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Objectives: The discovery of mobile colistin resistance mcr-1, a plasmid-borne polymyxin resistance gene, high-
lights the potential for widespread resistance to the last-line polymyxins. In the present study, we investigated
the impact of mcr-1 acquisition on polymyxin resistance and biological fitness in Klebsiella pneumoniae.

Methods: K. pneumoniae B5055 was used as the parental strain for the construction of strains carrying vector
only (pBBR1MCS-5) and mcr-1 recombinant plasmids (pmcr-1). Plasmid stability was determined by serial pas-
saging for 10 consecutive days in antibiotic-free LB broth, followed by patching on gentamicin-containing and
antibiotic-free LB agar plates. Lipid A was analysed using LC–MS. The biological fitness was examined using an
in vitro competition assay analysed with flow cytometry. The in vivo fitness cost of mcr-1 was evaluated in a neu-
tropenic mouse thigh infection model.

Results: Increased polymyxin resistance was observed following acquisition of mcr-1 in K. pneumoniae B5055.
The modification of lipid A with phosphoethanolamine following mcr-1 addition was demonstrated by lipid
A profiling. The plasmid stability assay revealed the instability of the plasmid after acquiring mcr-1. Reduced
in vitro biological fitness and in vivo growth were observed with the mcr-1-carrying K. pneumoniae strain.

Conclusions: Although mcr-1 confers a moderate level of polymyxin resistance, it is associated with a significant
biological fitness cost in K. pneumoniae. This indicates that mcr-1-mediated resistance in K. pneumoniae could
be attenuated by limiting the usage of polymyxins.

Introduction

The spread of MDR amongst Gram-negative bacteria has emerged
as one of the most serious global public health threats.1 Owing to
the paucity of newly approved antibiotics with novel modes of ac-
tion, polymyxins (i.e. colistin and polymyxin B) have been increas-
ingly used for treating MDR Gram-negative bacterial infections.2

However, in recent times, there have been increasing reports of
polymyxin-resistant Gram-negative bacterial infections in patients
and animals.3–8 The primary mechanism of polymyxin resistance
in Gram-negative bacteria involves modification of lipid A with
positively charged residues, such as aminoarabinose or phosphoe-
thanolamine (pEtN).9,10 These modifications diminish the inter-
action of polymyxin molecules with the outer membrane, leading
to resistance.11 Modifications to the glucosamine phosphate

groups of lipid A are usually mediated by chromosomal mutation,
resulting in up-regulation of two-component systems, PhoP/PhoQ
and PmrA/PmrB.12,13 The inactivation of the mgrB gene, a negative
regulator of the PhoP/PhoQ system, has been shown to play a key
role in polymyxin resistance in Klebsiella pneumoniae.14,15

The first plasmid-borne polymyxin resistance gene, mcr-1, was
detected in a livestock isolate in China in November 2015.16

Subsequently, several variants of the mcr genes (mcr-1 to -5) have
been reported in a number of countries.17–23 The mcr gene has
been identified globally in various Gram-negative bacteria isolated
from animals, meat, processed meat products, vegetables and
humans.24,25 The mcr gene encodes a pEtN transferase that modi-
fies the negative phosphate groups of lipid A with positively
charged pEtN residues.16 This readily transferable polymyxin re-
sistance gene holds the potential to rapidly spread resistance.
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Escherichia coli remains as the most prevalent Gram-negative bac-
terium harbouring the mcr gene, whereas lower prevalence is
observed in K. pneumoniae; however, the latter pathogen is a lead-
ing cause of nosocomial infections globally.26,27

The mcr-1 gene is believed to have originated from animal-
associated bacteria. It has been frequently isolated from livestock
and is supposedly sustained by the heavy usage of colistin in the
agricultural and veterinary sectors.16,28 This hypothesis is sup-
ported by the identification of the earliest mcr-1-harbouring E. coli
strain isolated from farm chickens in the 1980s, which coincides
with the onset of colistin use in poultry farming in China.29

Purportedly, the heavy usage of colistin in Chinese agriculture may
have acted as the selective pressure that promoted the spread
and evolution of mcr-1-mediated resistance. Although the preva-
lence of mcr-1 in bacteria isolated from human sources is not as
high as that from animals, the zoonotic potential of mcr-1-carrying
bacteria has been indicated by a number of studies.28,30,31

Zoonotic infections by bacteria carrying mcr-1 highlight the urgent
need to limit the use of colistin in agriculture and veterinary prac-
tices. Fortunately, the use of colistin in animal feed was banned in
China soon after the increasing reports of mcr-1.32

The development of antibiotic resistance often comes with a
cost to biological fitness, defined by reduced competitive ability in
an antibiotic-free environment, a phenomenon that usually allows
the fitter, often susceptible, strain to outcompete the resistant
strain.33 The primary aim of the present study was to investigate
the potential fitness cost incurred by mcr-1 in K. pneumoniae.

Materials and methods

Bacterial strains and plasmids

K. pneumoniae B5055 (K2:O1) was employed as the parental strain for this
study and E. coli JW1 was used as a reference strain for the in vitro biological
fitness assays.34 The codon-optimized mcr-1 gene was synthesized by
InvitrogenTM GeneArtTM. An mcr-1 recombinant plasmid (pmcr-1) was con-
structed by ligating mcr-1 into the low-copy, broad-host-range vector
pBBR1MCS-5 at the XhoI and HindIII sites using T4 DNA ligase (New England
BioLabs).35 The vector (pBBR1MCS-5) and mcr-1 recombinant plasmid
(pmcr-1) were isolated using a QIAprepVR Spin Miniprep kit and transformed
into K. pneumoniae B5055 by electroporation conducted using a 0.1 cm elec-
troporation cuvette with MicroPulser (Bio-Rad) at the EC1 setting (1.8 kV).
Cells were recovered in LB broth for 1 h, followed by plating on LB agar
with 20 mg/L gentamicin (Sigma-Aldrich). Successful transformants
were confirmed by PCR and Sanger sequencing using M13 Fw (50-
GTAAAACGACGGCCAGT-30) and M13 Rv (50-AACAGCTATGACCATG-30) primers
(Micromon, Monash University). Unless otherwise stated, K. pneumoniae
B5055pBBR1MCS-5 and K. pneumoniae B5055pmcr-1 were grown in LB broth
supplemented with 20 mg/L gentamicin and E. coli JW1 was supplemented
with 50 mg/L ampicillin (Sigma-Aldrich).

In vitro polymyxin B susceptibility
MICs of polymyxin B were determined using broth microdilution in CAMHB
(Oxoid).36 Polymyxin B (Beta Pharma) was tested over 0.125–128 mg/L and
gentamicin (final concentration of 20 mg/L) was added to the growth me-
dium of the plasmid-carrying strains as required.

Plasmid stability
A conventional plate count method was employed to examine the stability
of the vector and mcr-1 recombinant plasmid in K. pneumoniae strain
B5055. Briefly, cultures were grown at 37�C in a shaking water bath

(200 rpm) and serially passaged for 10 consecutive days with 1:1000 dilu-
tion in antibiotic-free LB broth, allowing �10 cell generations per day.
Samples were taken each day, serially diluted and plated on antibiotic-free
LB agar. After incubation overnight, 100 colonies were randomly selected
and patched onto gentamicin-containing and antibiotic-free LB agar plates.
The percentage of plasmid retention was calculated by dividing the number
of colonies on gentamicin-containing LB agar by the total number of colo-
nies patched. Three biological replicates were included for each group.

Extraction and structural analysis of lipid A
Lipid A was extracted from K. pneumoniae B5055 using a mild acid hy-
drolysis method.37 In brief, bacterial culture at an OD600 of 0.8 was col-
lected by centrifugation at 9600 g and washed twice with PBS (pH 7.4).
The cells were resuspended in PBS, followed by addition of chloroform and
methanol to form a single-phase Bligh-Dyer mixture (water/chloroform/
methanol, 0.8:1:2, v/v). LPS was pelleted by centrifugation at 3220 g and
washed once with single-phase Bligh-Dyer mixture. The pellet was then
resuspended in hydrolysis buffer [50 mM sodium acetate (pH 4.5)/1%
SDS], followed by sonication and incubation in boiling water for 45 min to
ensure complete hydrolysis. The solution was converted into a two-phase
Bligh-Dyer mixture with addition of chloroform and methanol to form a
final mixture of water/chloroform/methanol (0.9:1:1, v/v). Following cen-
trifugation at 3220 g, the lower phase containing lipid A was extracted
and allowed to dry overnight. For LC–MS analysis, the dried lipid A was
reconstituted in chloroform/methanol (1:1, v/v) and the supernatant was
collected into a glass LC–MS vial after centrifugation at 14000 g. The struc-
ture of lipid A was analysed using a Q-Exactive Hybrid Quadrupole-
Orbitrap Mass Spectrometer (Thermo Scientific).

In vitro biological fitness assay
The fitness of K. pneumoniae strains was measured in competition against
the reference strain E. coli JW1. Bacteria were inoculated into sterile filtered
M9 minimal medium supplemented with antibiotics as appropriate.38

Overnight cultures were pelleted and washed with PBS prior to resuspen-
sion in fresh M9 minimal medium. An equal volume (1 mL) of the experi-
mental strain and reference strain at�109 cfu/mL was mixed by vortexing.
The mixed bacterial culture was diluted 1:100 in fresh M9 minimal medium
and incubated for 24 h, which permitted�6.6 cell generations. Samples at
0 and 24 h were diluted 1:100 in PBS and analysed using flow cytometry.
The experimental and reference strains were analysed using the dot plot of
side scatter (SSC) versus forward scatter (FSC), in which gates were placed
around the two populations, which were distinguishable based on morpho-
logical differences between the experimental and reference strains.
The strains belonging to the populations gated were identified by referring
to the single experimental and reference strain control. The selection
coefficients were determined based on the following regression model: se-
lection coefficient" [ln(E/R)t# ln(E/R)0]/T, where E/R is the ratio of cell num-
bers of the experimental to the reference strain and T is the generation
number.39 All calculated selection coefficients were normalized to set the
K. pneumoniae B5055 parental strain as zero by subtracting the mean se-
lection coefficient of the parental strain. Four biological replicates were
included for each sample. Data were analysed using the non-parametric
Mann–Whitney U-test (GraphPad Prism software).

In vivo effect of mcr-1 in a neutropenic mouse thigh
infection model
Ethical approval was obtained from the Monash University Animal Ethics
Committee and the experiment was conducted in accordance with the
Australian Code of Practice for the Care and Use of Animals for Scientific
Purposes. The 8-week-old female Swiss mice (Monash University, Clayton,
Victoria, Australia) were housed with food and water available ad libitum.
Neutropenia was induced by administrating two doses of cyclophosphamide
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intraperitoneally at 150 mg/kg for the first dose and 100 mg/kg for the se-
cond dose.40 Early logarithmic-phase K. pneumoniae strains (1%105 cfu/mL)
were introduced intramuscularly into each posterior thigh muscle to establish
thigh infection and two mice were included in each group (i.e. four thighs). At
2 h after inoculation, polymyxin B was administered subcutaneously at
10 mg/kg every 8 h (total dose of 30 mg/kg/day) to the treatment group. Mice
were euthanized at 24 h and both thighs were harvested, followed by hom-
ogenization with saline and filtration using a sterile filter bag (pore size
280lm) for viable counting. The agar plates were incubated overnight at
37�C and the number of cfu of bacteria per thigh was determined. Data were
analysed using the non-parametric Mann–Whitney U-test.

Results

Prior to commencing our phenotypic investigation, we confirmed
the presence of the vector (pBBR1MCS-5) and mcr-1 recombinant
plasmid (pmcr-1) in K. pneumoniae B5055 with PCR using M13-
specific forward and reverse primers. Comparison of the vector
and mcr-1 recombinant plasmid confirmed the presence of a
1635 bp insertion in pBBR1MCS-5 and the insert was confirmed
with Sanger sequencing.

Contribution of mcr-1 to polymyxin resistance and
plasmid stability

To evaluate the intrinsic resistance of the K. pneumoniae B5055
parental strain and the contribution of mcr-1 to polymyxin
resistance, we first sought to determine their respective MICs. The
K. pneumoniae B5055 parental strain, vector-only K. pneumoniae
B5055pBBR1MCS-5 strain and mcr-1-expressing K. pneumoniae
B5055pmcr-1 strain displayed MICs of 1, 0.5 and 4 mg/L, respect-
ively. The stabilities of the mcr-1 recombinant plasmid and the vec-
tor in K. pneumoniae B5055 were determined by serial passaging
for 10 days in the absence of gentamicin (Figure 1). K. pneumoniae
B5055pBBR1MCS-5 showed high plasmid stability across the 10 day
passages (i.e. �100 generations), whereas a gradual loss of the
mcr-1 recombinant plasmid was observed, with only 50% of
the population maintaining the mcr-1 recombinant plasmid after
6 day passage (i.e. �60 generations). This result suggests that in
the absence of antibiotic selective pressure the maintenance of
mcr-1 in the population was decreased.

Lipid A profiling

To confirm the role of mcr-1 in pEtN modification of lipid A, we next
sought to investigate the lipid A profile of each K. pneumoniae
strain by LC–MS (Figure 2). The MS analyses from all three strains
showed two predominant peaks at m/z 1717.25 and 1745.28.
The peak at m/z 1717.25 represents hexa-acylated lipid A species
with four primary 3-hydroxymyristate (C14 [3-OH]) fatty acyls, two
secondary fatty acyls (one laurate [C12]acyl and one myristate
[C14]acyl), and the loss of one phosphate group from the glucosa-
mine. The second peak at m/z 1745.28 represents hexa-acylated
lipid A with four primary 3-hydroxymyristate (C14[3-OH]) fatty
acyls, two secondary fatty acyls (myristate [C14]acyls), and the
loss of one phosphate group from the glucosamine. MS analysis of
the lipid A structure of K. pneumoniae B5055pmcr-1 revealed two
additional peaks at m/z 1840.26 and 1868.29, representing the
addition of a pEtN residue (Dm/z"!123) to the hexa-acylated
lipid A molecules described earlier at m/z 1717.25 and 1745.28,
respectively.41

Biological cost of mcr-1 in vitro and in vivo

Competition assays were performed to determine whether mcr-1
is associated with biological cost in K. pneumoniae (Figure S1, avail-
able as Supplementary data at JAC Online). In comparison with
the parent strain, lower selection coefficients were observed
in vitro for both strains carrying the vector alone and mcr-1.
However, a significantly lower selection coefficient (P , 0.05)
was observed for K. pneumoniae B5055pmcr-1 in the in vitro study,
compared with the strain carrying the vector alone (Figure 3). This
result showed a biological fitness cost incurred in vitro by harbour-
ing mcr-1. It appeared that in the absence of polymyxin B the
strain carrying the vector only showed a minor reduction in growth
in the mouse thigh infection model (P"0.34). In comparison, it is
clearly evident that the growth of the strain carrying the plasmid
harbouring mcr-1 was significantly reduced in the infected mouse
thighs (Figure 4a; P , 0.05). The impact of mcr-1 on polymyxin re-
sistance in vivo was also illustrated using the same infection model
but in the presence of polymyxin. After polymyxin B treatment
(30 mg/kg/day), �10000-fold reduction in the bacterial viability
was observed at 24 h for K. pneumoniae B5055 and K. pneumoniae
B5055pBBR1MCS-5, compared with the untreated group, but only a
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100-fold reduction for K. pneumoniae B5055pmcr-1 (Figure 4b;
P , 0.05).

Discussion

The identification of mcr-1 as the first plasmid-borne polymyxin re-
sistance gene prompted extensive and retrospective surveillance
investigations across a range of Gram-negative species.7,16 mcr-1
is commonly found in Gram-negative bacteria isolated from ani-
mals, humans and the environment globally.7,24 The primary aims
of the present study were to investigate the impact of mcr-1 on
polymyxin resistance and the fitness of mcr-1-carrying
K. pneumoniae.

According to EUCAST, the breakpoint for polymyxin susceptibil-
ity in Enterobacteriaceae is defined as �2 mg/L.42 When mcr-1
was introduced into K. pneumoniae B5055 via transformation with
the recombinant plasmid (pmcr-1), the polymyxin B MIC increased
from 1 to 4 mg/L (i.e. the polymyxin breakpoint for resistance). This
moderate level of resistance has been demonstrated by other
reports with bacterial isolates having MICs of 4–8 mg/L following
experimental acquisition of mcr-1-carrying plasmids by
polymyxin-susceptible E. coli strains via conjugation and trans-
formation.16,43–49 Although the level of mcr-1-conferred poly-
myxin resistance is moderate, the ability of mcr-1 to improve
bacterial survival in the presence of polymyxins was demonstrated
in vivo using a neutropenic mouse thigh infection model. Similar
findings were reported by Liu et al.,16 who showed that the pres-
ence of mcr-1 provided E. coli with adequate protection against

colistin treatment in vivo. In order to exclude the possibility that
the presence of other genetic elements in the plasmid contributed
to the observed increase in polymyxin resistance, we also demon-
strated that K. pneumoniae B5055pBBR1MCS-5 (which carries only
the vector) was susceptible to polymyxin treatment.

The evolution and persistence of antibiotic resistance in the
bacterial population depends on a complex calculus factoring the
biological fitness cost associated with the resistance and the im-
pact of the resistance pressure; any significant fitness cost will
allow a susceptible strain to outcompete the resistant strain in the
absence of an antibiotic.50 Variability in the fitness cost associated
with antibiotic resistance can be attributed to various factors,
including the mechanisms of resistance, bacterial species and
antibiotic. A fitness cost has been shown to be associated with the
acquisition of colistin resistance in Acinetobacter baumannii.51,52

Notably, the loss of LPS imposes a greater biological fitness cost in
A. baumannii compared with modification of lipid A with pEtN.53

However, not all mechanisms of polymyxin resistance carry a fit-
ness cost; for example, no significant biological cost is associated
with polymyxin resistance due to chromosomal inactivation of
mgrB in K. pneumoniae.54 The in vitro competition fitness assay
and in vivo model from our study demonstrated that a significant
biological cost was incurred when mcr-1 was introduced into
K. pneumoniae in the absence of polymyxin treatment (Figures 3
and 4a). It has been reported that travellers colonized by mcr-1-
carrying bacteria were able to completely eliminate these bacteria
a month after of returning to their home country.55 This could sug-
gest that mcr-1-carrying bacteria have reduced fitness in the
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antibiotic-free environment. Another possibility is that loss of the
mcr-1 gene from the bacteria is due to the instability of the mcr-1-
harbouring plasmids in the absence of selective pressure. Our
study found that plasmid stability in the absence of selective pres-
sure was indeed reduced with the acquisition of mcr-1. The heavy
usage of polymyxins in the veterinary and agriculture environment
could act as the selective pressure that promotes the dissemin-
ation of mcr-1.

The use of an artificial vector, pBBR1MCS-5, was a limitation of
the present study. The vector itself showed a minor detrimental ef-
fect on the host bacteria in the absence of polymyxin treatment,
but the mechanism is unknown. A recent study published after the
submission of our manuscript showed that a negative fitness ef-
fect was correlated with both an artificial vector (pCR-Blunt
II-TOPO) carrying mcr-1 and a native mcr-1 plasmid (pKP2442) in
K. pneumoniae.56 Unfortunately, a Galleria mellonella model, ra-
ther than rodents, was employed for measuring the in vivo fitness
cost in this recent study.56 Our present study employed a widely
used mouse infection model, which is more clinically relevant, and
demonstrated the negative influence of mcr-1 on in vivo fitness in
K. pneumoniae.

In conclusion, our study demonstrates the beneficial effect
of mcr-1 on the survival of K. pneumoniae in the presence of
polymyxins. In the absence of selective pressure, mcr-1 nega-
tively impacts the biological fitness of K. pneumoniae. It is likely
that the spread of mcr-1 might be potentially attenuated by
reducing polymyxin usage in both agriculture and healthcare
sectors.
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