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Abstract

The coordination of pituitary development is complicated and requires input from multiple cellular
processes. Recent research has provided insight into key molecular determinants that govern cell
fate specification in the pituitary. Moreover, increasing research aimed to identify, characterize, and
functionally describe the presumptive pituitary stem cell population has allowed for a better under-
standing of the processes that govern endocrine cell differentiation in the developing pituitary. The
culmination of this research has led to the ability of investigators to recapitulate some of embry-
onic pituitary development in vitro, the first steps to developing novel regenerative therapies for
pituitary diseases. In this current review, we cover the major players in pituitary stem/progenitor
cell function and maintenance, and the key molecular determinants of endocrine cell specifica-
tion. In addition, we discuss the contribution of peripheral hormonal regulation of pituitary gland
development, an understudied area of research.

Summary Sentence

Key transcription factors, extracellular molecular networks, and hormones work in concert to co-
ordinate lineage specification and differentiation in the developing pituitary.
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Introduction

The pituitary is an endocrine gland that dynamically regulates pe-
ripheral tissues to coordinate fundamental physiological functions
such as growth, metabolism, sexual maturity and reproduction,
pigmentation, the body’s response to stress. The pituitary regulates
these homeostatic processes by interpreting hypothalamic signals
and, in response, releases hormones from specialized cells in the
anterior pituitary. These cell types include somatotropes that
produce growth hormone (GH), thyrotropes that produce thyroid
stimulating hormone (TSH), lactotropes that produce prolactin
(PRL), gonadotropes produce luteinizing hormone (LH) and

follicle-stimulating hormone (FSH), melanotropes that produce
melanocyte-stimulating hormone (αMSH), and corticotropes that
produce adrenocorticotropic hormone (ACTH).

The use of genetic mouse models has provided novel insight to the
molecular mechanisms that govern pituitary development and main-
tenance. These models have identified key transcription factors and
signaling pathways that are necessary for normal pituitary develop-
ment in both mouse and humans. More recently, the identification
of a presumptive stem cell/progenitor population in the pituitary
gland has provided insight into processes that underlie endocrine
cell specification and organ homeostasis. These cells, identified by
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Figure 1. Coordination of pituitary progenitor differentiation into the endocrine cell types requires both intrinsic and extrinsic factors. During pituitary gland
development, the hormone producing cell types are derived from a common progenitor cell. The balance of progenitor cell maintenance and differentiation
is necessary for proper gland development. Maintenance of the progenitor cell compartment is dependent on transcription factors and niche components.
Endocrine cell differentiation and cell number is coordinated by both transcription factors and peripheral hormones.

their expression of hallmark stemness markers, contribute to embry-
onic and postnatal development of the gland, as well as generation
of endocrine cell types in response to physiological demands such as
puberty, pregnancy, and injury. The current model of pituitary cell
differentiation involves multipotent stem/progenitor cells giving rise
to a progenitor population that functions as rapidly dividing transit-
amplify cells. These cells then give rise to committed precursor cells
that, under the influence of lineage-specific differentiation cues, will
further mature into the hormone producing cells. The progression
from stem/progenitor cell to a fully functional endocrine cell is de-
pendent on a multifactorial process that integrates several factors
including morphogenic factors, cell-to-cell signaling, key transcrip-
tion factors, and hormonal influences (Figure 1).

The importance of pituitary stem cell research is to potentially
develop cell-based treatments for pituitary diseases that result in
the absence or decreased levels of pituitary hormones such as com-
bined pituitary hormone deficiency (CPHD), traumatic brain in-
jury, or after surgical or radiation treatment of pituitary tumors.
The goal is to treat patients with stem cells that can regenerate
the endocrine cells types and restore normal pituitary functions.
Recent studies have provided evidence that this type of advanced
treatment is possible; however, more knowledge about pituitary
development is necessary to improve these types of medical tech-
nologies. In this review, we aim to discuss the major determi-
nants of cell lineage specification in the developing pituitary. We
will review the well-known as well as the most novel factors that
are important for the function and maintenance of the pituitary
stem/progenitor cells, intrinsic factors that are necessary for lineage

differentiation, and the extrinsic factors that contribute to pituitary
expansion.

Identification, regulation, and function of the

stem/progenitor cells population

Several groups have provided convincing evidence that stem/
progenitor cells are present in the pituitary and are required for
proper development and maintenance of the gland. Initial studies
identifying this population of cells took advantage of inherent prop-
erties of stem cells including sphere-forming capabilities and side
population isolation via verapamil sensitive dye efflux assays [1, 2].
These early studies identified a small number of cells that expressed
a cohort of genes that are characteristic of stem cell function and
maintenance in other organs [1, 2]. Subsequent research demon-
strated that these populations of cells are capable of differentiating
into all of the endocrine cell types during neonatal development of
the pituitary and contribute to gland regeneration in the adult [3, 4]
(Table 1).

TFs that identify the stem cell population

SOX2
One of the earliest markers of the stem/progenitor population in
the developing pituitary is sex determining region Y-box 2 (SOX2),
a high mobility group box transcription factor, known to regulate
stem cell plasticity during embryonic development [5, 6]. In humans
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Table 1. Transcription factors and niche components identified in the pituitary progenitor compartment.

Marker Gene Name Reference

Transcription factors

Sox2 SRY-box containing gene 2 [3, 4, 9]
Sox9 SRY-box containing gene 9 [1, 2, 4, 9, 96]
Prop1 Prophet of Pit1, paired-like homeodomain transcription factor [2, 12–16]
Grhl2 Grainyhead like transcription factor 2 [26]
Oct4 (Pou5f1) Octamer-binding protein 4 [1, 2, 97]
Prrx1 Paired related homeobox protein 1 [98, 99]
Prrx2 Paired related homeobox protein 2 [98, 99]
Ctnnb1 (β- Catenin) Cadherin-associated protein beta [100, 101]

Notch signaling components

Hes1 Hairy and enhancer of split 1 [22, 23, 28, 102]
Hey1 Hairy/enhancer-of-split related with YRPW motif 1 [28, 97]
Dll1 Delta like canonical Notch ligand 1 [15, 22, 23, 28]
Jag1 Jagged 1 [97, 102]
Notch1 Notch 1 [1, 97, 102]
Notch2 Notch 2 [15, 22, 23, 28, 97, 102]
Notch3 Notch 3 [23, 97, 102]

Extracellular receptors/cell surface antigens

Ly6a (Sca1) Stem cell antigen 1 [1, 97, 102]
SSEA-4 Stage-specific embryonic antigen-4 [2]
Cxadr Coxsackievirus and adenovirus receptor [2, 103]
Cxcr4 C-X-C motif chemokine receptor 4 [97, 103, 104]
Lgr5 Leucine rich repeat containing G protein-coupled receptor 5 [97]
CD44 CD44 antigen [97]
Gfra2 GDNF family receptor alpha 2 [2]

Cellular adhesion molecules

Cdh1 (E-cadherin) Calcium-dependent adhesion protein [2, 9, 26]
Lama5 (Laminin 5α) Laminin subunit alpha 5 [39]
Itgb1 (Integrin 1β) Integrin subunit beta 1 [104]

Other

S100b S-100 protein subunit beta [1, 2, 9, 16, 20, 103]
Nestin Nestin [1, 97]

and mice, loss of SOX2 in the pituitary results in varying degrees of
hypopituitarism, demonstrating its essential role in normal pituitary
development [6–8]. SOX2 is ubiquitously expressed in proliferating
epithelial progenitors throughout Rathke’s pouch (RP) as early as
embryonic day 11.5 (e11.5) [9]. In postnatal development and in
the adult, SOX2 expression decreases and becomes restricted to the
marginal zone cells that surround the lumen. Interestingly, during
early-postnatal maturation, clusters of SOX2-positive cells can also
be found in the anterior lobe parenchyma [10]. This population of
stem/progenitor is regionally distinct but remains in a homotypic net-
work with the niche located in the marginal zone [11]. Studies have
shown that all of the hormone-producing cell types are derived from
a SOX2-expressing precursor cell, providing convincing evidence
that these cells are in fact stem/progenitors in the pituitary [3, 4, 9].
SOX2-positive cells also express additional progenitor transcription
factors including sex determining region Y-box 9 (SOX9), a marker
of multipotent progenitors in other tissues [1, 2, 4, 9]. During early
embryonic development of the gland, the progenitor population
weakly expresses SOX9 but during postnatal development and in
the adult the majority of SOX2 cells are also positive for SOX9 [9].

PROP1
The molecular markers that define the stem/progenitor cell popu-
lation do not appear to be constant throughout maturation of the

pituitary, suggesting a sequential development of the progenitor
population and potentially a heterogeneous population of these
cells. This theory is further supported by the temporal and regionally
specific expression of paired like homeodomain factor 1 (PROP1), a
pituitary specific transcription factor that has also been identified as
a marker of the stem/progenitor cell population. PROP1 is weakly
detected in the progenitor cell niche of RP at e11.5, a time in which
SOX2 is highly expressed. However, by e13.5 the majority of luminal
progenitors in RP are positive for both PROP1 and SOX2 [12–14].
Beginning in the late embryonic and early postnatal development,
PROP1-positive cells are excluded from the intermediate lobe and
become restricted to marginal zone and parenchyma of anterior lobe.
In the adult, PROP1 is maintained in the marginal zone albeit at a
significantly lower level [2, 13–16]. PROP1 mutations are the most
common identified cause of hypopituitarism in humans [17, 18].
This phenotype is recapitulated Ames dwarf mice (Prop1df/df) that
harbor a loss-of-function mutation in PROP1. Characterization of
the progenitor cell population of these mice has clearly defined a role
for PROP1 in maintenance and function of the stem/progenitor cell
population in the pituitary. Prop1df/df mice display an inability of
progenitor cells to migrate away from the marginal zone indicative
of impaired epithelial-to-mesenchymal transition [14]. This is
coincident with decreased expression of proliferation markers and
decreased expression of NOTCH2, an important regulator of stem
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cell maintenance in the developing pituitary. Recently, lineage
tracing studies have demonstrated that PROP1-expressing cells are
able to differentiate into all of the anterior lobe cell types [19]. These
data, in combination with previous studies that observed PROP1
in the adult pituitary stem cell niche, solidify PROP1 as a bona fide
marker and regulator of the stem/progenitor population.

S100β

A subset of anterior lobe cells that express S100 protein, β polypep-
tide, neural (S100β) have been identified as folliculo-stellate cells.
These cells are nongranular and display long cytoplasmic processes
that aid in maintaining cellular networks. S100β-positive cells are
not present during embryonic development and a subset of these
cells are thought to function as a postnatal specific stem/progenitor
cell population. It has been shown that a subpopulation of folliculo-
stellate have colony-forming capacity and the ability to differenti-
ate into endocrine cell types [20, 21]. In addition, multiple studies
have demonstrated that S100β is detected in cells that express other
stem cell makers including SOX2 and PROP1, although not exclu-
sively. Interestingly, it appears that there is a progressive increase in
SOX2/S100β-positive cells as the pituitary develops, with approx-
imately 85% of SOX2 cells co-expressing S100β in the adult rat
[2, 9, 16]. The fact that these cells are morphologically, temporally,
and regionally distinct from other stem/progenitor cell populations
in the pituitary may suggest that they constitute a specialized pro-
genitor cell niche.

Stem cell niche factors

The maintenance of the stem/progenitor cell population is not only
dependent on the expression of transcription factors that regulate
cellular plasticity but also on the components of their specialized mi-
croenvironments. Factors that compose the stem cell niche are tissue
specific and often include structural proteins that make up the extra-
cellular matrix (ECM), cell surface receptors that function in cell-to-
cell communication, soluble factors, supportive cells, and cell surface
proteins. In the pituitary, relatively little is known about the niche
components that contribute to stem/progenitor cell maintenance and
function. However, a few factors that contribute to the structural in-
tegrity and cell–cell interactions in the pituitary stem/progenitor cell
niche have been investigated.

Notch signaling

Notch signaling is a cell-to-cell contact-dependent pathway that reg-
ulates stem cell maintenance and cell fate choice in many organs
including the developing pituitary. Activation of the pathway re-
quires a cell expressing a Notch ligand to activate a Notch receptor
on an adjacent cell. The interaction of the receptor and the ligand
results in two successive proteolytic cleavages, the first by a disin-
tegrin and metallopeptidase domain 10 (ADAM10) which releases
the Notch extracellular domain of the receptor. Subsequently, the
second cleavage by gamma secretase releases the Notch intracellu-
lar domain (NICD), which translocates to the nucleus and regulates
transcription of target genes via binding of the co-factor protein
recombination signal binding protein for immunoglobulin kappa J
region (RBPJ). Core components of the Notch signaling pathway
define the stem/progenitor cell compartment of the developing pi-
tuitary. The receptors Notch2 and Notch3, the ligands Jagged 1
(Jag1) and delta like canonical Notch ligand 1 (Dll1), as well as
the canonical downstream target genes hes family basic helix-loop-

helix factor 1 (Hes1) and hairy/enhancer-of-split related with YRPW
motif 1 (Hey1) are detected in RP in proliferating progenitors dur-
ing early pituitary development [22–24]. During postnatal devel-
opment and in the adult, expression of these genes is downregu-
lated but maintained in the presumptive stem cell compartment,
following an expression pattern similar to that of other stem cell
makers.

Genetic mouse models have provided useful insight into role of
Notch signaling in the developing pituitary. Conditional loss of ei-
ther the essential Notch cofactor Rbpj or the notch effector gene
Hes1 during embryonic pituitary development results in a hypoplas-
tic pituitary, decreased proliferation of pituitary progenitors, and
premature cell cycle exit [23, 25]. A similar progenitor phenotype
was observed in mice with a conditional loss of the Notch2 recep-
tor (Notch2 cKO) specifically during postnatal pituitary develop-
ment. These mice display decreased progenitor proliferation, and a
decrease in expression of the well-known progenitor cell markers
SOX2 and SOX9 as well as the novel pituitary progenitor marker
grainyhead like 2 (GRHL2) [26]. Additionally, pituitary stem cells
in culture rely on Notch signaling because loss of Rbpj or treatment
with DAPT, a gamma secretase inhibitor, results in the inability of
progenitors to expand and form pituispheres [15]. These findings
suggest that Notch may directly regulate the expression transcrip-
tion factors necessary for stem cell plasticity in the pituitary, as all
of these have been shown to be directly regulated by Notch in other
systems [27]. Furthermore, both mice with a loss of Notch2 or Rbpj
have decreased expression of Prop1, which was also shown to be a
direct Notch target in the pituitary [23, 28]. PROP1 is also thought
to be a regulator of Notch2 expression suggesting a reciprocal rela-
tionship between these two factors [14, 22, 29, 30]. In agreement,
overexpression of Notch in the pituitary inhibits differentiation of
the hormone producing cell types and results in ectopic expression
of SOX2 [31].

Active Notch signaling may also regulate the expression of cell
adhesion molecules that are crucial for the maintenance of the
stem/progenitor cell niche in the pituitary. Gene expression stud-
ies have shown that the pituitary progenitor population is enriched
for both Notch signaling components and cadherin 1 (Cdh1; also
known as Ecad), a cellular adhesion molecule, known to be an im-
portant regulator of stem-cell niche adhesion [2, 9, 32]. Decreased
expression of E-cadherin was observed in Notch2 cKO pituitaries,
specifically in the marginal zone of the intermediate lobe. Interest-
ingly, an almost complete loss of SOX2-positive cells was observed
in this region, indicating a severe disruption in the intermediate lobe
progenitor niche [26]. Additional in vitro studies have established
a link between Notch signaling and Ecad expression. Inhibition of
cell-to-cell contact via downregulation of Ecad in pituitary mono-
layer cell culture results in decreased expression of the canonical
Notch target, HES1 [33]. These findings may indicate a reciprocal
relationship between pituitary niche adhesion molecules and Notch
signaling activity.

Taken together, these studies demonstrate that Notch signaling
is necessary for pituitary stem/progenitor maintenance and expan-
sion. In particular, it appears that Notch signaling not only regulates
the expression of transcription factors necessary for stem cell self-
renewal but also adhesion molecules that modulate the stem cell
microenvironment.

CXADR and ECM protein expression

Additional components that contribute to the stem cell niche have
been relatively unexplored, but a series of studies have highlighted
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novel factors that may be important in the developing pituitary.
Expression of Coxsackievirus and adenovirus receptor (CXADR),
a transmembrane protein that associates with tight junction
complexes, was recently identified in the progenitor cell compart-
ment throughout pituitary development [34]. CXADR expression
has been observed in neuroepithelial cells of the central ner-
vous system and it thought to facilitate maturation of tight
junctions during development [35]. However, the function of
CXADR in the developing pituitary stem/progenitor cells remains
unknown.

Extracellular matrix proteins are important for the proper de-
velopment, morphology, and tumorigeneses in the pituitary [36].
Little is known about the specific ECMs that contribute to the
stem/progenitor cell niche in the pituitary, but a few studies have
demonstrated that ECMs may contribute to the function and main-
tenance of these cells. In vitro studies show S100β-positive cells
interact with various ECM proteins including laminins, collagens,
and integrins, and these interactions regulate proliferation and mor-
phological characteristics of these cells [37, 38]. In addition, the on-
togeny of laminin chain expression was examined during neonatal
pituitary development. Interestingly, Laminin 5α, which is present
in pluripotent embryonic stem cells, was detected in RP as well
as in the marginal zone during postnatal pituitary development
[39]. These data suggest that ECM components are important
regulators of the stem/progenitor compartment in the developing
pituitary.

Transcription factors that drive differentiation and

lineage specification in the developing pituitary

As pituitary development progresses, stem/progenitor cells must exit
the cell cycle and differentiate into one of the hormone producing cell
types. The process of adopting a specific cell fate is facilitated by the
expression of transcription factors that promote lineage specifica-
tion. The use of genetically engineered mouse models and naturally
occurring spontaneous mutations in both mice and humans have led
to the discovery of several genes that are crucial for endocrine cell
specification and function.

Corticotropes and melanotropes

The terminal differentiation of the two proopiomelanocortin
(POMC) expressing cell types, melanotropes which cleave POMC
into melanocyte-stimulating hormone (αMSH) and corticotropes
which cleave POMC into adrenocorticotrophin hormone (ACTH), is
driven by the expression of T-box 19 (TBX19; also known as TPIT).
In humans, inactivating mutations in TPIT are associated with iso-
lated adrenocorticotropic hormone deficiency (IAD), eluding the im-
portance of TPIT in the proper differentiation of the POMC lineage
in the pituitary. TPIT expression is detected in the caudoventral re-
gion of RP as early as e12.5 before the onset of POMC expression
[40, 41]. Studies have demonstrated that TPIT regulates POMC tran-
scription in corticotropes through synergistic interactions with other
transcription factors including Paired-like homeodomain transcrip-
tion factor 1 (PITX1), neurogenic differentation 1 (NeuroD1), and
est variant 1 (ETV1) [42–44]. Tpit null mice display a decrease in
the number of POMC-expressing corticotropes but do express other
corticotrope-specific genes indicating a defect in the later stages of
differentiation. In the absence of Tpit, the intermediate lobe is hy-
poplastic and melanotropes adopt an alternate cell fate indicated

by the expression of glycoprotein hormones, α subunit (Cga; also
known as αGSU) and nuclear receptor subfamily 5, group A, mem-
ber 1 (NR5A1; also known as steroidogenic factor 1 (SF1)), markers
of thyrotropes and gonadotropes [41]. Tpit overexpression in the
αGSU-expressing cells initiates corticotrope differentiation in these
cells and as a result expression of LHβ, FSHβ, and SF1 are de-
creased [40, 41]. These data demonstrate a role for TPIT not only
in the promotion of corticotrope differentiation but also as an active
suppressor of other lineage-specific makers.

Aside from the role of Notch signaling as regulator of
stem/progenitor cell maintenance, it functions as a binary cell fate
determinant in the developing pituitary. Specifically, it appears that
Notch signaling regulates the balance between the TPIT and PIT1
lineages. Models of reduced Notch signaling in the pituitary show
precocious differentiation of corticotrope cells [23, 28]. In addition,
constitutive activation of Notch signaling in POMC-expressing cells
prevents differentiation of melanotropes and corticotropes. This in-
ability to differentiate is marked by increased expression of SOX2
in the intermediate lobe indicating these cells are confined to a pro-
genitor like state. These studies demonstrate that Notch signaling
is necessary to suppress aberrant corticotrope expansion and down-
regulation of this pathway is necessary for melanotrope and corti-
cotrope differentiation.

Although TPIT is a common factor necessary for terminal differ-
entiation in both corticotropes and melanotropes, additional lineage-
specific factors such as NeuroD1 and paired box 7 (PAX7) have been
shown to regulate development and maturation of these cell types.
NeuroD1 is dynamically expressed in pituitary corticotropes and is
not only a regulator of Pomc transcription but also is implicated
in the differentiation of the corticotrope lineage. Loss of Neurod1
results in a minor delay in corticotrope differentiation that is recov-
ered by e16.5, indicating that it may contribute to early differenti-
ation of this lineage [42]. PAX7, a pioneering transcription factor,
is an important regulator of melanotrope identity and melanotrope-
specific POMC transcription. PAX7 is exclusively detected in the
intermediate lobe cells that co-express TPIT beginning at e15.5 [45].
In Pax7 knockout mice pituitaries, melanotropes appear to adopt
a corticotrope cell fate indicated by the downregulation of genes
enriched in melanotropes, including proprotein convertase subtil-
isin/kexin type 2 (Pcsk2; also known as Pc2) and dopamine receptor
D2 (Drd2), and a subsequent upregulation of genes specific to corti-
cotropes including nuclear receptor subfamily 3, group C, member 1
(Nr3c1; also known as glucocorticoid receptor), Neurod1, and cor-
ticotropin releasing hormone receptor 1 (Crhr1). In addition, these
studies demonstrate that PAX7 actually is not the main driver of
melanotrope differentiation, rather is it necessary to allow acces-
sibility of melanotrope-specific genes to other transcription factors
that regulate differentiation such as TPIT [45, 46].

It is also important to note that cellular localization and cell net-
work formation are important for the function and development of
the POMC lineage. Loss of the cellular adhesion molecule Cadherin
2 (Cdh2; also known as Ncad) in POMC-expressing cells results
in disrupted intermediate lobe boundaries, mis-localization of cor-
ticotropes, and an overall decrease in Pomc levels [47]. Additional
studies have demonstrated the endocytic adaptor protein NUMB,
known for its role in degradation of the Notch receptors and cell
adhesion, is also necessary for intermediate lobe organization and
progenitor cell localization [48]. Taken together, these studies iden-
tify additional regulatory proteins that contribute to the proper de-
velopment of the POMC lineage.
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PIT1 lineage: somatotropes, lactotropes, and

thyrotropes

POU domain, class 1, transcription factor 1 (PIT1), is a major de-
terminant of terminal differentiation of three hormone producing
cell types: somatotropes, lactotropes, and thyrotropes. Mutations
in PIT1 in both humans and mice results in CPHD, establishing
an important role of PIT1 in pituitary development [49]. Genetic
mouse models of PIT1 deficiency, including the Snell’s dwarf and
Jackson dwarf, exhibit pituitary hypoplasia coincident with a de-
crease in the number somatotropes, lactotropes, and thyrotropes
[50]. These phenotypic changes are observed only during postnatal
pituitary development suggesting that PIT1 is not required for the
initial differentiation of these linages but rather it is necessary for
postnatal expansion. PIT1 is first detected at e13.5 and increases in
expression into adulthood as endocrine cells undergo major waves
of expansion [51]. In terminally differentiated cells, PIT1 transcrip-
tionally regulates the expression of Gh, Tshb, and Prl as well as
the hypothalamic signaling receptor, growth hormone releasing hor-
mone receptor (Ghrhr) [52, 53]. The Notch signaling pathway and
PROP1 are currently thought to be the primary regulators of Pit1
expression. Ames dwarf mice and mouse models of reduced Notch
signaling exhibit a similar decrease in the number of somatotropes,
lactotropes, and thyrotropes in the developing pituitary [23, 28].
PROP1 is a direct transcriptional activator of Pit1 expression while
Notch is thought to exert its effects on Pit1 indirectly through regu-
lation of PROP1 expression [54]. Although it has been shown that
PIT1 is necessary for terminal differentiation of somatotropes, lac-
totropes, and thyrotropes, the molecular mechanisms that govern
specification of these different cells remain elusive.

Somatotropes

The bHLH factor neurogenic differentation factor 4 (NeuroD4), a
downstream target of PIT1 necessary for somatotrope differentia-
tion, is expressed by e13.5 in the mouse. Somatotropes are severely
decreased in Neurod4 null mice embryonically. Although soma-
totrope differentiation mildly recovers during postnatal develop-
ment, these mice fail to express GHRHR and display dwarfism [23].
The postnatal pituitary hypoplasia due to loss of somatotrope ex-
pansion in Neurod4 null mice is likely due in part to loss of hypotha-
lamic input in this cell type. This is supported by a similar hypoplasia
phenotype observed in little mice (Ghrhrlit/lit) which harbor a point
mutation in GHRHR [55]. More recently, it was demonstrated that
forkehead box O1 (FOXO1), is also important for embryonic soma-
totrope differentiation. Conditional loss of Foxo1 in the developing
pituitary results in a decrease of Gh and Ghrhr mRNA levels, al-
though adult animals appear unaffected. In addition, FOXO1 may
be an upstream regulator of Neurod4 as its expression is reduced
embryonically in these mice [56].

Thyrotropes

Two populations of thyrotrope cells are present during pituitary
organogenesis: the first to appear is a PIT1-independent lineage lo-
cated in the rostral tip specifically during embryonic development
and a second PIT1-dependent lineage. Little is known about the
regulation and function of rostral tip thyrotropes; however, fac-
tors have been identified that regulate the PIT1-dependent lineage.
During early gland specification events, a set of common genes are
expressed that are necessary for both thyrotrope and gonadotrope

specification. These include two transcription factors, forkhead box
L2 (FOXL2) and GATA binding protein 2 (GATA2), as well as Cga,
the common α-glycoprotein subunit of TSH and the gonadotropins
LH and FSH. FOXL2 regulates expression of αGSU and is the ear-
liest maker of thyrotrope and gonadotrope specification [57]. Its
expression is observed ventrally in RP as early as e10.5 before the
onset of hormone expression in these lineages at e12 [58]. Loss-
of-function studies have identified GATA2 as a regulator of differ-
entiation of both thyrotropes and gonadotropes. Expression of a
dominant negative form of GATA2 or a pituitary-specific knockout
of Gata2 inhibits terminal differentiation of thyrotropes indicated
by reduced express if Tshb [59–61]. In addition, Pit1 is increased
in these pituitaries suggesting that PIT1 alone is not sufficient for
the proper expression of TSHβ. In support of this observation, these
studies also demonstrated that GATA2 and PIT1 act synergistically
to transcriptionally regulate Tshb expression.

Lactotropes

Terminally differentiated lactotropes marked by the expression of
PRL are detected by e15.5 in mice [62, 63]. Although lactotropes
are detected before birth, lactotrope cell number remains low during
embryonic pituitary development, with the majority of lactotrope
expansion occurring during postnatal development. Interestingly,
studies using targeted ablation of GH-producing cells demonstrated
a significant decrease in lactotrope cells as well, indicating that ma-
ture lactotropes may be derived from a precursor cell that expressed
GH referred to as somatolactotropes [64, 65]. However, these stud-
ies are somewhat controversial as lineage tracing studies suggest that
the majority of lactotropes are derived from pituitary progenitor cells
[66, 67]. Relatively little is known about the factors driving further
lactotrope specification. More recently, zinc finger and BTB domain
containing 20 (ZBTB20), a zinc finger containing transcription fac-
tor, was shown to be important for lactotrope specification. ZBTB20
null mice exhibit postnatal pituitary hypoplasia due to an absence
of terminally differentiated lactotropes and a decreased number of
somatotropes. These studies also demonstrate ZBTB20 as a tran-
scriptional regulator of Prl expression [68]. In addition, it has been
shown that lactotrope terminal differentiation and proliferation are
regulated by hormonal signals such as estrogens. The decrease in PRL
expression and lactotrope cell number observed in estrogen receptor
alpha (Esr1; also known as ERα) disrupted mice (Esr1− /−) suggests
that estrogenic signaling is necessary for maturation of lactotrope
cells and may provide a mechanism to devise terminally differenti-
ated lactotropes from somatolactotrope precursor cells [69, 70]. It
has also been demonstrated that shortly after pregnancy there are an
increased number of proliferating lactotropes and increased levels of
circulating PRL, thought to be triggered by estrogen. However, it is
unclear if the primary mechanism of increased PRL in response to
estrogen in this capacity is due to increased lactotrope number or
hypertrophy [71].

Gonadotropes

As mentioned previously, transcription factors GATA2 and FOXL2
are early markers of gonadotrope cells. FOXL2 interacts with Smad
proteins to directly regulate transcription of Fshb in gonadotropes
[72–74]. The necessity of FOXL2 in FSH expression is exemplified
by FSHβ deficiency and subsequent reduced fertility in mice with a
conditional deletion of Foxl2 in gonadotropes [57, 75]. GATA2 is
not necessary for differentiation of this lineage but is important for
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function as reduced GATA2 expression is also associated with
reduced FSH levels [60]. GATA2 is also a positive regulator of
gonadotrope-specific genes including the orphan nuclear receptor
NR5A1 (also known as SF1) [59]. NR5A1 expression is detected
starting at e13.5, and is one of the first gonadotrope-specific
makers before the onset of LHβ and FSHβ [76]. The loss of Nr5a1
globally or in the pituitary specifically results in decreased basal
levels of gonadotropins; however, hormone expression can be
induced in response to the hypothalamic stimulus gonadotropin
releasing hormone (GnRH) [77]. It has also been demonstrated
that GnRH-mediated transcriptional induction of Lhb requires
synergism between SF1 and the transcription factors early growth
response 1 (EGR1) and PITX1 both of which are known regulators
of gonadotropins [78].

The Notch signaling pathway has been also implicated in go-
nadotrope differentiation. Overexpression of the Notch downstream
target Hes1 and constitutively active Notch in Cga-expressing cells
results in delayed gonadotrope differentiation [24, 79]. Notch2 cKO
mice have increased expression of both Nr5a1 and Lhb but with
no increase in gonadotrope number [28]. In contrast, no apparent
gonadotrope phenotype was observed in mice with conditional loss
of Rbpj, the essential Notch cofactor [23]. These studies indicate
that active Notch signaling is sufficient to suppress gonadotrope
differentiation; however, it does not appear to affect gonadotrope
specification.

Hormonal influence on pituitary differentiation

The pituitary gland is a major hub of endocrine function and as such
it is under feedback regulation from peripheral tissues. The release of
hormones, such as sex steroids, thyroid hormones, glucocorticoids
(GCs), and insulin-like growth factor 1 (IGF-1), from the corre-
sponding peripheral tissues is the primary mechanism of feedback
to the pituitary to ensure homeostatic balance. The endocrine cells
of the pituitary are therefore functionally controlled by peripheral
hormones, but these hormones may also regulate the differentiation
and specification of cells in the pituitary. Here we discuss the most
well-studied examples of peripheral hormones influence on pituitary
development.

In response to activation of hypothalamic-pituitary-adrenal axis
(HPA), pituitary corticotropes release ACTH which acts on the
adrenal gland and subsequently results in the release of GCs that
regulate peripheral tissues and negatively feedback to both the pi-
tuitary and hypothalamus. It is well established that GCs regulate
the response to stress in the adult animal, but evidence suggests GC
signaling also regulates corticotrope differentiation. In adult mice, it
has been demonstrated that corticotrope cell number is increased in
response to adrenalectomy [80]. The increase in cell number and the
ability of dexamethasone to attenuate this response indicate that GCs
are capable of regulating corticotrope differentiation. Furthermore,
mice with a conditional deletion of the GC receptor (Nr3c1PomcCre)
in the pituitary have increased Pomc mRNA levels and an appar-
ent increase in corticotrope number at postnatal day 6 [81]. Taken
together, these studies demonstrate a suppressive role of GCs in
corticotrope differentiation in the adult and postnatal pituitary. In
contrast, GCs have been shown to positively regulate somatotrope
differentiation [82]. Studies in rat and chicken embryos demonstrate
that in vivo exposure to GCs results in an increase in Gh levels and
premature differentiation of somatotropes [83–85]. Coincidentally,
terminal differentiation of somatotropes coincides with the onset of
HPA axis activity during late embryonic development [86]. These

studies indicate that GCs regulate differentiation of the both corti-
cotropes and somatotropes during pituitary development.

Similar to the regulation of corticotrope number by GCs, pe-
ripheral hormones from target organs also regulate somatotrope
differentiation. Secretion of GH from somatotropes stimulates the
production of IGF-1 from the liver and feeds back negatively to
hypothalamic-pituitary axis to suppress GH release. Studies in IGF-
1 knockout mice demonstrate that loss of IGF-1 results in increased
somatotrope number in adult mice, indicating IGF-1 is necessary to
maintain the correct number of somatotropes [87].

As mentioned previously, the most well-known example of hor-
monal regulation on cellular differentiation in the pituitary is the
effects of estrogen on lactotrope differentiation. However, other en-
docrine cells types in the pituitary are regulated by estrogenic sig-
naling. In adults, it is well established that estrogens play a role in
regulating gonadotropin secretion, but studies also indicate a role for
estrogens during gonadotrope cell development. In the chick embryo,
exposure to estradiol promotes an increase in gonadotrope differenti-
ation and proliferation [88]. In support of this observation, adult ro-
dents treated with tamoxifen, an estrogen receptor modulator, have
an increased number of gonadotropes cells [89]. Furthermore, target
organ ablation studies in which mice are gonadectomized show an
increase in the gonadotrope population, most likely due to mobiliza-
tion of the stem/progenitor cell population indicating that peripheral
hormonal signals regulate cell number in the pituitary [80].

The influence of estrogens on pituitary development suggests that
it may also be sensitive to exogenous estrogenic compounds. Specif-
ically, exposure to the endocrine disrupting chemical (EDC) Bisphe-
nol A (BPA) during critical windows of development affects go-
nadotrope differentiation. Female neonatal mice exposed to BPA or
estradiol during gestation have increased gonadotrope cell numbers
[90]. In addition, mice exposed to BPA and estradiol during postna-
tal development show decreased expression of sexually dichotomous
genes in the pituitary, indicating postnatal sensitivity to hormonal
regulation [91]. Several studies have also demonstrated that expo-
sure to BPA during critical windows of development results in HPA
axis dysfunction in adult mice [92–94]. The pituitary contribution to
this dysfunction remains unclear but studies have reported changes
in pituitary Crhr1 and Pomc mRNA levels [95]. Changes in gene
expression and cell number after exposure to EDCs further demon-
strate that the pituitary is sensitive to hormonal regulation during
early developmental periods. While the mechanism/contribution
of hormonal regulation has been relatively unexplored in the
developing pituitary, this mode of regulation is important for gland
development.

Conclusion

Current research has provided a substantial basis for understanding
the molecular mechanisms that dictate pituitary cell fate decisions
and organ homeostasis. However, in order to achieve the goal of us-
ing stem cell-derived treatment for pituitary disease, the contributing
players in the stem/progenitor cell niche and peripheral regulation
of pituitary development will need to be further dissected. Future
research using single cell genomic approaches will be helpful in the
identification of transitional cell types and novel molecular deter-
minants that coordinate differentiation of the endocrine cell types.
These studies will aid the field in identifying the developmental pro-
gression of each of the endocrine cell types thus allowing researchers
recapitulate pituitary development.
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