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Background. Human immunodeficiency virus type 1 (HIV-1) infection alters the human intestinal microbiome; however, 
behavioral factors driving these changes remain poorly defined. Here we examine the effects of substance use and sex behavior on 
the microbiome during HIV-1 infection.

Methods. Archival rectal swab specimens, urine drug test results, and responses to substance use and sex behavior question-
naires were obtained from 37 HIV-positive participants at 2 time points, separated by 6 months, in a cohort examining the effects 
of substance use in men who have sex with men (MSM). Microbiome profiling was performed using 16S ribosomal RNA gene 
sequencing, and associations with behavioral factors were examined using 0-inflated negative binomial regression. Further analysis 
of selected variables of interest was performed using propensity scores to account for multiple confounders.

Results. Using permutational multivariate analysis of variance, we found that receptive anal intercourse, methamphetamine use, 
and marijuana use were among the most important drivers of microbiome variation. Propensity score–adjusted analyses revealed 
that methamphetamine use and marijuana use displayed unique associations; methamphetamine use was associated with an 
increased abundance of Porphyromonas and Granulicatella organisms and a decreased abundance of Ruminococcus, Collinsella, and 
Parabacteroides organisms, whereas marijuana use was associated with an increased abundance of Ruminococcus, Clostridium cluster 
IV, Solobacterium, and Fusobacterium organisms and a decreased abundance of Acidaminococcus, Prevotella, Dialister, Anaerostipes, 
and Dorea organisms.

Conclusions. Drug use and sex behavior are important factors associated with intestinal dysbiosis during chronic HIV-1 infec-
tion among young MSM.
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The human intestinal microbiome comprises trillions of bac-
teria, fungi, and viruses, and appreciation of their functions in 
host biology and disease is increasing [1]. In the gastrointestinal 
tract, the microbiome helps maintain gut immune homeosta-
sis, and perturbations in the microbiome affect mucosal barrier 
integrity and immune function [2, 3]. Numerous factors affect 
microbiome composition, including age, diet, and geography 
[4–6], making studies of the microbiome challenging to control.

Human immunodeficiency virus type 1 (HIV-1) infection 
is associated with alterations in the intestinal microbiome, 
although specific changes observed can differ, based on study 
type, population, and sampling method. Some studies showed 

that HIV-infected individuals have a greater abundance of 
Prevotella organisms and fewer Bacteroides organisms when 
compared to uninfected controls [7, 8]. However, these findings 
have not been replicated in other studies [9–11], suggesting 
that confounding factors may be present. Without considering 
behavioral factors that may be driving microbial composition, 
the nature and scope of HIV-associated dysbiosis is not fully 
defined. Noguera-Julian et al began to address this question by 
examining microbiome composition among HIV-positive and 
HIV-negative men who have sex with men (MSM) and found 
a similar, increased abundance of Prevotella organisms and 
decreased abundance of Bacteroides organisms among MSM 
as compared to participating non-MSM, regardless of HIV-1 
infection [11], suggesting that sex practices may also influence 
microbiome composition.

Substance use frequently coexists with HIV-1 infection, par-
ticularly among young MSM. The effects of substance use on 
the microbiome is not fully understood. Substance use disor-
ders are associated with changes in intestinal microbiome diver-
sity when compared to healthy controls, specifically increasing 
the Prevotella and Ruminococcus abundances while decreas-
ing the Bacteroides abundance, among other genera [12]. One 
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study examining the direct effects of methamphetamine in a rat 
model similarly found increased Ruminococcaceae numbers 
[13]. Other studies have shown associations between chronic 
prescription opioid use and cocaine use and dysbiosis [14, 15], 
but the detailed effects of other substances are not known. Only 
one of these studies examined these effects in the context of 
HIV-1 infection, showing that cocaine-associated dysbiosis was 
exponentiated in HIV-positive participants [15].

To examine the association between selected behavioral fac-
tors and HIV-associated dysbiosis, we characterized the micro-
biome in a cohort of HIV-seropositive MSM and then analyzed 
the relative effects of self-reported sex practices and substance 
use on the microbiome. We hypothesize that behavioral factors 
significantly influence HIV-associated dysbiosis.

METHODS

Study Design and Participants

This is a retrospective study that used archived biospecimens 
and clinical data collected from August 2014 to March 2016 
through a prospective cohort study, the mSTUDY (National 
Institute of Drug Abuse project U01 DA036267). The mSTUDY 
was approved by the UCLA Office of the Human Research 
Protection Program Institutional Review Board, and all subjects 
provided written informed consent at the time of enrollment. 
Participants in the mSTUDY attend study visits approximately 
every 6 months, during which clinical data and laboratories 
were collected, peripheral blood mononuclear cells, plasma, and 
rectal swab specimens were collected and stored until analysis, 
urine drug screening was performed, and computer-assisted 
self-interview questionnaires about sex behavior and substance 
use were completed. Inclusion in the current study was based 
on HIV-seropositive status and availability of data from at least 
2 consecutive study visits. In total, 37 of 151 mSTUDY cohort 
participants at the time of this study met criteria and were 
included.

Specimen Collection and DNA Preparation

Rectal sponge specimens (Merocel, BVI, Waltham, MA) were 
collected via anoscopy under direct visualization and muco-
sal contact for 2 minutes. Sponges were frozen neat at −80°C 
until processing in bulk. The samples were transferred to Lysing 
Matrix E tubes (MP Biomedicals, Burlingame, CA) containing 
RLT lysis buffer (Qiagen, Hilden, Germany) and bead beated 
on a TissueLyser (Qiagen). DNA was extracted using the 
AllPrep DNA/RNA/Protein kit (Qiagen) per the manufacturer’s 
protocol.

16S Ribosomal RNA (rRNA) Sequencing and Data Processing

Microbiome profiling was performed by sequencing the 16S 
rRNA gene, and Golay-barcoded primers 27F and 338R were 
used to amplify the V1V2 region in triplicate reactions as pre-
viously described [16]. PCR products were then pooled and 

sequenced on the Illumina MiSeq platform, using 2 × 250-bp 
output version 2 chemistry.

Sequences were demultiplexed with Golay error correction, 
using QIIME, version 1.9.1 [17]. Divisive amplicon denois-
ing algorithm, version 2, was used for error correction, exact 
sequence inference, read merging, and chimera removal [18]. 
The resultant amplicon sequence variant table comprised 
9 732 757 merged read pairs (mean number per sample, 131 524; 
range, 59 938–557 398). Rarefaction was performed at a depth 
of 59 938 reads for the corresponding analyses (0-inflated neg-
ative binomial/negative binomial regression, α diversity). For 
all other analyses, counts were transformed to relative abun-
dances. Taxonomic assignment was done using RDP training 
set 16 (available at: https://doi.org/10.5281/zenodo.810827). 
All sequence data has been deposited into BioProject with the 
accession number PRJNA422134.

Microbiome Analysis

Statistical analyses of microbiome data were performed using 
the phyloseq (version 1.19.1), vegan (version 2.4-2), and pscl 
(version 1.4.9) R packages [19, 20]. A marginal model for per-
mutational multivariate analysis of variance (PERMANOVA) as 
implemented in the “adonis2” R function with by = “margin” 
was used to identify significant contributors to variation in the 
overall microbiome composition. Factors with a P value of <.15 
were considered for further analysis with propensity scores 
(Supplemental Table 1). To test for associations between clin-
ical covariates and microbial abundances, 0-inflated negative 
binomial regression was used to fit sample counts of each bacte-
rial genus with a clinical covariate (eg, drug use; Supplemental 
Table  2). Genera detected in <20% of the samples at a depth 
of at least 100 reads were excluded prior to analysis. Since the 
distribution among ordinal responses was limited, we grouped 
data into dichotomous categories for all variables, whereby any 
response of “never” was grouped into the “no” category and all 
other responses (ie, “rarely,” “sometimes,” “often,” “most of the 
time,” and “always”) were grouped into the “yes” category. To 
account for repeated measures in our study, we used a fixed-ef-
fects approach by generating a subject-specific dummy variable 
for inclusion as a covariate in the regression models. Log plasma 
HIV RNA copies (continuous) and binned CD4+ T-cell counts 
(ie, 0–200 cells/μL, 200–350 cells/μL, and >350 cells/μL) were 
also included as covariates, to control for possible confound-
ing from variation in HIV disease severity. Missing data (CD4+ 
T-cell counts were missing for 6 participants) were predicted 
using multiple imputation methods [21]. If the 0-inflated neg-
ative binomial model produced an error or failed to converge, 
negative binomial regression was used instead. All P values 
from the 0-inflated negative binomial/negative binomial analy-
ses were adjusted for multiple hypotheses, using the Benjamini-
Hochberg false-discovery rate method.

https://doi.org/10.5281/zenodo.810827
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy349#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy349#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy349#supplementary-data
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Propensity Score Analysis

For further analysis of variables of interest, we used propensity 
scores to control for multiple confounders. Propensity scores 
are used frequently to isolate an exposure from confounding 
variables to create a randomization effect [34]. Based on the 
data from our initial PERMANOVA analysis, we focused our 
further analysis on the effects of methamphetamine use, mar-
ijuana use, and recent receptive anal intercourse. Propensity 
scores were calculated to balance ethnicity, smoking, alcohol 
use, other substance use, log HIV RNA copy number, binned 
CD4+ T-cell count, and any oral sex. A  separate propensity 
score was calculated for methamphetamine use, marijuana 
use, and receptive anal intercourse. The other 2 exposures of 
interest were included in each propensity score model (eg, the 
propensity score for methamphetamine use included mari-
juana and receptive anal intercourse). Propensity scores were 
estimated using both generalized boosted models and logistic 
regression, retaining whichever estimates resulted in better 
balance between exposure groups [22]. Balance was assessed by 
computing a Kolmogorov-Smirnov statistic for each covariate 
in an inverse probability of treatment–weighted sample [23]. If 
the Kolmogorov-Smirnov statistic was >0.2 for an individual 
variable in a weighted sample (indicating suboptimal balance), 
then that variable was included as an additional covariate in 
the analysis of microbial abundance. Propensity score models 
were fit using R, version 3.3.2 (R Core Team), using the twang 
package [24].

Statistical Analyses

For demographic and clinical characteristics, P values for 
changes between visits were computed using the McNemar test 
for binary variables, the Wilcoxon signed-rank test for con-
tinuous variables, mixed ordinal logistic regression with per-
son-level random intercepts, and mixed multinomial logistic 
regression models with random intercepts for N×N (N > 2)   
nominal variables. For the last category of models, the P value 
represents a likelihood ratio test of all coefficients versus an 
intercepts-only model.

RESULTS

Characteristics of Study Participants

Demographic characteristics of the study population are shown 
in Table 1. Of 151 potential participants, only 37 met inclusion 
criteria for this retrospective study that evaluated archived 
biospecimens and clinical data collected from August 2014 to 
March 2016. In general, this is a relatively young cohort (median 
age 36 years). The median time since HIV-1 diagnosis is 4 years, 
and approximately 81% of participants report recent history of 
antiretroviral therapy. The plasma HIV RNA concentration and 
CD4+ T-cell count in specimens collected at each of 2 consec-
utive visits are shown in Table 1, and only median CD4+ T-cell 
counts differed between the 2 time points.

Substance Use and Sex Practices Among Study Participants

Sex practices are shown in Table  2. Nearly all participants 
reported oral sex (92% at visit 1 and 65% at visit 2), and the 
majority included oral semen exposure and/or ingestion (part-
ner ejaculation in mouth and/or swallowing). At visits 1 and 2, 
41% and 46% of participants, respectively, reported recent (ie, 
within the past 7 days) receptive anal intercourse. The frequency 
of receptive anal intercourse was similar between the 2 visits. 
Self-reported substance use over the last 6 months is shown in 
Table 2. While most participants reported some substance use 
at visits 1 and 2 (83% and 65%, respectively), some did not use 
any drugs. The most commonly used substances were metham-
phetamine (65% and 57% during visits 1 and 2, respectively) 
and marijuana (49% and 30%, respectively). Few reported opi-
ate use in this cohort. Urine drug screen results from the time of 
study visit are also shown (Table 2). Again, methamphetamines 
and marijuana remained the most commonly used substances. 
Since urine drug screens have a limited detection window (eg, 
methamphetamines are detected ≥72 hours after use), self-re-
ported data were used for the microbiome analyses because they 
would more broadly capture substance use among participants.

Intestinal Microbiome Composition Is Affected by Substance Use and 

Receptive Anal Intercourse

Since we had clinical, substance use, and sex behavior data 
associated with each visit, we analyzed the intestinal micro-
biota abundance and distribution at each visit (n = 74) while 
controlling for a subject-specific identifier. Unsurprisingly, 
we found that the intestinal microbiome was relatively stable 
within individuals over the 6-month interval between visits 
(Figure  1). Using PERMANOVA with Bray-Curtis distances 
(Supplemental Table 1), we found that, among the most import-
ant factors driving microbial variation were receptive anal inter-
course (R2 = 0.01, P = .13), methamphetamine use (R2 = 0.01, 
P  =  .06), and marijuana use (R2  =  0.01, P  =  .14). Other con-
tributing factors that were not used for further analysis, owing 
to limited samples, were gonorrhea (R2  =  0.01, P  =  .06) and 
chlamydia (R2  =  0.01, P  =  .08). We separately examined the 
influence of each factor on α diversity but found no significant 
differences (data not shown).

Oral Sex and Receptive Anal Intercourse Are Associated With Distinct 

Intestinal Microbiome Bacterial Genera

The relationship between self-reported sex behavior and the rel-
ative abundance of bacterial genera was examined. To account for 
variation in HIV disease severity among participants, HIV RNA 
copy numbers and CD4+ T-cell counts were included as sepa-
rate covariates in all analyses. Oral sex with partner ejaculation 
was associated with increased abundance of Granulicatella and 
Clostridium cluster XIVa organisms and with decreased abun-
dance of Campylobacter, Actinomyces, and Firmicutes organ-
isms, including Finegoldia, Ruminococcus, and Anaerococcus 

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy349#supplementary-data
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Table 1. Demographic and Clinical Characteristics of 37 Study Participants, by Study Visit

Visit 1 Visit 2 P a

Age, y 36 (28–39) …

Ethnicity

 Black, non-Hispanic 17 (46) …

 Black, Hispanic 1 (3) …

 Hispanic, all races 17 (46) …

 White, non-Hispanic 0 (0) …

 Refuse to answer 2 (5) …

Employment status

 Disabled 11 (30) …

 Unemployed 11 (30) …

 Employed full time 5 (13) …

 Employed part time 8 (22) …

 Student 2 (5) …

Experienced homelessness in past 6 mo 12 (32) 7 (19) .06

Body mass indexb 25.8 (22.6–28.5) 25.3 (21.9–29.2) .87

Time since HIV infection diagnosis, y 4 (2–12) …

HIV-1 RNA level, log10 copies/mL 3.41 (1.28–4.56) 2.56 (1.30–4.05) .24

CD4+ T-cell count

Overall, cells/μL 427 (319–568) 532 (302–713) .01

By binc .10

 0–200 cells/μL 8 (22) 4 (11)

 200–350 cells/μL 6 (16) 7 (19)

 >350 cells/μL 23 (62) 26 (70)

Currently receiving ART 30 (81) 30 (81) >.99

ART regimen .99

 NNRTI 10 (27) 9 (24)

 PI 8 (22) 9 (24)

 INSTI 10 (27) 10 (27)

 NNRTI + INSTI 1 (3) 1 (3)

 PI + INSTI 1 (3) 1 (3)

STI prevalence

 Syphilisd 0 2 (5) .16

 N. gonorrhoeae infection

  Rectal 3 (8) 4 (11) .66

  Urinary 0 0

  Pharyngeal 2 (5) 2 (5) >.99

 C. trachomatis infection

  Rectal 5 (14) 2 (5) .08

  Urinary 2 (5) 0 .16

  Pharyngeal 1 (3) 1 (3) >.99

Frequency of alcohol use in past 6 mo <.001

 Never 5 (13) 9 (24)

 Monthly 7 (19) 10 (27)

 2–4 times/mo 13 (35) 9 (24)

 2–3 times/wk 4 (11) 2 (5)

 ≥4 times/wk 7 (19) 5 (14)

 Refuse to answer 1 (3) 2 (5)

Frequency of smoking in past 6 mo <.001

 Never 5 (13) 9 (24)

 Monthly 7 (19) 10 (27)

 2–4 times/mo 13 (35) 9 (24)

 2–3 times/wk 4 (11) 2 (5)

 ≥4 times/wk 7 (19) 5 (14)

 Refuse to answer 1 (3) 2 (5)

Data are median value (interquartile range) or no. (%) of participants.

Abbreviations: ART, antiretroviral therapy; C. trachomatis, Chlamydia trachomatis; HIV-1, human immunodeficiency virus type 1; INSTI, integrase strand transfer inhibitor; N. gonorrhoeae, 
Neisseria gonorrhoeae; NNRTI, nonnucleoside reverse transcriptase inhibitor; PI, protease inhibitor; STI, sexually transmitted infection.
aBinary variables were compared using by the McNemar test; continuous variables, using the Wilcoxon signed rank test; ordinal variables, using mixed ordinal logistic regression; and N×N 
(N > 2) nominal variables, using mixed multinomial logistic regression models.
bCalculated as the weight in kilograms divided by the height in meters squared.
cVisit 1 includes missing data (CD4+ T-cell counts for 6 participants) that were predicted using multiple imputation methods.
dDetected by a rapid plasma reagin screen.
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organisms (Figure  2). Receptive anal intercourse was asso-
ciated with increased Anaerococcus and Peptostreptococcus 
abundances, as well as a decreased abundance of Firmicutes 
organisms, including the family Clostridiaceae (ie, Clostridium 
complex IV, Dorea, Anaerotruncus, Faecalibacterium, and 
Subdoligranulum organisms; Figure  2). Of note, recency and 
frequency of receptive anal intercourse were associated with 
different bacterial genera, suggesting that repeated exposures 
may have a unique influence on the intestinal microbiota. The 
presence of a sexually transmitted infection (gonorrhea and/or 
chlamydia) also displayed unique associations with dysbiosis, 

though this may be limited by the relatively low prevalence of 
sexually transmitted infection (<15%) in the sample population.

Microbiome Alterations Associated With Substance Use Differ by Drug

The intestinal microbiome signatures associated with substance 
use are shown in Figure 3. Based on our PERMANOVA results 
(Supplemental Table  1), we focused additional analyses on 2 
substances identified as important drivers of microbiome vari-
ation: marijuana and methamphetamine. Marijuana was asso-
ciated with overabundant Fusobacterium and Anaerotruncus 
organisms and a decreased abundance of Dorea organisms 

Table 2. Self-Reported Sex Behavior and Substance Use and Findings of Urine Drug Screen, by Study Visit

Characteristic Visit 1 Visit 2 P a

Sex behavior

Recent receptive anal intercourse in past 7 d 15 (41) 17 (46) .80

Receptive anal intercourse events in past 30 d, no., mean ± SD 2.8 ± 5.2 3.4 ± 4.9 .96

Any oral sex in past 90 d 34 (92) 24 (65) .004

Oral sex with partner ejaculation in mouth in past 90 d .17

 Never 9 (27) 9 (38)

 Rarely 12 (35) 9 (38)

 Sometimes 4 (12) 4 (17)

 Often 3 (9) 0

 Most of the time 6 (18) 2 (8)

Oral sex with swallowing partner ejaculate in past 90 d .62

 Never 6 (24) 3 (20)

 Rarely 6 (24) 9 (60)

 Sometimes 2 (8) 0

 Often 4 (16) 0

 Most of the time 5 (20) 0

 Always 2 (8) 3 (20)

Substance useb

 Any use 31 (83) 24 (65) .008

 Drug used

  Methamphetamines 24 (65) 21 (57) .08

  Ecstasy 8 (22) 2 (5) .01

  Cocaine 9 (24) 3 (8) .16

  Opiates 1 (3) 1 (3) >.99

  Party drugs 9 (24) 3 (8) .03

  Marijuana 18 (49) 11 (30) .008

  Prescription drugs 5 (14) 2 (5) .08

  Erectile dysfunction drugs 8 (22) 7 (19) .74

  Poppers 12 (32) 10 (27) .32

  Synthetic drugs (e.g. spice, bath salts) 1 (3) 3 (8) .32

Urine drug screen

 Any positive result 16 (43) 16 (43) >.99

 Drug detected

  Methamphetamines 15 (41) 14 (38) .74

  Opiates 1 (3) 0 .32

  Cocaine 3 (8) 2 (5) .56

  Ecstasy 0 1 (3) .32

  Marijuana 3 (8) 10 (27) .008

  Amphetamines 6 (16) 13 (35) .04

Data are no. (%) of participants unless otherwise stated.
aBinary variables were compared using by the McNemar test; continuous variables, using the Wilcoxon signed rank test; ordinal variables, using mixed ordinal logistic regression; and N×N 
(N > 2) nominal variables, using mixed multinomial logistic regression models.
bIn the past 6 months.

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy349#supplementary-data


Behavioral Factors and Microbiome in HIV Infection • JID 2018:218 (15 November) • 1565

(Figure 3). Methamphetamine use was associated with increased 
Fusobacterium, Granulicatella, and Anaerococcus abundances 
and decreased abundances of Parabacteroides, Collinsella, 
Paraprevotella, and multiple Clostridiales organisms (ie, spe-
cies of Fusicatenibacter, Blautia, Ruminococcus, Clostridium 
complex IV, and Anaerotruncus; Figure 3). These findings are 
analogous to the microbiome changes associated with recep-
tive anal intercourse (Figure  2). Additionally, some genera 
with decreased abundances (ie, Parabacteroides, Blautia, and 
Ruminococcus) are reminiscent of findings associated with 
HIV-1 infection in other studies [8, 25, 26]. Importantly, CD4+ 
T-cell count and plasma HIV RNA concentration were explic-
itly modeled as potential confounding variables in this anal-
ysis, suggesting that methamphetamine use and/or receptive 
anal intercourse may independently exacerbate HIV-associated 
microbial dysbiosis.

Propensity Score Analysis Allows Assessment of Microbiome 

Composition Associated With a Single Behavioral Variable

The prior analyses show an overview of the intestinal microbi-
ome changes after controlling for CD4+ T-cell count and HIV 
RNA copy number but do not take into account the potential 
role of other factors. Based on the data from our initial analyses 
(Figures 2 and 3), we focused our further analysis on separately 
examining the effects of methamphetamine use, marijuana use, 
and recent receptive anal intercourse. Propensity scores were 
calculated to balance ethnicity, smoking, alcohol use, other sub-
stance use, HIV RNA copy number, CD4+ T-cell count, and any 
oral sex. Propensity score estimates achieved adequate balance 
for all 3 variables of interest, with Kolmogorov-Smirnov statis-
tics of <0.2 and no significant differences between any of the 
covariates (Supplemental Figure  1). The microbiome analysis 
was then repeated using the propensity score as a covariate.
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Associations between bacterial genera and either metham-
phetamine use, marijuana use, or recent receptive anal inter-
course are shown in Figure  4. In general, these findings have 

some notable differences as compared to those from the initial 
analysis, likely because propensity score analysis removes the 
effects of confounding covariates. What remains are the most 
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Figure 2. Associations between microbiome composition and sex behaviors. Heat map showing associations between self-reported sex behavior (Table 2) and microbiome 
composition after controlling for participant identifier, CD4+ T-cell counts, and human immunodeficiency virus type 1 RNA copies. Red shading indicates positive associations 
and blue shading indicates negative associations. Intensity of shading refers to the relative strength of the association determined by regression coefficients from 0-inflated 
negative binomial regression analysis. Only genera that were associated with a behavioral variable with an adjusted P value of <.05 are shown. “Oral semen exposure” refers 
to oral sex with partner ejaculation in past 90 days (Table 2). “Oral semen ingestion” refers to oral sex with swallowing of partner ejaculate in past 90 days (Table 2). “Recent 
receptive anal intercourse” refers to receptive anal intercourse in past 7 days (Table 2).
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Figure 3. Associations between microbiome composition and substance use. Heat map showing associations between self-reported substance use and microbiome com-
position after controlling for participant identifier, CD4+ T-cell counts, and HIV-1 RNA copy numbers. Red shading indicates positive associations, and blue shading indicates 
negative associations. Intensity of shading refers to the relative strength of the association determined by regression coefficients from 0-inflated negative binomial regression 
analysis. Only genera that were associated with a substance use variable with an adjusted P value of <.05 are shown.
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likely true attributable associations. Marijuana use remained 
associated with an increased abundance of Fusobacterium 
organisms and a decreased abundance of Dorea organisms 
and was now also associated with increased Ruminococcus, 
Solobacterium, and Clostridium complex IV abundances 
and decreased Prevotella, Acidaminococcus, Anaerostipes, 
and Dialister abundances. Methamphetamine use, con-
versely, remained associated with an increased abundance 
of Granulicatella organisms and a decreased abundance of 
Ruminococcus, Parabacteroides, and Collinsella organisms and 
was now also associated with an increased Porphyromonas 
abundance. Receptive anal intercourse remained associated with 
increased abundances of Anaerococcus and Peptostreptococcus 
organisms and was now also associated with an increased 
Streptococcus abundance and a decreased abundance of 
Paraprevotella, Fusicatenibacter, Blautia, and Clostridiaceae 
organisms (ie, species of Anaerotruncus, Faecalibacterium, and 
Subdoligranulum). Finally, to examine the potential functional 
contribution of these microbiome changes, we used PICRUSt 
for functional inference [27]. Only methamphetamine use dis-
played significant predicted functional content, with increased 
Kyoto Encyclopedia of Genes and Genomes pathways involved 
in the “digestive system” (P = .003; Supplemental Table 3).

DISCUSSION

HIV-associated dysbiosis is an increasingly recognized phe-
nomenon with significant potential clinical implications but 

unclear drivers. Here we examined the influence of behavioral 
factors, including substance use and sex practices, on HIV-
associated dysbiosis using propensity score models to account 
for multiple confounding factors.

The presence of rectal microbiome perturbations associated 
with sex behavior that we identified are in agreement with find-
ings from a larger study [11], although we did not find alter-
ations in richness or diversity in our study. Questions remain to 
explain the potential mechanisms underlying these observations. 
Changes associated with receptive anal intercourse could be 
related to physical trauma, exposure to semen or lubricants, or 
transfer of microbiota from the insertive partner. This study did 
not include data on lubricant use with anal intercourse, a known 
cause of epithelial damage [28–30], but this is certainly a plausible 
contributor to microbiome alterations associated with receptive 
anal intercourse that needs additional investigation. Our data also 
suggest that there may be a difference between recent and frequent 
receptive anal intercourse (Figure 2), which also warrants addi-
tional study. The mechanisms underlying the microbial changes 
associated with oral sex are less clear. Whether this is related to 
other sex practices (such as receptive anal intercourse) or is an 
independent factor needs further study. Using propensity score 
analysis, we identified 3 genera specifically associated with recent 
receptive anal intercourse: Anaerococcus, Peptostreptococcus, and 
Streptococcus (Figure  4). Anaerococcus and Peptostreptococcus 
organisms are fastidious anaerobes that often require additional 
nutrients for growth, including bicarbonate [31]. Seminal plasma 
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Figure 4. Adjusted associations between microbiome and methamphetamine use, marijuana use, and receptive anal intercourse. Heat map showing adjusted associations 
between bacterial genera and methamphetamine use, marijuana use, or receptive anal intercourse following balancing of multiple confounders, using propensity scores. Red 
shading indicates positive associations, and blue shading indicates negative associations. Intensity of shading refers to the relative strength of the association determined 
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P value of <.05 are shown.
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is a highly nutrient rich environment [32], and therefore its pres-
ence via receptive anal intercourse may facilitate abundance of 
such fastidious organisms. These organisms are also known 
components of the penile microbiome associated with HIV 
seroconversion [33]. Anaerococcus organisms have been previ-
ously associated with dysbiosis in untreated HIV infection [10]; 
however, our propensity score–adjusted analysis, which included 
controlling for HIV RNA copy numbers and CD4+ T-cell counts, 
may suggest that these associations could be influenced more by 
sex behavior than HIV-1 infection.

The effects of substance use on the microbiome are largely 
unexplored, and even less is known in the context of HIV-1 
infection. Concordant with findings of a prior study comparing 
microbiomes in persons with collective substance use disorders 
to those in controls [12], we found alterations in Ruminococcus, 
Blautia, Paraprevotella, Parabacteroides, and Fusicatenibacter 
abundances in our initial analysis (Figure  3). We then per-
formed additional analysis, using propensity score models to 
account for multiple confounders, including other drugs con-
currently used, and examined specific drugs of interest. Our 
propensity score analysis had some discordant genera as com-
pared to findings by Xu et al [12], which may be due to the influ-
ence of uncontrolled confounders accounted for in our analysis, 
differences in analysis based on grouped substance use versus 
individual drugs, and the potential influence of HIV-1 status 
not accounted for by CD4+ T-cell and HIV RNA variables.

We found that methamphetamine use was associated with 
increased abundance of Porphyromonas organisms (Figure 4), a 
genus known to have potential inflammatory effects in cardio-
vascular disease and rheumatoid arthritis [34]. This novel asso-
ciation warrants further investigation because Porphyromonas 
gingivalis is well known to affect systemic inflammatory cyto-
kines [35, 36] and therefore may contribute to the mechanism 
underlying increased inflammation in chronic substance use 
and HIV-1. Differences in bacterial associations with meth-
amphetamine use in our initial unadjusted analysis (Figure 3) 
and propensity score adjusted model (Figure 4) underscore the 
importance of this approach. For example, our initial analy-
sis found that methamphetamine use was associated with the 
Anaerococcus abundance, but after propensity score adjustments 
this association was only significantly associated with recent 
receptive anal intercourse, suggesting that the Anaerococcus 
abundance may be more strongly associated with sex behavior 
than with drug use, which was accounted for in the propensity 
score models.

Gastrointestinal functions, including energy metabolism 
and intestinal motility, are regulated in part by the endocan-
nabinoid system, a collection of endogenous bioactive lipid 
molecules and cannabinoid receptor proteins 1 and 2, all of 
which are ubiquitously expressed [37]. The endocannabinoids 
arachidonoyl-glycerol and arachidonyl-ethanolamide help reg-
ulate intestinal permeability and inflammation via cannabinoid 

receptor 1 [38, 39]. For example, bacterial lipopolysaccha-
ride can induce production of arachidonyl-ethanolamide and 
arachidonoyl-glycerol [40, 41], and microbiome alterations 
through dietary modifications in mice affect cannabinoid recep-
tor 1 messenger RNA (mRNA) expression but not cannabinoid 
receptor 2 mRNA expression [39]. Administration of the can-
nabinoid receptor 1–agonist Δ9-tetrahydrocannabinol to mice 
altered ratios of Firmicutes to Bacteroidetes abundances [42]. 
Our data also found similar alterations associated with mari-
juana use, most notably increased Ruminococcus, Clostridium 
cluster IV, and Solobacterium abundances (Figure  4). The 
inflammatory effects of these changes are not known but could 
include increased inflammation through microbial transloca-
tion via arachidonyl-ethanolamide and cannabinoid receptor 
1–agonism, or antiinflammatory effects via arachidonoyl-glyc-
erol production. The role of the endocannabinoid system in 
HIV-related inflammation and gut permeability is entirely 
unexplored, but given the associations between marijuana use 
and the microbiome during HIV-1 infection identified in this 
study, as well as the prevalence of marijuana use among HIV-
infected persons, this is an area of needed study.

With the advancement of the microbiome field comes a 
greater appreciation for the multitude of factors that influ-
ence the microbiome composition. As such, the challenge of 
designing adequately controlled studies to reduce potential 
confounders is increasingly recognized. This study faces simi-
lar challenges and is subject to limitations. Data regarding diet 
are not available for these participants, and thus diet remains a 
potential confounder. Additionally, we were not able to include 
data on lubricant use during anal intercourse, which is a known 
cause of epithelial damage and potential contributor to micro-
biome alterations associated with receptive anal intercourse 
[28–30]. This study is also limited in size, and while it provides 
evidence for the effects of sex behavior and substance use on the 
microbiome in HIV-1 infection, the findings need to be con-
firmed in larger analyses with greater statistical power to ensure 
reproducibility. While small studies such as this are valuable to 
highlight new areas for further investigation, these findings may 
not be generalizable to broader populations. For example, the 
lack of an HIV-negative comparison group limits the ability to 
determine whether these changes in the microbiome are spe-
cific to HIV-infected MSM.

Understanding the role of behavioral factors on HIV-
associated dysbiosis could lead to novel therapeutic strategies 
to modulate the immune consequences of chronic HIV-1. This 
study aimed to increase this understanding by investigating the 
effects of substance use and sex practices on the microbiome 
during HIV-1 infection and, in doing so, evaluated a novel anal-
ysis strategy that used propensity scores to balance multiple 
confounders. These findings highlight the importance of con-
sidering behavioral factors such as substance use in the design 
and analysis of future HIV-1 microbiome studies.
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