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Microbiome research offers promising insights into the
impact of microorganisms on biological systems. Meta-
proteomics, the study of microbial proteins at the com-
munity level, integrates genomic, transcriptomic, and pro-
teomic data to determine the taxonomic and functional
state of a microbiome. However, standard metaproteom-
ics software is subject to several limitations, commonly
supporting only spectral counts, emphasizing exploratory
analysis rather than hypothesis testing and rarely offering
the ability to analyze the interaction of function and tax-
onomy - that is, which taxa are responsible for different
processes.

Here we present metaQuantome, a novel, multifaceted
software suite that analyzes the state of a microbiome by
leveraging complex taxonomic and functional hierarchies
to summarize peptide-level quantitative information,
emphasizing label-free intensity-based methods. For
experiments with multiple experimental conditions,
metaQuantome offers differential abundance analysis,
principal components analysis, and clustered heat map
visualizations, as well as exploratory analysis for a single
sample or experimental condition. We benchmark meta-
Quantome analysis against standard methods, using two
previously published datasets: (1) an artificially assembled
microbial community dataset (taxonomy benchmarking)
and (2) a dataset with a range of recombinant human
proteins spiked into an Escherichia coli background
(functional benchmarking). Furthermore, we demonstrate
the use of metaQuantome on a previously published hu-
man oral microbiome dataset.

In both the taxonomic and functional benchmarking
analyses, metaQuantome quantified taxonomic and func-
tional terms more accurately than standard summariza-
tion-based methods. We use the oral microbiome dataset
to demonstrate metaQuantome’s ability to produce pub-
lication-quality figures and elucidate biological processes

of the oral microbiome. metaQuantome enables advanced
investigation of metaproteomic datasets, which should be
broadly applicable to microbiome-related research. In the
interest of accessible, flexible, and reproducible analysis,
metaQuantome is open source and available on the com-
mand line and in Galaxy. Molecular & Cellular Proteom-
ics 18: S82-S91, 2019. DOI: 10.1074/mcp.RA118.001240.

Microbiome analysis has enabled the understanding of the
effect of microorganisms on diverse biological systems (1-4).
The microbiome can be studied using a variety of methods,
including metagenomics (5-7), metatranscriptomics (8), and
metaproteomics (9). Metaproteomics studies detect the pres-
ence and abundance of microbial peptides and proteins, of-
fering a more direct understanding of the processes being
catalyzed by the microbiome than metatranscriptomics and
metagenomics (9-16). Furthermore, metaproteomics allows
the analysis of both taxonomic abundance and functional
state from the same mass spectrometry data.

Although metaproteomics is an important component of
microbiome research and a complement to other ‘omics anal-
yses, limitations in current software restrict the range of meth-
ods and accuracy of analyses that can be carried out. First,
metaproteomics studies have traditionally quantified peptides
with spectral counts, based on counting the number of tan-
dem mass (MS/MS)" spectra assigned to peptides or proteins
(17). Accordingly, many available metaproteomics tools only
offer amenability to spectral counting-based quantification,
including MEGAN (18), metaGOmics (19), and Unipept (20).
However, research has shown that spectral counts offer a less
accurate estimate of peptide abundance than the spectral
intensity of the precursor peptide (which is typically done by
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either integrating the MS1 peak or by recording the apex
intensity) (21).

Second, some available bioinformatics tools that intend to
support microbiome analysis follow a “gene list” approach
and require explicit protein or gene inference, such as DAVID
(22). In metaproteomics, however, it is sometimes difficult to
unambiguously assign a parent protein to a detected peptide
because proteins between and within species can be highly
homologous (23). Other tools only support certain types of
microbiota in a small number of organisms, such as iMetaLab
(24), which only supports mouse and human gut microbiome
analysis.

Furthermore, metaproteomics tools rarely offer the ability to
directly compare many samples or multiple experimental con-
ditions. Some, such as Unipept, focus on detailed exploratory
analysis of a single sample. Others, such as metaGOmics,
allow comparison between only two samples. However, as
metaproteomics is marked by large datasets and many thou-
sands of functional terms and dozens of taxa, it is essential to
compare larger numbers of samples to distinguish true effects
from random variation. In addition, available metaproteomics
tools rarely offer methods to filter out redundant annotations,
leading to less informative conclusions from the data.

Finally, while both the taxonomic origin and functional role
of peptides (more specifically, of their parent protein) can be
determined, few metaproteomics software tools are able to
explore the function-taxonomy interaction, that is, the contri-
bution of different taxa to a given functional process and vice
versa.

In this manuscript, we present a new software suite called
metaQuantome, which is composed of several complemen-
tary functionalities developed with the intent to fill some of the
aforementioned gaps in metaproteomic bioinformatics tools.
metaQuantome is free and open source and is available via
GitHub, Bioconda (25), and Galaxy (26). To our knowledge,
metaQuantome is the only software to enable fully quantita-
tive differential abundance analysis of the functional and tax-
onomic profile of a metaproteome and one of only a few
software tools to enable function-taxonomy interaction anal-
ysis. metaQuantome is amenable to data quantified using
peptide-level MS1 intensity values, as well as data quantified
by more traditional spectral counting methods. It also utilizes
functional annotation and taxonomic annotation—generated
from any software—to carry out a multifaceted analysis of a
metaproteomics dataset, without requiring the use of a spe-
cific database or explicit protein inference. Importantly, it
provides novel and powerful functionality for analyzing func-

" The abbreviations used are: MS/MS, tandem mass spectrometry;
MS1, precursor mass spectrum; UPS1, UPS2, Universal Proteomics
Standards 1 and 2; GO, Gene Ontology; EC, enzyme commission;
NCBI, National Center for Biotechnology Information; LCA, lowest
common ancestor; MSE, mean squared error; L2FC, logarithm base 2
of the fold change; WS, with sucrose; NS, no sucrose.

tion-taxonomy interactions, enabling users to determine mi-
crobe-specific contributions to the functional profile or the
profile of microbes contributing to a specific functional protein
class—and visualize the results from these investigations.

We evaluate the accuracy of metaQuantome in quantifying
abundance measures of taxa and biochemical functions
indicated from peptide abundance data, compared with
standard summarization-based methods. First, we bench-
mark taxonomic abundance estimation using a mock micro-
bial community dataset (27). We also benchmark functional
abundance estimation with a dataset consisting of the Uni-
versal Proteomics Standards 1 and 2 (UPS1 and UPS2,
Sigma-Aldrich) spiked into an E. coli background (21). Fi-
nally, we demonstrate the analysis and visualization capa-
bilities of the software on a previously published oral micro-
biome dataset (28). Our results demonstrate the value of
metaQuantome for quantitative analysis of metaproteomics
data and advanced exploration of these datasets for micro-
biome characterization.

EXPERIMENTAL PROCEDURES

Software Structure—metaQuantome is a software suite developed
in Python using an object-oriented framework and has a command-
line interface divided into several modules (Fig. 1A). The modular
structure allows for efficient workflows and examination of the data
files at each stage of analysis. In the design of the software, we have
leveraged the similarities between different functional and taxonomic an-
notation types to reduce code duplication. metaQuantome is open
source under the Apache 2.0 license, and the source code is available
for examination at https://github.com/galaxyproteomics/metaquan-
tome. A detailed description of each module follows. Throughout the
text, we use “intensity” to refer to the measured spectral intensity from
the mass spectrometer and “abundance” to refer to the relative pres-
ence of a peptide, taxon, or functional term in the sample.

Database Module—The database (db) module downloads the ref-
erence databases: Gene Ontology (GO) terms (29), Enzyme Commis-
sion (EC) numbers (30), and the the National Center for Biotechnology
Information (NCBI) taxonomy database (31). We have leveraged ex-
isting Python libraries to facilitate the use of these databases: ete3
(82) (for taxonomy), GOATOOLS (33) (for GO terms), and Biopython
(34) (for the ENZYME database).

Expand Module— After downloading the databases, the next mod-
ule in the metaQuantome analysis is expand, in which we expand the
set of all directly annotated functional or taxonomy terms to include all
terms implied by the original annotations (Fig. 1B). We use the term
“implied” because many domains of biological knowledge are orga-
nized hierarchically, where more specific annotations imply more
general annotations above them in the hierarchy, also known as
“parents” (one level above in the hierarchy) or “ancestors” (any num-
ber of levels above in the hierarchy). For example, the taxonomic
annotation “Streptococcus genus” is a parent term to “Streptococcus
mutans species.” Similarly, hierarchical functional ontologies include
GO terms and EC numbers, both of which are supported in
metaQuantome. Often, taxonomic and functional annotation tools
only provide the most specific term or terms associated with a pep-
tide, for example, Unipept annotates peptides with their lowest com-
mon ancestor (LCA), the most specific taxon that is consistent with all
potential parent proteins for that peptide (35). Therefore, the informa-
tion returned by annotation tools such as Unipept is often not the full
set of information associated with that annotation.
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Fig. 1. (A) Outline of metaQuantome
program structure. Note that the viz
module can be used on results from ei-
ther filter or stat. (B) The first step in the
expand module. The set of all “direct”
annotations (those provided by the an-
notation tool) is expanded to include all
of the ancestors of the direct annota-
tions. (C) The second step in the expand
module. Abundances are calculated for
each term in the expanded hierarchy.

In metaQuantome, we expand the set of original annotations to
include all the ancestors of the direct annotations. To do this, we have
defined several custom Python classes that mirror the structure of the
annotation hierarchies. Specifically, each term is defined as an in-
stance of the class AnnotationNode, which contains variables spec-
ifying the precursor intensity, the number of unique peptides anno-
tated with that term, and other data (for each experimental sample).
The AnnotationNodes are collected into an AnnotationHierarchy,
which propagates observed intensities for a term up to each of the
term’s ancestors. That is, the total abundance of a taxon or functional
term is calculated as the sum of the abundances of all peptides
annotated with the term and/or any of its descendants (see Fig. 1C),
an approach that was also used with spectral counts in metaGOmics
(19). This allows the user to examine his or her data at different levels
of generality—for example, while many peptides may not be specific
to a species, examining a taxonomic family allows for estimating the
abundance of all species-specific peptides and those specific to the
relevant genus and family.

The expand process for function-taxonomy interaction analysis is
slightly different (Fig. 2). First, taxonomic annotations are “mapped”
to the desired rank—that is, a genus is mapped to the associated
family. The annotations that have a lower rank than the desired rank
are removed. The directly annotated GO terms are used without
modification unless the user selects the “map to slim” option. In that
case, each GO term is mapped to its closest relative in the GO slim,
which is a smaller set of more general GO terms. Finally, the total
abundance for a taxon/GO term combination is calculated as the sum
of peptide abundances annotated with the taxon/GO term pair.

The required input for the expand module is:

1. Quantitative information: a tabular file with peptide sequences
and the associated intensities. The values can be calculated
using any accepted label-free methods, such as MS1 intensity
measurements or spectral counting. Prior to use in metaQuan-
tome, the values should be normalized (36).

2. Functional and/or taxonomic information: tabular files with pep-
tide sequences and associated functional terms (either GO terms,
EC numbers, or COG categories (37), for functional analysis)
and/or taxonomic LCA assignments (for taxonomic analysis).

3. The databases downloaded by metaQuantome db module (de-
scribed earlier)

Aside from the databases, the quantitative information and the
functional and/or taxonomic annotations utilized by this module may

Expanded
annotations

Direct
annotations

expand

Q—»

The abundances for terms C and D are directly
obtained from the intensities of the peptides
annotated with them. The abundances for
terms A and B are calculated as

abundA = abundC + abundB
abundB = abundD

be derived from any software. Therefore, metaQuantome can always
be used with the most up-to-date quantification and annotation tools.
The output of the expand module is a tabular file with columns for the
term identifiers (IDs), associated descriptive information, aggregated
precursor intensities, number of unique peptides annotated, and
number of sample children (described below). The filter module
should be used before carrying out any visualization or statistics on
the output file.

Filter Module—Because the analysis of many datasets results in
many thousands of functional and taxonomic terms, quality control
is essential to ensure that spurious term assignments do not mask
true term detections. We employ three strategies to ensure that
detected terms are well-supported by the data and are nonredun-
dant (see Fig. 3).

First, the user may specify that a term must be supported by a
minimum number of distinct peptide sequences (different peptide
sequences annotated with the term in question) (Fig. 3A). This allows
for filtering out spurious taxonomic or functional terms in which we
have lower confidence due to relatively low amounts of supporting
data. To enable this filtering, metaQuantome calculates the number of
peptides giving evidence to the presence of this term, which is the
number of unique peptides directly annotated with this term and/or
any of its descendants. Note the difference in the term “children” and
“descendants” that has been used here. Descendants for a term A are
those terms that are any number of levels below A in the hierarchy and
are instances of A, while children of A are descendants that are
exactly one level below A.

Next, metaQuantome allows for filtering out redundant terms,
which we define in this case as terms that carry the exact same
quantitative information as a child—that is, if it has exactly one child
term in the data. To filter out these redundant terms, metaQuantome
calculates the “sample children” (children in the dataset) of each term
in the expanded hierarchy then keeps only those with no sample
children or at least the number of sample children set by the user (Fig.
3B). The term “sample children” is used to distinguish between a
term’s children in the database and the term’s children in the sample.
For example, the GO term “biological adhesion” (GO:0022610) has
four children in the GO database as of February 25, 2019 (multicellular
organism adhesion, adhesion of symbiont to host, cell adhesion,
intermicrovillar adhesion). However, for a given sample, the term
“biological adhesion” may only have two children observed in the
sample (i.e. detected peptides might be annotated with “multicellular
organism adhesion” and “cell adhesion” and not the others). In this
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peptide LCA GO terms abundance
AAA genus x GO:1, GO:2, GO:3 200
BBB species y GO:2, GO:4, GO:5 300

* (1) map taxa to desired rank (ex. family)

peptide taxon with GO terms abundance
desired rank
AAA family z GO:1, GO:2, GO:3 | 200
BBB family z GO:2, GO:4, GO:5 | 300
(2) split GO list column to give 1 GO term
per row
peptide taxon with desired rank | GO terms | abundance
AAA family z GO:1 200
AAA family z GO:2 200
AAA family z GO:3 200
BBB family z GO:2 300
BBB family z GO:4 300
BBB family z GO:5 300

(3) group by taxon and GO term and
sum abundances

taxon with desired rank | GO terms abundance
family z GO:1 200
family z GO:2 500
family z GO:3 200
family z GO:4 300
family z GO:5 300
Distribution for family z
(4) calculate =
the functional o
distribution for -
taxq (ex: 2|
family z)
3
o

GOl GO:2 GO3 GO4 GOS5

Fic. 2. An illustration of the function-taxonomy analysis proc-
ess. The user must provide a taxonomic rank at which they wish to
analyze the dataset, and currently only GO terms are supported. In
addition, before the process shown in the figure, metaQuantome
ensures that the GO term annotations for each peptide are nonre-
dundant—i.e. that no term in the list is an ancestor of another term
in the list. Then, metaQuantome performs the following four ac-
tions: (1) The LCA for each peptide is “mapped” to the taxon at the
desired rank. In this example, species y is a member of genus x, and
genus x is a member of family z. (2) The list of GO terms is split so
that there is a single GO term per row. This assumes that each GO
term gets the full peptide intensity. (3) Sum to get the total peptide
intensity for each combination of taxa and GO terms. This intensity
is an estimate of the abundance for each taxon-GO term pair. (4)
The viz module calculates either the distribution of taxonomic abun-
dance for a selected GO term or the distribution of GO term
abundance for a selected taxon. In this example, we see the func-
tion distribution for family z.

case, biological adhesion would have two sample children. When
multiple samples are being analyzed, the user is able to select the
minimum number of samples per experimental condition for which the

criteria must be met for both number of peptides and number of
sample children.

Finally, metaQuantome can filter terms down to those that are
quantified in a minimum number of samples per experimental condi-
tion (Fig. 3C). This is especially useful in processing multireplicate
datasets for statistical analysis, where, for a given term, a minimum of
three replicates per experimental condition is necessary.

The output of the filter module is a tabular file with the same
columns as that from the expand module, with rows (annotations) that
do not fit the specified criteria removed. This file may be used in the
stat or viz modules, depending on the researcher’s question.

Stat Module—The stat module offers methods for the analysis of
differential functional abundance and differential taxonomic abun-
dance between two experimental conditions, using validated statis-
tical analysis functions from the statsmodels Python package (38).
The user may choose a standard parametric t test or a nonparametric
rank sum test for unpaired samples and may also choose a paramet-
ric paired t test or a nonparametric Wilcoxon signed-rank test for
paired samples (39). The resulting p values are corrected for multiple
tests using the false discovery rate procedure (40). The results from
the stat module may be displayed in a volcano plot, available within
the viz module.

Viz Module—The viz module of metaQuantome produces a variety
of high-quality, publication-ready visualizations: barplots for the anal-
ysis of a single sample or experimental condition and differential
abundance analysis, volcano plots, heatmaps, and principal compo-
nents analysis for comparisons between two or more experimental
conditions. The visualizations and some of the statistical operations
are carried out by linking to R (41) code, due to R’s unparalleled
visualization capabilities. The visualizations are demonstrated in the
Case Study subsection of the Results section. Beyond the built-in
visualizations, the filter and stat modules generate a standard tabular
file, which permits the user to utilize any preferred statistical or
visualization software to analyze the metaQuantome results. Gener-
ally, viz should be used after quality control filtering (see Fig. 1A).

Barplot—The viz module offers barplots for descriptive visualiza-
tion of taxonomic analysis, functional analysis, and function-taxon-
omy analysis. For taxonomic or functional analysis barplots, the N
(default = 5) highest-abundance terms are plotted ranked by abun-
dance. In the function-taxonomy interaction analysis, the user has
two options: they can specify a NCBI taxonomy ID (taxID) and obtain
the functional distribution of peptide abundances assigned to that
taxID, or they can specify a functional term and obtain the taxonomic
distribution of peptide abundances annotated with that function. In
both cases, the abundances are normalized to one so that the pro-
portion of peptide abundance is obtained.

Principal Components Analysis—metaQuantome carries out a
standard principal components analysis, using the prcomp function
available within the R stats package. First, any missing values are
imputed with 1/1000 times the minimum value in the data. Then,
metaQuantome uses prcomp to project the samples onto the princi-
pal components and plot the first two principal components with their
associated proportion of variance explained. In addition, to obtain a
quantitative measure of how well the points are separated in principal
component space, we take the ratio of the between-cluster variance
to the sum of within-cluster variance, where larger values indicate a
better separation, and return this value in the title of the principal
component analysis plot. In the case of more than two experimental
conditions, the “between cluster” variance is the average of distances
between all combinations of cluster centers. In mathematical nota-
tion, let p,; be the jth point of the cth cluster, £, be the center of the cth
cluster, n being the number of clusters (i.e. the number of experimen-
tal conditions), and /. be the number of points within the cth cluster.
Then, we define the separation, sep, as
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FiG. 3. Filtering methods. The circles
indicate terms, the gray arrows indicate
“is a” relationships, and the blue arrows
indicate metaQuantome filtering proce-
dures. (A) Filtering results by number of
unique peptides. The numbers inside
each term indicate the hypothetical num-
ber of peptides giving evidence to each
term. (B) Filtering by the number of sam-
ple children. The number inside each term
indicates the number of children (direct
descendants) that term has within the
sample. metaQuantome filters out terms
that are neither leaves nor meet the user-
specified criterion for minimum sample
children (here, two, which is the default).
(C) Filtering by the number of samples in
which the term was quantified.

2 or more
unique
peptides

Y

Sotti-17/ (g)

27:1 2’:1 (- Py)z

Clustered Heatmap—Like the principal component analysis plot,
the hierarchically clustered heatmap analysis may be used for two or
more samples. We impute missing values with 1/1000 times the
minimum value in the data, use one minus the correlation as our
distance measure, and the Ward method of hierarchical clustering
(hclust(x, method = “ward.D”) in version 3.4.4 of the stats package in
R), all choices suggested by Key (42). If differential abundance anal-
ysis has been done, the user may choose to filter the rows to only
those terms significantly differentially abundance at a prespecified
significance threshold— otherwise, every term present after filtering is
included in the heatmap.

Benchmarking—In order to benchmark our methods, we used da-
tasets of known taxonomic and functional composition to evaluate
the accuracy of metaQuantome compared with a standard “summa-
rization” method. The summarization method amounts to summing
up the abundance of all peptides directly annotated with each taxon
or function. In contrast, metaQuantome uses the hierarchical struc-
ture of the annotation ontologies to assign abundance to taxonomy or
functional categories, including those not present in the set of original
annotations. We performed two separate benchmarking analyses.
First, we used a dataset of known taxonomic composition (“mock
microbial community”) to evaluate metaQuantome’s accuracy in es-
timating taxonomic composition (27). Second, we used a dataset of
known functional composition (“spiked-in universal protein standard”)
to evaluate metaQuantome’s accuracy in estimating functional abun-
dance (21). All metaQuantome analyses were run on a Lenovo Think-
Pad T460 with a two-core, four-thread Intel Core i7-6600U 2.6 GHz
processor and 32 GB of RAM. metaQuantome is software with rela-
tively low computational demand and can be run on modern laptop
computers.

Mock Microbial Community—The objective of using the mock mi-
crobial community was to evaluate the accuracy of taxonomic quan-
titation with metaQuantome versus a standard summarization-based
method. We used publicly available proteomic data acquired from an
artificial microbial community composed of 32 species and strains
(ProteomeXchange accession: PXD006118). The data that were spe-
cifically used for our benchmarking were the “equal protein amount”
mock community, which was composed of a mixture of equal protein

sep =

M

@

©)

Sample 1 Sample 2

Expanded
+ Leaf or 2:or annotations
more
Direct
zﬁiﬁ;'een Quantified in 2 s otions
or more
samples

amounts of each of the 32 species and strains, except for bacterio-
phage proteomes, which were included at 10x lower concentrations
than the other proteomes. The dataset consisted of four biological
replicates and two technical replicates of each biological replicate.
We identified peptides by searching against the protein sequence
database provided by Kleiner et al. (27) with SearchGUI (version
3.2.13) (43) and PeptideShaker (1.16.9) (44). To generate quantitative
input for metaQuantome, identified peptides were quantified with
FlashLFQ (Version 0.1.108) to generate MS1-level precursor intensity
values (45). The peptide intensity values were normalized using the
“quantile” method within the R package limma (46). The LCA of each
identified peptide was obtained by using Unipept 4.0 (20). In Supple-
mentary Document 1, we have included full details on software pa-
rameters, the Peptide Report from PeptideShaker, the quantitative
information from FlashLFQ, and the Unipept taxonomic annotations.

Next, the true abundance of each taxon was obtained by using the
nopep mode of metaQuantome, which calculates the abundance of
each taxon in the full taxonomic tree by summing up the protein
amounts in the input sample (in micrograms) for each taxon and all of
their descendants observed in the sample. In the summarization
method, the total abundance of each taxon was obtained by summing
up the MS1 intensities of all peptides with that taxon as their LCA. In
the metaQuantome method, we estimated the total abundance of
each taxon by summing up the MS1 intensities of all peptides with
that taxon or a lower taxon as their LCA. In both cases, we averaged
the eight replicates and calculated the base-2 logarithm of the result-
ing average.

As the true abundances and estimated abundances were on dif-
ferent scales (micrograms of protein concentrations versus log2
abundance), we scaled the vector of abundances for each method to
have a mean of zero and a standard deviation of one. This allowed us
to directly compare true abundance to estimated abundance. Finally,
we calculated the mean squared error (MSE) for each estimation
method, using all N observed taxa for that method:

(est, — true,)®

MSE = Et € taxa N

@

That is, MSE is the average squared difference between the esti-
mated abundance and true abundance. It is a measure of the quality
of an estimation method, and values closer to zero are better. In our
study, the outcomes of interest included the number of taxa quanti-

S86

Molecular & Cellular Proteomics 18.14



metaQuantome: An Integrated Quantitative Metaproteomics Tool

fied and the MSE obtained via the metaQuantome method and the
summarization method.

Spiked-in Universal Proteomic Standard—The objective of using
the spiked-in Universal Proteomic Standard in this analysis was to
compare the accuracy of metaQuantome functional quantitation to
that of a summarization approach. To do so, we used a publicly
available dataset consisting of the Sigma-Aldrich Universal Proteomic
Standard (UPS1 and UPS2) spiked into an E. coli background (21)
(ProteomeXchange accession: PXD000279). There were four biolog-
ical replicates of each of the two conditions. UPS1 consists of an
equimolar (5000 fmol) mixture of 48 human proteins, while UPS2
consists of the same 48 proteins mixed at concentrations ranging
from 50,000 fmol to 0.5 fmol. The measure of interest for our study
was the log2 fold change (L2FC) in functional abundance between
UPS2 and UPS1 for the GO term annotations of the 48 spiked-in
human proteins.

The UniProt GO annotations for each of the UPS proteins were
obtained by querying the UniProt “Retrieve/ID Mapping” tool avail-
able on the UniProt web site (accessed November 1, 2018). Then, the
metaQuantome nopep mode within the expand module was used to
obtain the true L2FC for each direct GO annotation and all of their
ancestors.

In order to generate peptide inputs for metaQuantome, we used
SearchGUI (version 3.2.13) and PeptideShaker (version 1.16.9) to
search the spectrum files against the FASTA database provided by
Cox. et al. (21). Then, we used FlashLFQ (version 0.1.108) to obtain
the precursor MS1 intensity to estimate abundance for the identi-
fied peptides and Unipept 4.0 to obtain GO term annotations for
identified peptides. The peptide intensity values were normalized
using the “quantile” method within the R package limma (46). In
Supplementary Document 2, we have included an Excel sheet with
software parameters, the Peptide Report from PeptideShaker, the
quantitative information from FlashLFQ, and the Unipept taxonomic
annotations.

To estimate the L2FC in the summarization analysis, we simply
summed the total abundance of all peptides annotated directly with
each GO term, took the average across replicates, calculated the log
of the average, and then, for each term, subtracted the average UPS1
log2 abundance from the average UPS1 log2 abundance. To estimate
the L2FC in the metaQuantome analysis, we followed a similar
method but instead summed the total abundance of all peptides
annotated with each GO term and any of their descendants. The
outcomes of interest were the total number of GO terms identified and
the MSE of the estimate of L2FC over all N GO terms:

(estFC, — trueFC,)?
MSE = Eg € Goterms% (3)

Case Study: Bioreactor Model of Oral Dysbiosis—The objective for
the case study was to demonstrate the analysis and visualization
capabilities of metaQuantome in the context of a full experiment,
representative of large-scale metaproteomic studies carried out by
microbiome researchers. Full details of data collection are available in
the original article (28) (ProteomeXchange accession: PXD003151).
Briefly, plague samples were collected from 12 children with high risk
of dental caries. The samples were grown in pairs of biofilm reactors
containing hog gastric mucin as the primary carbohydrate source.
One of the reactors was pulsed with sucrose five times daily (with
sucrose, or WS) and the other was used as a control containing only
the mucin-rich medium (no sucrose, or NS). Proteins were extracted
from the samples and digested peptides were subjected to LC frac-
tionation and MS/MS analysis on a Velos Orbitrap system (Thermo
Fisher Scientific; Waltham, MA). We used SearchGUI (version 3.2.13)
and PeptideShaker (version 1.16.9) to search the spectrum files
against the Human Oral Microbiome Database (47). Peptide intensity

TABLE |
Mock microbial community benchmarking results. The “ground truth”
indicates the true number of taxa present in the mock microbial
community. The MSE reflects the error in the estimate provided by
each method (lower is better) and is defined in Equation 2

Number of unique

Method taxa quantified MSE
Ground truth 47 _
metaQuantome 36 0.64
Summarization 33 0.95

TaBLE Il
Spiked-in Universal Protein Standard benchmarking results. The
“ground truth” indicates the total number of unique GO terms with
which the UPS proteins are annotated. The MSE reflects the error in
the estimate provided by each method (lower is better) and is defined
in Equation 3

Number of unique

Method go terms quantified MSE
Ground truth 3,130 —
metaQuantome 1,716 25.2
Summarization 712 26.8

values were obtained with FlashLFQ (version 0.1.108), and the values
were normalized using the “quantile” method within the R package
limma (46). Further parameter details are available at http://doi.org/
10.5281/zeno0do.2652530, along with the PeptideShaker Peptide Re-
port, the MS1 intensities determined by FlashLFQ, and the Unipept
taxonomic and functional annotations.

RESULTS

Benchmarking—The three benchmarking analyses below
took ~8 min, 2.5 min, and 30 min to run to completion,
respectively, while requiring no more than 1-2% of memory.
The required databases occupy ~500 MB of disk space.

Mock Microbial Community—The results from the mock
microbial benchmarking analysis are shown in Table |. The
ability of metaQuantome to expand the set of direct annota-
tions resulted in an increase in the number of taxa quantified:
36 taxa with metaQuantome versus 33 taxa with the summa-
rization method. In addition, the metaQuantome analysis re-
sulted in a 33% lower MSE than the summarization method,
which indicates that using metaQuantome provides a more
accurate overall estimate of taxonomic composition than the
summarization method.

Spiked-In Universal Proteomic Standard—In the functional
analysis benchmarking, the capability of metaQuantome to
expand the set of direct annotations once again led to a
higher number of quantified GO terms (Table Il). In this case,
metaQuantome quantified more than twice as many terms as
the summarization method. In addition, metaQuantome pro-
vided a lower MSE, which indicates that it is a better estimator
of the overall functional term abundance than the summari-
zation method.

Case Study—The objective of the case study was to dem-
onstrate the visualization capabilities of metaQuantome using
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Fic. 4. A sampling of metaQuantome visualizations for the oral microbiome dataset. (A) The five most abundant genera in the WS
(sugar-pulsed) condition. (B) A principal component analysis on functional abundance separates NS (blue) and WS samples (orange), with
some outliers. The separation between the clusters can be seen in the title and is defined in Equation 1. (C) Proportion of total peptide
abundance in WS attributed to genera contributing to carbohydrate metabolism (GO:0005975). (D) A volcano plot representing the results of
the taxonomic differential abundance analysis, with the fold change reported as abundance in WS over abundance in NS. Taxa with a
statistically significant fold change at a user-defined alpha (here, 0.05) are shown with green dots and labeled (some labels removed to reduce
overplotting). (E) A hierarchically clustered heatmap of functional annotations separates NS (blue) and WS (orange) samples.

a full-fledged metaproteomic experimental dataset, repre-
sentative of those that would benefit from our software’s
capabilities. Hence, we show a selection of visualizations for
the functional, taxonomic, and function-taxonomy interaction
analysis (Fig. 4). We emphasize that this is a demonstration of
the use of metaQuantome on an earlier published dataset (28)
and do not stress the biological implications of the results.

We demonstrate the barplot visualization in Fig. 4A, which
shows the five most abundant genera in the WS (sugar-
pulsed) experimental condition. The total peptide abundance
is on the y axis, and genera are on the x axis. In the barplot
visualization, the user can select the number of terms to
display, and the terms are automatically sorted in order of
decreasing abundance from left to right. For reference, the
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total abundance assigned to each genus in WS is provided in
Supplementary Document 3.

In Fig. 4B, we show the functional principal components
analysis visualization. In this example, the separation be-
tween the NS and WS clusters is included in the title (see
Equation 2 for how this is calculated), but the user has the
option to omit it.

We demonstrate a function-taxonomy interaction analysis
visualization in Fig. 4C, which is a plot of the taxonomic
distribution at the genus level of peptide intensities annotated
with the carbohydrate metabolic process (GO term GO:
0005975) in WS. As a further demonstration, we provide the
full results for taxonomic distribution of carbohydrate metab-
olism in Supplementary Document 3. After a function-taxon-
omy analysis is performed, the user may plot the functional
distribution of any taxon included in the dataset, as well as the
taxonomic distribution of any functional term in the dataset.
We anticipate that this will enable in-depth and illuminating
exploration of a metaproteomics dataset.

In Fig. 4D, we show metaQuantome’s taxonomic differential
abundance volcano plot. The user may select the significance
threshold (0.05 by default), and terms with statistically signif-
icant fold changes are colored green and labeled. For refer-
ence, we have also included the output of the stat module that
was used to create this plot in Supplementary Document 3.

Finally, we demonstrate a hierarchically clustered heatmap
of the functional analysis results in Fig. 4E. The samples are
indicated by text labels below each column, and the experi-
mental condition to which each sample belongs is indicated
by the color at the top of each column. If stat was previously
run, the user also has the option to restrict the heatmap plot
to the statistically significant terms (not shown).

DISCUSSION

metaQuantome is a novel and multifunctional bioinformat-
ics software suite that leverages quantitative information and
functional and taxonomic annotations to describe the multi-
dimensional state of a microbiome. Among the novel features
of metaQuantome are: the multifaceted quality control filtering
process, which reduces redundancy and spurious annota-
tions; amenability to either label-free MS1-based intensity or
spectral counting quantification methods; the support for dif-
ferential abundance and clustering analysis across multiple
experimental conditions; the use of a peptide-centric ap-
proach to mitigate the protein inference problem; and the
combination of functional and taxonomic information to elu-
cidate their interaction in a microbiome. As we demonstrate,
metaQuantome leads to more complete and accurate esti-
mates of functional and taxonomic abundance than more
basic summarization methods. It also provides a variety of
visualizations of results that should prove valuable to users for
biological interpretation and publication. Collectively, these
attributes distinguish metaQuantome from other available
software for advanced analysis of metaproteomic data.

An important and unique capability of metaQuantome is its
support of function-taxonomy interaction analysis, which al-
lows investigation of how taxa contribute to metabolic path-
ways, and how the “roles” of the members of a microbial
community change due to perturbations of the system.
metaQuantome allows investigation of this phenomenon from
two directions: the distribution of functional processes for a
given taxon and the taxonomic distribution of a certain func-
tional process. As an illustrative example, in the case study,
metaQuantome identified a dramatic change in the taxonomic
contribution to carbohydrate metabolism: in WS, the Strepto-
coccus genus accounts for a disproportionately higher share
of carbohydrate metabolism (82.6% in WS versus 19.7% in
NS), while Fusobacteria are responsible for the greatest share
of carbohydrate metabolism in NS (66.1%) and hardly any
carbohydrate metabolism in WS (1.2%). The identification
of such important effects is uniquely facilitated by meta-
Quantome, through its ability to analyze function and taxon-
omy at once.

There are some limitations and challenges that should be
noted, which we look forward to addressing in the future.
First, in its current version, metaQuantome is only able to
work with peptides that can be annotated with functional and
taxonomic information and automatically discards peptides of
unknown function or organismal source. Peptides and pro-
teins of unknown function and taxonomy are often identified in
metaproteomics studies (14). Because the interrogation of
peptides and proteins of unknown function and/or taxonomy
will be an important part of future metaproteomics studies, we
look forward to incorporating the ability to analyze these
peptides and proteins via metaQuantome. Second, meta-
Quantome currently provides static visualizations, which are
ideal for publication but less ideal for data exploration. In the
future, we anticipate developing an interactive visualization
application to allow for easier data exploration, as was re-
cently done for another Galaxy-based tool for proteogenomic
data analysis (48). Thirdly, we also realize that the outputs
generated from metaQuantome are largely dependent on the
quality of input datasets. However, as a flexible component of
a modular workflow, metaQuantome can always be used with
the most cutting-edge quantitation, normalization, functional,
and taxonomic assignment tools.

We also see an opportunity to integrate metaQuantome into
existing metaproteomics workflows, including those that have
been developed within the Galaxy platform (49). Implementa-
tion in Galaxy also provides a user interface for the software,
in addition to potential for integration with other Galaxy-based
tools and workflows. We have designed metaQuantome to
take inputs in a standard tabular format, such that it is agnos-
tic to the upstream software used for generating peptide
sequence matches from MS/MS data, assigning taxa/func-
tion, and quantifying peptides based on label-free methods
(MS1-based intensity or spectral counting methods). As such,
we envision metaQuantome to fit into a variety of metapro-
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teomic workflows, Galaxy-based or otherwise. It also offers a
chance for comparison to, or potentially integration with,
other multi-omic workflows for microbiome characterization,
such as existing quantitative metatranscriptomics workflows
(50). metaQuantome should offer new possibilities and em-
power users to perform much deeper and advanced multi-
omic studies.

In the interest of accessibility, we have made metaQuantome
available on GitHub (https://github.com/galaxyproteomics/
metaquantome), Bioconda, and on Galaxy, and metaQuantome
is supported on macOS and Linux environments. All software is
freely available and published following the Apache license. An
introduction to using metaQuantome on Galaxy, and details on
how to install and analyze data via metaQuantome on the com-
mand line is provided at https://galaxyproteomics.github.io/
metaquantome_mcp_analysis/, as is the full set of analysis
scripts for all three datasets discussed here.

In conclusion, we look forward to the use of metaQuantome
in a variety of metaproteomics studies. We have developed
the software with an eye toward flexibility and integration with
other software tools, and we anticipate further collaborations
with others to advance the cause of metaproteomic software
development aimed at enabling robust, reproducible, and
transparent science. The novel features offered by meta-
Quantome, combined with usability by bench scientists,
should provide a powerful tool to advance our understanding
of the role of microbiomes in diverse contexts, from studies
related to human health, including clinical applications, to
those of environmental and industrial importance.
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