway was correlated with poor
survival in lung adenocarcinoma and kidney cancer, but it
correlated with good survival in colorectal cancer. The retino-
blastoma gene product, RB, is a classic tumor suppressor
and master cell cycle regulator. The gene is frequently mu-
tated or deleted in cancer, including lung adenocarcinoma
(27). However, the RB gene is frequently amplified in colorec-
tal cancer and the protein is often overexpressed (28, 29). This
may indicate differing function of the RB pathway in these
different cancer types.

A unique strength of affinity propagation is to automatically
identify an exemplar for each gene set cluster. Our analysis in
Fig. 6 demonstrated the statistical appropriateness of the
selected exemplars. Nevertheless, the chosen exemplars may
not always have the most biologically relevant names. For
example, an exemplar in the pan-cancer survival study was
the Human Immune Response to Tuberculosis pathway en-
riched from breast cancer. The response to tuberculosis may
not describe the function of those genes in breast cancer.
However, the other sets in the cluster clarify that the genes in
that pathway are likely related to interferon signaling, which
has been linked to cancer prognosis and survival (30).

Importantly, Sumer allows for significant customization
based on the user’s preferences. We demonstrated the case
of using Sumer to consolidate and aggregate gene sets based
on user-defined gene sets. This provides focused analysis of
the genes most significantly associated with gene sets, such
as using only the leading edge genes from GSEA or the
overlapping genes between the submitted list and the gene
set from ORA analysis. Furthermore, Sumer accepts a user-
defined weight for the weighted set cover algorithm to prior-
itize sets for consolidation and aggregation. This provides a
significant advantage over the original set cover algorithm (i.e.
weighted set cover with uniform weights) which prioritizes the
largest gene sets (15). However, the choice is left to the user
to decide the best prioritization for their analysis. Furthermore,
Sumer provides downloadable figures and result tables, al-
lowing users to perform additional analyses or figure customi-
zation. Because Sumer simply takes tables of scores associ-
ated with gene sets and corresponding GMT files as input, it
is compatible with different enrichment analysis tools.

In summary, Sumer is a flexible tool for condensing and
consolidating gene set analysis results from multi-omics or
other types of integrative studies.
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