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Key Points

•HGAL and Gb2 pro-
teins directly interact
upon BCR stimulation.

•HGAL and Gb2 inter-
action plays a role in
BCR clustering in sig-
nalosomes and regu-
lates BCR-induced
biochemical signaling.

Human germinal center (GC)–associated lymphoma (HGAL) is an adaptor protein expressed

in GC B cells. HGAL regulates cell motility and B-cell receptor (BCR) signaling, processes that

are central for the successful completion of the GC reaction. Herein, we demonstrate

phosphorylation of HGAL by Syk and Lyn kinases at tyrosines Y80, Y86, Y106Y107, Y128, and

Y148. The HGAL YEN motif (amino acids 107-109) is similar to the phosphopeptide motif

pYXN used as a binding site to the growth factor receptor–bound protein 2 (Grb2). We

demonstrate by biochemical andmolecularmethodologies that HGAL directly interacts with

Grb2. Concordantly, microscopy studies demonstrate HGAL-Grb2 colocalization in the

membrane central supramolecular activation clusters (cSMAC) following BCR activation.

Mutation of the HGAL putative binding site to Grb2 abrogates the interaction between these

proteins. Further, this HGAL mutant localizes exclusively in the peripheral SMAC and

decreases the rate and intensity of BCR accumulation in the cSMAC. Furthermore, we

demonstrate that Grb2, HGAL, and Syk interact in the same complex, but Grb2 does not

modulate the effects of HGAL on Syk kinase activity. Overall, the interplay between the

HGAL and Grb2 regulates the magnitude of BCR signaling and synapse formation.

Introduction

The germinal center (GC) reaction is the hallmark of antibody-mediated immune responses to
T-cell–dependent antigens and is necessary for immune defense.1 GCs represent morphologic and
functional structures within secondary lymphoid organs in which B-cell responses to antigens are
amplified and refined in specificity. Multiple orchestrated processes contribute to the successful
completion of the GC reaction. These include propagating differentiation and survival signals via the
B-cell receptor (BCR), regulating B-cell motility to interact with antigen-presenting cells, and the
generation of plasma cells. Aberrations in the GC reaction and its underlying molecular processes
may predispose patients to immune deficiency, autoimmune disorders, and lymphoma. Completely
elucidating the mechanisms that control the GC reaction is of paramount importance. The Meeting on
Lymphoma Biology organized by the American Society of Hematology in August 2014 proposed
a Roadmap for Discovery and Translation in Lymphoma that specifically emphasized the need to “define
all molecules necessary to initiate and sustain the GC response and identify all key protein-protein
interactions and post-translational modifications that regulate BCR signaling.”2
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We have cloned the human GC-associated lymphoma (HGAL, also
known as GC-expressed transcript 2 or GC-associated signaling
and motility) gene, which is specifically expressed in GC B cells
and GC-derived lymphomas.3 High expression of HGAL is an
independent predictor of prolonged survival of diffuse large B-cell
lymphoma (DLBCL) and classical Hodgkin lymphoma patients, as
demonstrated by us and other groups.3-6 We showed that HGAL
is an adaptor protein that regulates both cell motility and BCR
signaling, processes that are central for the successful completion
of the GC reaction.7-10 We demonstrated that HGAL localizes to
cellular membrane raft microdomains and increases BCR signaling
by binding to and enhancing Syk kinase activity.7,10 However, our
previous studies also suggested that other proteins may be involved
in the HGAL-mediated regulation of BCR signaling.

Examination of the HGAL protein sequence revealed the presence
of a putative growth factor receptor–bound protein 2 (Grb2)
binding motif (YEN) at position amino acids 107-109. Grb2 is
a ubiquitously expressed adapter protein that plays a pivotal role in
BCR signaling11-15 and controls lymphoid follicle organization and
the GC reaction.16 Specifically, Grb2 is an integral component of
the BCR signalosome11-14,17 and plays a role in the formation of the
central supramolecular activation clusters (cSMAC), the immuno-
logical synapse. In the absence of Grb2, BCR microclusters remain
in the periphery and fail to form the central BCR cluster.12 Previous
studies suggested an interaction between HGAL and Grb2 but
did not comprehensively analyze if it is direct and its biological
effects.18,19

Herein, we demonstrate that Grb2 directly interacts with phos-
phorylated HGAL and that both proteins colocalize in the cSMAC,
but not the peripheral SMAC (pSMAC), where only HGAL can be
found. Mutation of the Grb2 binding motif in the HGAL protein
prevents this interaction and leads to (1) exclusive localization of
HGAL in the pSMAC and (2) slower dynamics and decreased BCR
accumulation in the cSMAC. Furthermore, we demonstrate that
Grb2, HGAL, and Syk proteins interact with each other, but Grb2
does not modulate the effects of HGAL on Syk kinase activity.

Materials and methods

Antibodies, reagents, and plasmids

Mouse monoclonal anti-HGAL antibody was generated in our
laboratory.3,20 Antibodies to Grb2 (C23), Syk (D-3), Btk (DFS),
B-cell linker (BLNK; 2B11), phospholipase Cg2 (PLCg2) (Q-20),
p-PLCg2 (Tyr753), extracellular signal-regulated kinase 2 (ERK2)
(C-14), JNK (FL), p-ERK (E-4), p-JNK (G-7), Dok-3 (F-7), and
glutathione S-transferase (GST) (1E5) were from Santa Cruz
Biotechnology (Santa Cruz, CA); p-p38 MAPK (Thr180/Tyr182)
(28B10), p38 MAPK (5F11) were from Cell Signaling Technology
(Danvers, MA); pSyk (pY352), pSyk (pY353)-PE, p-Btk (pY551),
p-BLNK (pY84) were from BD Biosciences (San Jose, CA). Alexa
Fluor 488–conjugated pSyk (pY352) was from BioLegend (San
Diego, CA), and Alexa Fluor 647 goat anti-mouse immunoglobulin
G (H1L) and goat F(ab9)2 anti-human immunoglobulin M (IgM)
antibodies were from Invitrogen (Carlsbad, CA). b-Actin antibody
was from Sigma (St. Louis, MO).

Recombinant Trx-HGAL proteins were generated in our laboratory.9

Recombinant GST-Grb2 was from Abnova (Taipei, Taiwan), l

protein phosphatase was from NEB (Ipswich, MA), recombinant
Syk kinase was from OriGene (Rockville, MD), and recombinant Lyn

kinase was from Invitrogen (Waltham, MA). Grb2 ON-TARGETplus
SMARTpool, HGAL ON-TARGETplus SMARTpool, and ON-
TARGETplus nontargeting pool small interfering RNA (siRNA)
were from Dharmacon RNA Technologies (Lafayette, CO); siRNAs
for HGAL and Grb2 were from Santa Cruz Biotechnology, Fluo-4
AM was from Invitrogen, and Protein G beads were from Invitrogen.

pcDNA3.1-HGAL-GFP, pcDNA3.1-HGAL(FEN)-GFP, pCDH-Cuo-
HGAL-GFP, and pCDH-Cuo-HGAL(FEN)-GFP were generated in
our laboratory using standard cloning protocols. The pcDNA3-Flag-
Grb2 was a generous gift from Jakub M. Swiercz’s laboratory
(Department of Pharmacology, Max Planck Institute for Heart
and Lung Research) and was used as a template to generate
the pcDNA3.1-Grb2-mCherry and dominant-negative pcDNA3.1-
Grb2(W193K)-mCherry plasmids in our laboratory.

Cell cultures and cell transfection and transduction

Human lymphoma cell lines Raji, Bjab, VAL, OCILY19, U2932,
TMD8, and Mino were grown as previously reported.21,22 Amaxa
Nucleofector Kits (Amaxa, Gaithersburg, MD) were used for
transfection of plasmids or siRNA in accordance with the
manufacturer’s instructions, as previously reported by us.22

pCDH-Cuo-HGAL-GFP and pCDH-Cuo-HGAL(FEN)-GFP were
packaged into virus particle and used to transduce TMD8 and
Mino cell lines, as described briefly in supplemental Materials
and methods.

Preparation of supported planar membrane

Supported planar lipid bilayers were used to stimulate U2932,
Bjab, and Raji cells and were formed as previously described
by others.23,24 Vesicle solutions of 1,2-dioleoyl-sn-glycero-
3-phosphocholine lipids (Avanti Polar Lipids) with 0.2% to 1%
1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(cap biotinyl)
were fused onto a cleaned glass surface of a parallel plate
chamber (sticky-Slide VI; ibidi USA, Madison, WI) to form the
supported fluid bilayer. The supported bilayers were labeled
with Alexa Fluor (405, 555, or 647)–conjugated streptavidin
(Life Technologies) and subsequently functionalized with mono-
biotinylated goat anti-human IgM F(ab9)2 (Southern Biotech,
Birmingham, AL) (supplemental Figure 1A).

All other methods are described in supplemental Materials and
methods.

Results

HGAL is phosphorylated by Lyn and Syk

HGAL, by binding to Syk and increasing its kinase activity,7

markedly increases ligand-induced and mildly increases tonic
BCR signaling (supplemental Figure 2). HGAL protein harbors 6
tyrosines, some of which are part of a modified immunoreceptor
tyrosine-based activation motif (Figure 1A). We previously demon-
strated that HGAL undergoes tyrosine phosphorylation in re-
sponse to BCR or interleukin-6 stimulations.7,25 However, which
kinases are involved in this process and what tyrosines they
phosphorylate need to be defined more precisely. To address this
question, we performed in vitro kinase assays using recombinant
Trx-HGAL and Syk or Lyn kinases. Immunoblotting of HGAL
demonstrated a shift in the HGAL band position upon Syk and
Lyn kinases treatment that was absent in the presence of
l-phosphatase, suggesting HGAL phosphorylation (Figure 1B).
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Indeed, kinase assays using radiolabeled 32P-adenosine triphos-
phate confirmed HGAL phosphorylation upon exposure to active
Syk or Lyn kinases (Figure 1C-D). Microcapillary reverse-phase
high-performance liquid chromatography nanoelectrospray tan-
dem mass spectrometry demonstrated HGAL phosphorylation
on tyrosines Y80, Y86, Y106Y107, Y128, and Y148; Syk and
Lyn kinases induced phosphorylation of tyrosines Y80, Y86,
Y106Y107, and Y128, while tyrosine Y148 was already phosphor-
ylated before exposure to these kinases (Figure 1A and not shown).

HGAL directly interacts with Grb2 protein

The Y107 tyrosine of HGAL comprise a YEN motif (amino acids
107-109) (Figure 1A), similar to the phosphopeptide motif
pYXN frequently used as a binding site to Grb2.26,27 An interaction
between HGAL and Grb2 was previously suggested by Pan et al18

but was not conclusively confirmed, since an interaction between
recombinant proteins was not shown. Grb2 plays important roles
in BCR signaling.11-15 The presence of the YEN motif in HGAL
suggested that HGAL directly binds to Grb2 and that this
interaction may play a role in regulating BCR signaling. To address
this possibility, we performed reciprocal coimmunoprecipitation
(co-IP) experiments in multiple lymphoma cell lines. Endogenous
Grb2 was detected in immunoprecipitates of endogenous HGAL
or exogenous HGAL-GFP from unstimulated Raji, Bjab, VAL,
OCILY19, U2932, and TMD8 lymphoma cells (Figure 2A; supple-
mental Figure 3A). BCR stimulation increased HGAL and Grb2 co-
IP (Figure 2B).

Grb2 usually binds to phosphorylated tyrosine in the pYEN motif
of its cognate binding proteins via its SH2 domain. Indeed, the
interaction between HGAL and Grb2 is dependent on phosphor-
ylation of the YEN motif, since binding was decreased in the
presence of l-phosphatase (Figure 2C) and no binding was
detected in cells expressing an HGAL mutant in which tyrosine 107
of the YEN motif was mutated to phenylalanine (FEN) (Figure 2D).

A GST-Grb2 pull-down assay with recombinant Trx-HGAL protein
in the presence or absence of active Syk or Lyn kinases confirmed

that the HGAL-Grb2 interaction is direct and occurs only if HGAL
tyrosines are phosphorylated (Figure 2E). In contrast, a GST-Grb2 pull-
down assay with a recombinant Trx-HGAL(FEN) mutant protein in the
presence or absence of active Syk or Lyn kinases failed to demonstrate
a direct interaction, indicating that HGAL-Grb2 binding is dependent
on phosphorylation of the YEN tyrosine (Figure 2E).

To corroborate these findings, we directly measured the binding of
the SH2 domain of Grb2 to phosphorylated (pYEN) or unphos-
phorylated (YEN) 12-mer peptides derived from HGAL using
isothermal titration calorimetry (Figure 2F). Our analysis reveals that
while no binding to YEN peptides was observed, the pYEN peptide
bound with an affinity of 5 mM (Figure 2F). Furthermore, the binding
of Grb2’s SH2 domain to HGAL is governed by favorable enthalpic
contributions accompanied by an entropic penalty to the overall
free energy, implying that the Grb2-HGAL interaction is largely
governed by electrostatic interactions with a minor hydrophobic
force contribution. These observations are in excellent agreement
with the binding of the SH2 domain of Grb2 to other known cellular
partners of Grb2 harboring the pYXN motif.28,29 Taken together,
our results demonstrate that the Grb2-HGAL interaction is direct
and driven in a phospho-tyrosine (pY)–dependent manner by virtue
of the ability of the SH2 domain of Grb2 to recognize the pYEN
motif within HGAL in a canonical fashion.

The interaction between HGAL and Grb2 reciprocally

modulates their effects on BCR-induced

intracellular signaling

Unique adaptor protein complexes can differently modulate BCR
signaling at distinct stages of B-cell differentiation. In immature
DT40 chicken B cells, Grb2 has been reported to decrease BCR-
induced Ca21 influx by attenuating Lyn kinase–dependent activa-
tion of Syk via its interaction with Dok-3.11,13 While GC derived
lymphomas express Dok-3, HGAL does not coimmunoprecipitate
with Dok-3 (supplemental Figure 3B-C). Consequently, we next
examined the functional significance of the HGAL-Grb2 interaction
on BCR biochemical activation. To this end, we completely knocked
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Figure 1. Syk and Lyn kinases phosphorylate tyrosine residues in recombinant HGAL protein in vitro. (A) A schematic diagram of HGAL protein showing location
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out HGAL, Grb2 or both proteins using clustered regularly
interspaced short palindromic repeats/Cas9 in Raji cells (named
Raji HGAL KO and Grb2 KO, respectively; Figure 3A-B). As
previously reported by us,7 knockout of HGAL significantly
decreased BCR-induced total Ca21 flux due to decreases in both
intracellular Ca21 influx and transmembrane Ca21 mobilization.
Knockout of Grb2 significantly increased BCR-induced total Ca21

flux due to more sustained intracellular Ca21 influx and trans-
membrane Ca21 mobilization, as reported previously.13 Knockout
of Grb2 also increased tonic BCR-induced Syk phosphorylation
(supplemental Figure 4). Concomitant knockout of both HGAL and
Grb2 markedly decreased the initial peak of intracellular Ca21 influx
in comparison with mock and Grb2 knockout cells while increasing

the transmembrane Ca21 mobilization compared with mock cells,
but to a lesser extent than Grb2-only knockout. These effects were
due to the opposing effects of each of these proteins on BCR-
induced Ca21 flux. Alterations in Ca21 flux were accompanied by
appropriate changes in phosphorylation of Syk (Figure 3B). We
observed similar results in Raji and Bjab cells in which expression
of Grb2, HGAL, or both proteins was knocked down by specific
siRNAs (supplemental Figure 5) and in U2932 DLBCL cells upon
concomitant HGAL expression and Grb2 knockdown (supplemen-
tal Figure 6).

To further confirm our findings, we employed a dominant-negative
Grb2 mutant protein that harbors an inactivated C-terminal SH3
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domain (W193K).17 Similar to wild-type Grb2 protein, HGAL
coimmunoprecipitated with the Grb2(W193K) mutant (supplemen-
tal Figure 7). Expression of Grb2(W193K) in U2932 cells overcame
the inhibitory function of endogenous wild-type Grb2 and allowed
increased BCR-induced intracellular influx and transmembrane
Ca21 mobilization (Figure 3C). Furthermore, in comparison with
individual expression of either HGAL or Grb2(W193K) proteins,
concomitant expression of both HGAL and Grb2(W193K) further
increased BCR-induced total Ca21 flux and especially trans-
membrane Ca21 mobilization, as well as Syk and BLNK phosphor-
ylation (Figure 3D). Overall, these experiments corroborated our
findings with Grb2 knockout cells.

To further examine the role of the HGAL-Grb2 interaction on BCR
signaling, we assessed the effects of disrupting Grb2-HGAL
binding by mutating the Grb2 binding motif in HGAL. In comparison
with Raji HGAL knockout cells, reconstitution with an HGAL (FEN)
mutant increased total Ca21 flux more than reconstitution with wild-
type HGAL at similar protein expression levels. In contrast, there
was no difference in the total Ca21 flux between Raji cells with
concomitant HGAL and Grb2 knockouts reconstituted at similar
expression levels with either wild-type or HGAL (FEN) mutant
(Figure 3A), suggesting a similar effect of wild-type and mutant
HGAL in the absence of Grb2 protein. Similarly, expression of an
HGAL (FEN) mutant in U2932 (Figure 4), TMD8, and Mino cells
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(supplemental Figure 8A) not expressing endogenous HGAL
enhanced BCR-induced total Ca21 influx in comparison with
cells stably expressing wild-type HGAL. This was accompanied
by enhanced phosphorylation of the BCR proximal effectors
Syk (Y352), BLNK (Y84), BTK (Y551), and PLCg2 (Y753)
(Figure 4B) and NF-kB reporter activity (Figure 4C; supplemen-
tal Figure 8B-C), with minor differences in the dynamics and
extent of phosphorylation of individual proteins between spe-
cific cell lines. However, no differences in the activation of JNK,
p38, or ERK were observed between BCR-stimulated U2932
cells expressing wild-type and the HGAL (FEN) mutant (Figure 4B).
Overall, these findings demonstrate that HGAL and Grb2 adaptor
proteins directly modulate each other’s effects on BCR-induced
intracellular signaling.

Interplay between HGAL, Grb2, and Syk proteins

We previously reported that HGAL directly binds to Syk and
increases its kinase activity, resulting in enhanced BCR signaling.7

Grb2 is also known to interact with Syk, possibly indirectly, and
attenuates its activation by Lyn.11,30 We first analyzed the interplay
among Syk, HGAL, and Grb2 on binding to each other and complex
formation. Concordant to our data demonstrating the necessity of
HGAL phosphorylation for binding to Grb2 (Figure 2), decreased
Syk expression via siRNA, which mediates HGAL phosphorylation,
led to decreased in vivo binding between HGAL and Grb2
proteins (Figure 5A). As previously reported by us, BCR stimulation
increased Syk co-IP with HGAL7 while tending to decrease co-IP
with Grb2 (Figure 5B-C). Knockout of HGAL did not affect binding
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between Syk and Grb2, while knockout of Grb2 enhanced the co-IP
between HGAL and Syk in the resting cells but decreased it in the
BCR stimulated vs nonstimulated cells. These data suggest that
upon BCR stimulation, Grb2 facilitates interaction between Syk and
HGAL. However, we observed inconsistencies in the quantifica-
tions of co-IP interactions between Grb2 and Syk, likely due to

distinct immunoprecipitation efficiencies of the individual antibodies
or because the interaction is indirect.30 Therefore, we next analyzed
the effect of Grb2 on in vitro Syk kinase activity in the presence or
absence of HGAL. To this end, Syk protein was immunoprecipitated
from BCR-stimulated or unstimulated Raji cells and used in the
kinase assay, alone or with purified HGAL and/or Grb2 proteins
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(Figure 5D). No Syk kinase activity was observed in unstimulated
cells, even in the presence of HGAL and/or Grb2 proteins. In
stimulated cells, Syk kinase activity was detected and markedly
increased by the addition of HGAL, but not Grb2, protein. Grb2 did
not affect HGAL-induced increases in Syk activity in vitro. Overall,
these findings suggest that Grb2 may decrease HGAL and Syk
binding in unstimulated cells and thus may negate HGAL effects on
tonic BCR signaling, but it facilitates their binding following BCR
stimulation. However, Grb2 does not affect HGAL-enhanced Syk
kinase activity following BCR stimulation.

Effects of HGAL and Grb2 on BCR synapses

In addition to the Grb2 effects on the BCR-induced intracellular
signaling, it also plays a central role in B-cell synapse formation by
regulating movement of BCR microclusters to gather antigen in the
cSMAC.11-14,17 In immature DT40 chicken B cells, which express
Dok-3, but not HGAL, Grb2 colocalizes with Dok-3 and the BCR
in the cSMAC. In these cells, BCR microclusters remain in the
periphery and fail to form cSMACs in the absence of Grb2.12 We
observed increased BCR synapse intensity and density follow-
ing BCR stimulation of HGAL-expressing lymphocytes from
Rosa26HGAL/Mb1-Cre mice in comparison with lymphocytes not
expressing HGAL originating from wild-type control littermate mice
(supplemental Figure 9). These observations suggest that HGAL
may also regulate B-cell synapse formation in normal lymphocytes.
Consequently, we examined the BCR distribution and localization of
HGAL and Grb2 in human DLBCL originating from mature B cells.
To this end, U2932, Bjab, and Raji HGAL KO cells expressing GFP-
labeled HGAL and mCherry-labeled Grb2 were settled on planar
lipid bilayers containing laterally mobile anti-human IgM F(ab9)2 and
visualized with confocal microscopy (supplemental Figure 1). In
U2932, Bjab, and Raji HGAL KO cells expressing wild-type HGAL,
BCR microclusters formed and eventually accumulated in a dense
well-circumscribed synapse area representing the cSMAC that
differed in size among the cell lines (Figure 6A-B,E, top panels;
supplemental Video 1). HGAL colocalized with BCR and Grb2 in
the cSMAC (supplemental Figure 10), corroborating our immuno-
precipitation and other biochemical studies (Figure 2). However,
HGAL also localized in the pSMAC (Figure 6A-B,E; supplemental
Figure 10), where Grb2 was only minimally present. In the pSMAC,
HGAL colocalized with actin (supplemental Figure 11), corrobo-
rating our previous studies demonstrating HGAL’s interaction with
actin that results in regulation of actomyosin function.8 In contrast,
in U2932, Bjab, and Raji HGAL KO cells expressing an HGAL
(FEN) mutant, the BCR and Grb2, but not HGAL, colocalized in the
cSMAC. HGAL was only present in the pSMAC following BCR
stimulation (Figure 6A-B,E; supplemental Figure 10; supplemental
Video 2). Concordantly, in Raji Grb2 KO cells, BCR localization
to the cSMAC was disrupted, resulting in dispersed and less
circumscribed cSMACs characterized by a decrease in the total
BCR fluorescence signal, as reported previously.12 This was
associated with failure of HGAL to localize to the cSMAC. These
findings suggest that Grb2 is necessary for cSMAC formation and
HGAL localization to the cSMAC. Further, in U2932 and Bjab cells
expressing the HGAL (FEN) mutant, we observed slower dynamics
of cSMAC formation compared with cells expressing wild-type
HGAL, with less circumscribed cSMACs characterized by a de-
crease in the total BCR fluorescence signal at all time points
(Figure 6C-D; supplemental Videos 3 and 4). These observations

are similar to normal mouse lymphocytes not expressing HGAL
(supplemental Figure 9). Moreover, concomitant knockout of HGAL
and Grb2 in Raji cells prevented BCR localization in the cSMAC to
a larger extent than Grb2 knockout alone. These observations
suggest cooperativity between Grb2 and HGAL in regulating BCR
microcluster movement from the periphery to form the cSMAC.
Overall, our findings demonstrate that in lymphoma cells, Grb2’s
interaction with HGAL controls the dynamics of BCR synapse
formation.

Discussion

Antigen binding to the BCR leads to 2 processes that are required
to mount an effective antibody response: transmembrane signaling
and antigen internalization and processing. Both processes are
dependent on BCR-induced Syk activation, which initiates a cas-
cade of protein tyrosine phosphorylation that permits inducible
protein–protein interactions, mediated by adaptor proteins linking
activated BCRs to cytoplasmic effectors. Comprehensively eluci-
dating the mechanisms controlling the magnitude of BCR signaling
may identify new therapeutic targets for autoimmune disorders and
lymphoma treatment.

Grb2 is a ubiquitously expressed adaptor protein that contains
2 flanking SH3 domains and a central SH2 domain that
preferentially binds to the pYXN motif.26,27 Grb2 may regulate
BCR signaling.11-13,17 Grb2 localizes to BCR microclusters and
decreases BCR-induced Ca21 influx by interacting with Dok-3 via
attenuation of Lyn kinase–dependent activation of Syk,11,13 to
which it directly binds. Herein, we demonstrate that the adaptor
protein HGAL, specifically expressed in GC lymphocytes and GC-
derived lymphomas, directly binds to Grb2 upon BCR activation
and negates the inhibitory effects of Grb2 on the BCR-induced
biochemical signaling cascade. Simultaneously, it enhances the
kinetics of BCR accumulation in the cSMAC during Grb2-
dependent BCR synapse formation (Figure 7).

Both Grb2 and HGAL interact with Syk.7,30 Our data suggest that
these 3 proteins may be part of the same multiprotein complex and
that Syk-mediated HGAL phosphorylation may permit HGAL
binding to Grb2. Grb2 coimmunoprecipitated with Syk from
nonstimulated cells, as previously reported in mast cells, suggesting
that this interaction is not phosphorylation dependent or may be
indirect.30 We demonstrate that Grb2 facilitates HGAL and Syk
binding following BCR stimulation but does not affect the HGAL-
mediated increase in Syk kinase activity. Previous studies showed
that Grb2 inhibits BCR signaling by decreasing the activation of Syk
by Lyn.11 Thus, while HGAL and Grb2 oppositely affect Syk kinase
activity, this is not due to direct Grb2 effects on HGAL-mediated
Syk kinase activation. However, HGAL binding to Grb2 may
attenuate its effects on inhibiting Syk activation by Lyn.

Indeed, the opposing effects of HGAL and Grb2 on BCR
biochemical signaling are due to a direct interaction between these
proteins, since expression of an HGAL (FEN), which does not bind
to Grb2, in HGAL-nonexpressing cells induces enhanced BCR
signaling when compared with the wild-type HGAL protein. While
additional proteins that bind to HGAL via the YEN motif might
potentially mediate this differential effect,19 there was no difference
in the magnitude of BCR-induced intracellular signaling in Grb2
knockout cells reconstituted with wild-type or HGAL (FEN) mutant,
suggesting that the direct HGAL binding to Grb2 is responsible for
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the observed changes in BCR signaling. However, whether HGAL
directly ameliorates the inhibitory effects of Grb2 on BCR signaling
or simply enhances Syk activity that negates Grb2 inhibitory effects
is currently unknown. Whether HGAL interacts with additional
proteins that participate in this process is also unknown and will
need to be studied in the future.

In immature B cells, Grb2 is also required for formation of
cSMACs and signalosomes following BCR stimulation.12 Upon
BCR stimulation, Grb2 initially localizes to microsignalosomes,
indirectly recruits dynein, and subsequently moves together with
antigen to gather in the cSMAC.12 Herein, we show that in DLBCL
cells, BCR activation also leads to Grb2 colocalization with BCR
and HGAL in cSMACs. Further, we show that while the interaction
between Grb2 and HGAL is not required for Grb2’s localization to
the cSMAC, it enhances the rate of cSMAC formation and
increases BCR accumulation in the cSMAC. Concomitant knock-
out of both Grb2 and HGAL prevents cSMAC formation to a larger
extent than individual knockout of these proteins. cSMAC formation
is dependent on Syk, myosin II, and the actin cytoskeleton,12,31-34 all
of which interact with and are regulated by HGAL. However, the
molecular mechanism by which HGAL regulates cSMAC formation
is currently unknown and needs further studies. These observations
suggest that HGAL’s interaction with Grb2 may be important for the
formation of functional signalosomes and BCR synapses. The faster
kinetics of cSMAC formation in GC lymphocytes may be important
for effective selection of lymphocytes expressing higher affinity
BCRs and mediate shorter interaction with follicular dendritic
cells, allowing more effective antigen sampling. Further studies
will be needed to examine HGAL’s effects on antigen selection,
internalization, and presentation.

The seemingly opposite effects of HGAL’s interaction with Grb2 on
biochemical signaling and cSMAC formation are not mutually
exclusive, since intracellular calcium signaling and phosphorylation
of downstream effectors following BCR ligation are observed more
rapidly than the formation of mature immunological synapses, as
well as recent observations that microclusters of BCR actively
signal in the periphery before cSMAC formation.35

In summary, we have demonstrated that Grb2 directly interacts with
phosphorylated HGAL, collaborating in cSMAC formation while
oppositely regulating BCR-induced intracellular biochemical
signaling. These interactions may play an important function
in regulating the magnitude of BCR signaling and antigen
presentation.
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