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Depression increases the conversion risk from amnestic mild cognitive impairment to Alzheimer’s disease with unknown mechan-

isms. We hypothesize that the cumulative genomic risk for major depressive disorder may be a candidate cause for the increased

conversion risk. Here, we aimed to investigate the predictive effect of the polygenic risk scores of major depressive disorder-specific

genetic variants (PRSsMDD) on the conversion from non-depressed amnestic mild cognitive impairment to Alzheimer’s disease, and

its underlying neurobiological mechanisms. The PRSsMDD could predict the conversion from amnestic mild cognitive impairment to

Alzheimer’s disease, and amnestic mild cognitive impairment patients with high risk scores showed 16.25% higher conversion rate

than those with low risk. The PRSsMDD was correlated with the left hippocampal volume, which was found to mediate the

predictive effect of the PRSsMDD on the conversion of amnestic mild cognitive impairment. The major depressive disorder-specific

genetic variants were mapped into genes using different strategies, and then enrichment analyses and protein–protein interaction

network analysis revealed that these genes were involved in developmental process and amyloid-beta binding. They showed

temporal-specific expression in the hippocampus in middle and late foetal developmental periods. Cell type-specific expression

analysis of these genes demonstrated significant over-representation in the pyramidal neurons and interneurons in the hippocam-

pus. These cross-scale neurobiological analyses and functional annotations indicate that major depressive disorder-specific genetic

variants may increase the conversion from amnestic mild cognitive impairment to Alzheimer’s disease by modulating the early

hippocampal development and amyloid-beta binding. The PRSsMDD could be used as a complementary measure to select patients

with amnestic mild cognitive impairment with high conversion risk to Alzheimer’s disease.
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Introduction
The amnestic mild cognitive impairment (aMCI) is a state of

cognitive deficit that is not severe enough to fulfil the criteria

of dementia (Winblad et al., 2004) and shows a much higher

probability of developing into Alzheimer’s disease (Palmer

et al., 2008). Identifying biological measures with the poten-

tial to predict the conversion from aMCI to Alzheimer’s

disease is clinically important for early interventions of

Alzheimer’s disease. In the past decades, a variety of demo-

graphic (Tokuchi et al., 2014), clinical (Mazzeo et al., 2016),

cognitive (Julayanont et al., 2014), neuroimaging (Yuan

et al., 2009), and genetic measures (Rodriguez-Rodriguez

et al., 2013; Adams et al., 2015) have been proposed as

candidate measures for the prediction. Among these meas-

ures, a lifetime history of major depressive disorder (MDD)

(Jorm, 2001), the presence of depressive symptom (Kida

et al., 2016; Mourao et al., 2016; Sacuiu et al., 2016;

Barca et al., 2017), or the coexistence of a diagnosis of

MDD (Modrego and Ferrandez, 2004) has been found to

increase the conversion risk from aMCI to Alzheimer’s dis-

ease, despite of non-significant findings (Palmer et al., 2010;

De Roeck et al., 2016). However, few studies have investi-

gated why depression could increase the conversion risk

from aMCI to Alzheimer’s disease.

Besides social-psychological factors, such as stressful life

events (Park et al., 2015) and interpersonal dysfunction

(Hames et al., 2013), genome-wide association studies

(GWAS) reveal a role of genetic factors in MDD (Ripke

et al., 2013). In terms of genetics, one possibility for the

association between MDD and the conversion of aMCI is

that MDD and Alzheimer’s disease may share common

genetic variants. This idea is supported by candidate gene

studies (Skoog et al., 2015; Ye et al., 2016), but is not

supported by the polygenic score analyses (Bulik-Sullivan

et al., 2015a; Power et al., 2017). An alternative possibility

is that the MDD- and Alzheimer’s disease-specific genetic

variants may affect the same biological pathways, pro-

cesses, cells, or structures via different mechanisms at dif-

ferent developmental periods. Thus, this study aimed to

investigate if the cumulative MDD-specific genetic risk

could predict the conversion from aMCI to Alzheimer’s

disease. If so, we explored the possible neurobiological

mechanisms underlying the predictive effect further.

The cumulative genetic risk for MDD could be assessed

by the polygenic risk scores (PRS) for this disorder

(PRSMDD) (Milaneschi et al., 2016) and the cumulative gen-

etic risk for Alzheimer’s disease could be evaluated by the

PRSAD (Sabuncu et al., 2012). Although many studies have

used the PRSMDD to predict MDD (Holmes et al., 2012;

Milaneschi et al., 2016; Gibson et al., 2017; Qiu et al.,

2017) and applied the PRSAD to predict Alzheimer’s disease

(Escott-Price et al., 2015; Mormino et al., 2016) and the

conversion from aMCI to Alzheimer’s disease (Rodriguez-

Rodriguez et al., 2013; Adams et al., 2015), no studies

have used the PRSMDD to predict the conversion from

aMCI to Alzheimer’s disease. To exclude the possibility

that the predictive effect of the PRSMDD on the conversion

is driven by genetic variants common to MDD and

Alzheimer’s disease, we only used genetic variants specific

to MDD to calculate PRSsMDD by excluding common gen-

etic variants of the two disorders. If a significant predictive

effect existed, we investigated neuroanatomical substrates

underlying such a prediction. The identified genetic variants

were fine-mapped into genes using different strategies, and

then enrichment and protein–protein interaction network

analyses were performed to identify potential functions of

these genes. Temporal- and cell type-specific expression

analyses were finally used to explore in which developmen-

tal periods and cell types these genes are significantly ex-

pressed. A schematic summary of the study design is shown

in Fig. 1.

Materials and methods

Discovery and target samples

The PRS calculation requires a discovery sample and a target
sample. The discovery sample was used to identify effect size
of a set of genetic variants that were nominally associated with
the disease status at a predefined P-value. Then, the PRS was
calculated for each subject in the target sample to estimate
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cumulative genetic risk of this subject for the disease. GWAS
data of the Psychiatric Genomics Consortium (PGC) (Sullivan,
2010) and International Genomics of Alzheimer’s Project
(IGAP) (Lambert et al., 2013) were used as the discovery sam-
ples to calculate PRSMDD and PRSAD, respectively. The target
sample included 398 non-depressed (with a geriatric depres-
sion scale56) aMCI patients provided by the first stage of
Alzheimer’s disease Neuroimaging Initiative (ADNI-1).

The detailed information about the discovery and target sam-
ples is provided in the Supplementary material.

Genotyping

For the 757 subjects from ADNI-1, the genome-wide single-
nucleotide polymorphisms (SNPs) were genotyped using the
Illumina Human610-Quad Bead chip.

Figure 1 A schematic summary of the study design. ADNI = Alzheimer’s Disease Neuroimaging Initiative; CHR = chromosome;

eQTL = expression quantitative trait loci; GMV = grey matter volume; GWAS = genome-wide association studies; IGAP = International

Genomics of Alzheimer’s Project; OR = odd ratios; PGC-MDD = major depressive disorder working group of Psychiatric Genomics Consortium;

PT = P-values threshold of genome-wide association studies.
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Quality control

In individual-level quality control, we excluded subjects with a
missing genotyping rate 40.05, sex inconsistency, possible rela-
tive relationships, and being European population outliers iden-
tified by multidimensional scaling (MDS). In SNP-level quality
control, we excluded SNPs with a missing call rate 40.05,
minor allele frequency 50.01, significant deviation from
Hardy-Weinberg equilibrium, and ambiguous strand. Finally,
imputation was performed using MaCH (Li et al., 2010) and
MiniMac (Howie et al., 2012). Detailed information of quality
control and imputation is shown in the Supplementary material.

Polygenic risk score calculation

The PRS is used to assess the cumulative genetic risk for a
certain disorder (Purcell et al., 2009). In the discovery
sample, we calculated the association between SNPs and dis-
ease status at a predefined P threshold (PT). Under a certain
PT, we then removed the effects of SNPs in linkage disequilib-
rium (LD) in each clumped region (excluding SNPs with
r24 0.25 within a 250-kb window) and selected the index
SNPs with the most significant P-value from each clumped
association region based on the discovery sample. Thus, we
obtained the information of the risk alleles and effect sizes of
the index SNPs for each PT value. In the target sample, the
PRS was calculated for each individual as the sum of the count
of risk alleles multiplied by the corresponding effect sizes (nat-
ural log of the odds ratio) across these index SNPs.

To identify the PT value that could generate PRS with the
best prediction for the conversion from aMCI to Alzheimer’s
disease, the PRSice software (http://prsice.info) (Euesden et al.,
2015) was used to generate 1000 PRS values for PT ranging
from 0.001 to 1 with an increment of 0.001, while controlling
for sex, age and educational years at baseline, the number of
APOE "4, and the first four MDS components for population
stratification. PT = 1 indicates that all SNPs of the discovery
sample are included to calculate the PRS in the target sample.
By evaluating the predictive abilities, we could obtain the best
PT values for calculating PRSMDD and PRSAD in the target
sample. Using the best PT values, we could obtain the risk
alleles and effect sizes of the index SNPs for calculating the
PRSMDD and PRSAD in the target sample. The PRSMDD and

PRSAD were computed for each aMCI patient and then
z-transformed for visualization.

To exclude the possibility that the predictive effect of PRSMDD

on the aMCI conversion is driven by genetic variants common
to MDD and Alzheimer’s disease, we calculated PRS specific to
MDD (PRSsMDD) only using genetic variants specific to MDD
by excluding common variants of the two disorders. In the same
way, we also calculated PRS specific to Alzheimer’s disease
(PRSsAD). LD score regression (Bulik-Sullivan et al., 2015b)
and co-localization analyses (Giambartolomei et al., 2014;
Pickrell et al., 2016) were additionally performed to validate
the specificity of index SNPs to MDD rather than Alzheimer’s
disease (Supplementary material).

Image acquisition

Subjects were scanned with a standardized MRI protocol de-
veloped for ADNI (Jack et al., 2008). Details about the ration-
ale and development of the standardized MRI datasets have
been previously described (Wyman et al., 2013). The high reso-
lution structural MRI data were acquired at 59 sites using 1.5 T
MRI scanners with a sagittal 3D magnetization prepared rapid
acquisition gradient echo sequence (http://adni.loni.ucla.edu).

Grey matter volume calculation

All structural images were visually checked by two radiologists.
The preprocessing processes of structural images included segmen-
tation, normalization, modulation, and smoothing (Supplementary
material). The specific reasons for exclusion for patients with
aMCI are shown in Supplementary Table 1. Finally, 322 aMCI
patients with qualified genotyping and neuroimaging data were
included and divided into conversion (aMCI-C, n = 187) and
stable (aMCI-S, n = 135) groups. The demographic and genetic
data of these patients are shown in Table 1.

Statistical analyses

Demographic data

The demographic data were analysed using the Statistical
Package for the Social Sciences version 18.0 (SPSS Inc.,
Chicago, Illinois, USA). The chi-square or t-test was used to
compare differences in sex, age, educational years, geriatric

Table 1 Demographic and genetic characteristics of the target sample

Demographic variables aMCI-S (n = 135) aMCI-C (n = 187) Statistics P

Age at baseline, y 75.64 (7.16) 74.50 (7.21) 1.99 0.16

APOE "4 carriersa, n 62 120 10.62 1.10 � 10�3

Educational years 15.50 (3.12) 15.73 (2.89) 0.46 0.50

Males, n 90 120 0.22 0.37

GDS 1.63 (1.38) 1.59 (1.36) 0.07 0.79

PRSAD
b

�0.41 (0.88) 0.30 (0.98) 44.04 1.37 � 10�10

PRSMDD
b

�0.20 (0.97) 0.28 (0.97) 19.35 1.48 � 10�5

PRSsAD
b

�0.40 (0.88) 0.29 (0.98) 42.59 2.65 � 10�10

PRSsMDD
b

�0.16 (0.97) 0.22 (1.00) 11.96 6.18 � 10�4

PRSsMDD + AD
b

�0.40 (0.89) 0.31 (0.98) 43.63 1.29 � 10�10

Data are shown as mean (SD). AD = Alzheimer’s disease; GDS = Geriatric Depression Scale.
aAPOE "4 carriers include subjects with one or two copies of "4 allele at the APOE locus.
bThe PRS are z-transformed for visualization.

P-values in bold indicate there are significant differences between groups.
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depression scale, and PRS measures between the aMCI-S and
aMCI-C groups.

Polygenic risk analysis

The logistic regression was used to predict odds of the aMCI-C
using the PRS calculated under each of the 1000 PT thresholds.
The permutation test (P5 0.05) was used to correct multiple
comparisons. Nagelkerke’s pseudo R2 was calculated to meas-
ure the proportion of variance explained by the PRS. A Cox
proportional hazard model was used to explore the relations
between the PRS and the conversion at the different time
points, with the age and educational years at baseline, the
sex, the number of APOE "4, and the PRS as independent
variables. For the best-fitting PRS, hazard ratios (HRs) for
these variables were calculated using the prediction models.

The 322 aMCI patients were bisected according to their
PRSsMDD or PRSsAD; we defined 161 patients with relatively
low PRS as low PRS group and another 161 patients as high
PRS group. The chi-square test was used to compare differ-
ences in conversion rate of aMCI among the four hierarchical
risk groups (double low risk, low PRSsAD but high PRSsMDD,
high PRSsAD but low PRSsMDD, and double high risk groups).
The 322 aMCI patients were also trisected according to their
PRSsMDD or PRSsAD, the bottom third (107 patients) was
defined as the low-risk group, the middle third (107 patients)
as the middle-risk group, and the upper third (108 patients) as
the high-risk group. We also compared differences in conver-
sion rate among the nine hierarchical risk groups.

Imaging data

The voxel-wise multiple regression analysis was performed to
identify brain regions whose grey matter volumes were signifi-
cantly correlated with PRSsMDD using Statistical Parametric
Mapping software package (SPM8, http://www.fil.ion.ucl.ac.
uk/spm), while controlling for the effect of neuroimaging
sites. Multiple comparisons were corrected using a voxel-
level family-wise error (FWE) method (Pc5 0.05, cluster size
4200 voxels). The grey matter volumes of brain regions with
significant correlations with the PRSsMDD were extracted for
further analysis.

Mediation analysis and Mendelian
randomization

The mediation analysis was performed to test whether the grey
matter volume of each significant region mediates the associ-
ation between PRSsMDD and the conversion of aMCI (Preacher
and Hayes, 2008; Hayes, 2013). The PRSsMDD was defined as
an independent variable, the grey matter volume of each sig-
nificant region as a mediator variable, and the aMCI group
assignment (aMCI-S versus aMCI-C) as a binary dependent
variable. In addition, both a conventional two-stage
Mendelian randomization method and a Mendelian random-
ization-Egger sensitivity analysis (http://www.mendelianrando-
mization.com/index.php/software-code) were applied using
PRSsMDD as instrumental variable to make causal inference
between the grey matter volume of each significant region
and aMCI conversion (Burgess and Thompson, 2013, 2015;
Burgess, 2014) (Supplementary material).

Fine-mapping MDD-specific genetic
variants into genes

The context-dependent epigenomic weighting for prioritization
of variants (CEPIP) (Li et al., 2017) was used to estimate the
brain region-specific regulatory probability of each PRSsMDD

genetic variant by integrating the expression quantitative trait
loci (eQTLs) (Brown et al., 2013) and epigenomic features in
the specific human brain tissues (Kundaje et al., 2015). The
PRSsMDD genetic variants were weighted by the brain region-
specific regulatory probability, and were then fine-mapped into
genes using gene-based association test (GATES) (within a 5-
kb window) in the human reference assembly (GRch37/hg19)
(Li et al., 2011). As a result, we could identify genes that
increase MDD susceptibility through brain region-specific
functionally regulatory mechanisms. To exclude the bias
derived from introducing brain region-specific biological infor-
mation, we also fine-mapped PRSsMDD genetic variants into
genes only based on physical position of each variant (within
a 5-kb window) and re-performed the analyses.

Gene enrichment analyses

The functions of these genes were annotated by identifying
significant enrichments using the WebGestalt (http://www.web-
gestalt.org/option.php) (Wang et al., 2017) and Gorilla (http://
cbl-gorilla.cs.technion.ac.il) (Eden et al., 2007, 2009). The
Benjamini and Hochberg method for false discovery rate
(FDR-BH correction) (qc5 0.05) was applied to correct for
multiple comparisons. The reference gene list included 18 774
genes derived from fine-mapping of all imputed SNPs of PGC-
MDD and ADNI datasets.

Network topology-based analysis

The WebGestalt software was also used to perform the net-
work topology-based analysis based on the human protein–
protein interaction (PPI) of the Biological General Repository
for Interaction Datasets (BIOGRID). All fine-mapping genes
were firstly mapped to the PPI network of the BIOGRID;
and the tightly connected genes (a portion of the candidate
genes) formed a new PPI network based on the assumption
that the mechanistically important genes are likely to form
tightly connected clusters whereas other genes tend to be ran-
domly distributed in the network. The network topology-based
analysis could create a score for each gene in the PPI network
of the BIOGRID based on its overall proximity to the seed
genes, where the proximity was measured by the random
walk analysis (Kohler et al., 2008). In the PPI network of
the BIOGRID, the top 10 genes with the most functional simi-
larity with seed genes were identified as neighbouring genes
and included in the new PPI network. The constituent genes
of the resulted network, including the tightly connected candi-
date genes and the top 10 neighbouring genes, were enriched
in gene ontology (GO) items using the hypergeometric test
(qc50.05).

Temporal expression analysis

The precise regulation of the spatial and temporal gene expres-
sion plays a key role in brain development, maturation and
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ageing. The CSEA was used to explore in which developmental
periods these PRSsMDD-related genes are specifically expressed
(Xu et al., 2014) (http://genetics.wustl.edu/jdlab/csea-tool-2/).
The analysis was performed using the Fisher’s exact test
(qc50.05) across developmental stages at a specificity index
threshold (pSI) threshold of 0.05. If any genes showed specific
expression in any developmental stage under the most strin-
gent threshold of pSI = 0.001, the expression pattern of these
genes would be depicted using Human Brain Transcriptome
(Kang et al., 2011). In our analysis, we only focused on tem-
poral feature of these genes expressed in the significant brain
regions of mediation analysis and Mendelian randomization.

Cell type-specific expression analysis

With the single-cell RNA-sequencing technique, a prior study
has provided the detailed cell type-specific expression data of
nine major cell types in the mouse brain regions (Zeisel et al.,
2015). The Fisher’s exact test was used to identify in which
cell types these PRSsMDD fine-mapping genes were specifically
expressed in a certain brain region. These tests resulted in the
pSI for each cell type, and the P threshold represents how
likely the gene set is specifically expressed in a given cell
type relative to the other cell types.

Data availability

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

Results

PRSMDD could predict the conversion
from aMCI to Alzheimer’s disease

When the PRSMDD were calculated using seven broad PT

values for associations between SNPs and MDD, we found

the PRSMDD (PT = 0.05) could predict the status of the

aMCI-C (P = 0.002) (Fig. 2A) and explained 4.08% of

variance for the aMCI-C based on 10 618 index SNPs.

When the PRSMDD were computed using a high resolution

method, the PRSMDD calculated at PT = 0.009 showed the

highest prediction (P = 7.49 � 10�5), explained 6.86% of

variance based on 2559 index SNPs (Fig. 2B and

Table 2). Compared with aMCI-S patients, aMCI-C pa-

tients had a significantly higher adjusted PRSMDD

(P = 1.48 � 10�5) (Fig. 2C and Table 1). Compared to

the low risk group, the middle [HRs = 2.45, 95% confi-

dence interval (CI) = 1.48–4.03, P = 4.56 � 10�4] and

high (HRs = 2.68, 95% CI = 1.24–5.82, P = 3.23 � 10�4)

risk groups had more than two times of risk for the

aMCI-C. The Cox survival analysis showed that the

middle and high risk groups had a higher proportion of

the aMCI-C than the low risk group (Fig. 2D).

Moreover, the middle and high risk groups (mean time to

conversion 35.91 months) progressed more rapidly into

Alzheimer’s disease than the low risk group (mean time

to conversion 42.75 months).

We also investigated the predictive effect of the PRSAD on

the aMCI-C to validate the PRS method and to provide a

reference for the predictive effect of the PRSMDD. The

broad analysis showed that the PRSAD calculated at

PT = 0.4 could predict the aMCI-C (P = 1.20 � 10�9)

(Fig. 2E), explained 18.02% of variance in the aMCI-C

based on 54 106 index SNPs. The high resolution analysis

revealed that the PRSAD computed at PT = 0.352 showed

the highest prediction (P = 7.10 � 10�10), explained

18.55% of variance based on 49 831 index SNPs (Fig. 2F

and Table 2). The aMCI-C group showed higher PRSAD

than the aMCI-S group (P = 1.37 � 10�10) (Fig. 2G and

Table 1). Compared to the low risk group, the middle

(HRs = 1.55, 95% CI = 1.04–2.31, P = 0.032) and high

(HRs = 3.35, 95% CI = 2.30–4.88, P = 3.25 � 10�10) risk

groups had increased risk for the aMCI-C. Cox survival

analysis showed that the high risk group had a much

higher proportion of the aMCI-C than the low risk group

(Fig. 2H). Sensitivity, specificity, accuracy, area under curve

were also provided (Table 2) and the accuracy of the

models was confirmed by 10-fold cross validation

(Supplementary material and Supplementary Table 2).

We also found that aMCI patients carrying APOE "4

showed an increased risk for the conversion than APOE

"4 non-carriers (HRs = 1.78, 95% CI = 1.31–2.42,

P = 2.21 � 10�4); however, the age, educational years at

baseline, and sex were not associated with the conversion.

PRSsMDD could independently predict
the conversion from aMCI to
Alzheimer’s disease

After excluding overlapping SNPs (n = 4711) between

PRSMDD and PRSAD, the PRSsMDD could significantly pre-

dict the aMCI-C (P = 0.002) and explained 4.19% of vari-

ance for the aMCI-C based on 1806 index SNPs,

suggesting that MDD-specific genetic variants have an in-

dependent contribution to the aMCI-C (Table 2). Similarly,

the PRSsAD could significantly predict the aMCI-C

(P = 1.05 � 10�9) and explained 18.09% of variance for

the aMCI-C based on 49 504 index SNPs (Table 2).

Additionally, PRS for MDD-specific and Alzheimer’s dis-

ease-related genetic variants (PRSsMDD + AD) could predict

the aMCI-C (P = 2.26 � 10�10) and explained 19.17% of

variance for the aMCI-C based on 50 527 index SNPs

(Table 2). Compared to PRSAD that explained 18.55% of

variance for the aMCI-C, only 0.33% unique MDD vari-

ants were added to the PRSsMDD + AD; however, the ex-

plained variance increased by 3.34%. To exclude the

potential effects of known Alzheimer’s disease genome re-

gions, we removed SNPs located in 500 kb regions centred

on the top 10 Alzheimer’s disease loci (http://www.alzgene.

org/) (Supplementary Table 3) and the predictive model of

each PRS was still significant (Supplementary Table 4).

To validate the specificity of these index SNPs to MDD

rather than Alzheimer’s disease, LD score regression
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Figure 2 The predictive effects of PRSMDD (A–D) and PRSAD (E–H) on the conversion from aMCI to Alzheimer’s disease,

conversion rate among the bisected PRS groups (I) and mediation analysis (J–K). (A and E) The bar plots show the predictive effects

of the PRS constructed by the best-fit PT and other seven broad PT values (0.001, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5) on the conversion of aMCI. The

numbers above the bars are P-values for the logistic regression between the PRS and aMCI-C. The y-axis shows proportion of variance explained

by the PRS. (B and F) The high resolution PRS analyses identify the best-fit PT for constructing the PRSMDD (PT = 0.009) and PRSAD (PT = 0.352).

The x-axis shows the PT from 0.001 to 1 with an increment of 0.001. The black line shows the P-value of the logistic regression (left y-axis) at

different PT; the dashed line shows numbers of SNPs (right y-axis) at different PT; and the red line connects points at the P values of the broad PRS

analysis. (C and G) Distribution of the PRS measures for aMCI-S and aMCI-C. The y-axis shows the counts of each PRS bin (x-axis). (D and H)

Cox proportional hazard model shows the associations between the PRS and the conversion from aMCI to Alzheimer’s disease at different time

points (x-axis). The y-axis shows the cumulative proportion of aMCI-C for any given follow-up period on the x-axis. The red, green and purple

lines show the low, middle and high PRS groups, respectively. (I) Differences in conversion rate among the bisected PRS groups. (J) Left: The brain

region with significant negative correlations between the PRSsMDD and GMV. Right: The scatter plots show correlations between the PRSsMDD and

GMV in the aMCI-S and aMCI-C groups. (K) The mediation analysis shows that the left hippocampal volume mediates the predictive effect of the

PRSsMDD on the conversion of aMCI. AD = Alzheimer’s disease; PT = P-values threshold of genome-wide association studies; *P5 0.01;

**P5 0.001.

Table 2 The predictive effects of PRS on the conversion of aMCI (n = 322)

PT SNPs iSNPs P R2, % Specificity, % Senstivitity, % Accuracy, % AUC

PRSAD 0.352 2 622 845 49 831 7.10 � 10�10 18.55 71.85 87.17 80.75 0.72

PRSMDD 0.009 13 472 2559 7.49 � 10�5 6.86 68.89 83.43 77.33 0.65

PRSsAD NA 2 618 134 49 504 1.05 � 10�9 18.09 70.24 85.63 80.12 0.70

PRSsMDD NA 8761 1806 1.74 � 10�3 4.19 65.11 81.74 76.01 0.62

PRSsMDD + AD NA 2 631 606 50 527 2.26 � 10�10 19.17 70.37 88.24 81.06 0.75

AUC = area under curve of receiver operating characteristic curve; iSNPs = numbers of index single-nucleotide polymorphisms that constitute PRS; NA = not applicable; PT = P-

values threshold of genome-wide association studies; R2 = Nagelkerke’s pseudo R2 of logistic regression; SNPs = numbers of single-nucleotide polymorphisms that constitute PRS.
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showed that there was not any significant genetic correl-

ation [rg = 0.69, standard error (SE) = 1.32, P = 0.60] be-

tween MDD-specific genetic variants and Alzheimer’s

disease-related genetic variants. Using a Bayesian posterior

probability of 0.90 as a cut-off threshold, there are 1582/

1806 (87.5%) index SNPs that are highly associated with

MDD (Supplementary Fig. 1A), but none of them are asso-

ciated with Alzheimer’s disease (Supplementary Fig. 1B), and

none of these SNPs show significant colocalization between

MDD and Alzheimer’s disease (Supplementary Fig. 1C).

To balance the number of index SNPs used to construct

the PRS, we created (i) PRStsAD, PRSAD for the top 1806

Alzheimer’s disease-specific index SNPs with the same num-

bers of index SNPs as the PRSsMDD; and (ii) PRSsMDD and

PRSsAD under the PT = 0.009 (the same PT as the PRSMDD).

We found that the predictive effect of PRStsAD and

PRSsMDD on conversion risk of aMCI were also significant

(Supplementary material and Supplementary Table 5).

These results indicate that the conversion from aMCI to

Alzheimer’s disease is related to only a small number of

MDD-specific genetic variants but to a large number of

Alzheimer’s disease-specific genetic variants.

When the aMCI patients were divided into the low and

high PRSsMDD groups, the high PRSsMDD group (65.38%)

showed 16.25% higher conversion rate than the low

PRSsMDD group (49.13%) (P = 0.002). When patients

were divided into the double low risk group, low PRSsAD

but high PRSsMDD group, high PRSsAD but low PRSsMDD

group, and double high risk group. There were significant

differences in the conversion rate of the aMCI among these

hierarchical PRS groups (P = 4.26 � 10�7). In the low

PRSsAD group, the aMCI patients with high PRSsMDD

showed marginally higher conversion rate than those with

low PRSsMDD (36.84% versus 51.81%, P = 0.05). In the

high PRSsAD group, the aMCI patients with high

PRSsMDD showed significantly higher conversion rate than

those with low PRSsMDD (63.21% versus 80.26%,

P = 0.002) (Fig. 2I and Table 3). When PRSsMDD and

PRSsAD were trisected into the low, middle and high risk,

there were significant differences in conversion rate among

the nine hierarchical PRS groups (P = 3.23 � 10�6)

(Supplementary materials and Supplementary Table 6).

Hippocampal volume mediates
association between PRSsMDD and
aMCI-C

To identify brain regions whose grey matter volumes were

associated with PRSsMDD, voxel-wise correlations were per-

formed between PRSsMDD and grey matter volume in the

whole brain (Pc5 0.05, voxel-level FWE correction, cluster

size4 200 voxels). The PRSsMDD was negatively correlated

with the grey matter volume of the left hippocampus

(Brodmann area 36; peak MNI coordinate: x = �27,

y = �13.5, z = �21; peak intensity = �5.329; 227 voxels;

Fig. 2J).

Table 4 Top 10 neighbouring genes of the PPI network from PRSsMDD fine-mapping of 1860 genes and PRSsMDD

fine-mapping of 1608 genes

Ranking PRSsMDD fine-mapping of 1860 genesa PRSsMDD fine-mapping of 1608 genesb

Gene symbol Random walk probability Gene symbol Random walk probability

1 APP 6.84 � 10�3 APP 6.78 � 10�3

2 ELAVL1 4.49 � 10�3 ELAVL1 4.49 � 10�3

3 NTRK1 2.21 � 10�3 NXF1 2.25 � 10�3

4 NXF1 2.03 � 10�3 NTRK1 2.17 � 10�3

5 CUL3 1.70 � 10�3 CUL3 1.71 � 10�3

6 MOV10 1.50 � 10�3 MOV10 1.50 � 10�3

7 TP53 1.45 � 10�3 UBC 1.46 � 10�3

8 EWSR1 1.43 � 10�3 TR53 1.32 � 10�3

9 UBC 1.42 � 10�3 EWSR1 1.19 � 10�3

10 TMEM17 1.33 � 10�3 COPS5 1.17 � 10�3

aPRSsMDD genetic variants were fine-mapped into 1860 genes based on the hippocampal-specific regulatory probability between eQTLs and epigenomic features (within a 5-kb

window).
bPRSsMDD genetic variants were fine-mapped into 1608 genes based on physical position of each variant (within a 5-kb window).

The abbreviation of genes is referred to at https://www.ncbi.nlm.nih.gov/gene/.

Table 3 Conversion rates of aMCI in the bisected PRS

groups

PRS groups aMCI-S,

n

aMCI-C,

n

Conversion

rate, %

Low PRSsAD and low PRSsMDD 48 28 36.84

Low PRSsAD and high PRSsMDD 40 43 51.81

High PRSsAD and low PRSsMDD 32 55 63.21

High PRSsAD and high PRSsMDD 15 61 80.26

All 135 187 58.07
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A total of 1806 index SNPs specific to MDD (r25 0.25

within 250-kb window) were included in the calculation of

PRSsMDD after excluding genetic variants common to

PRSMDD (PT = 0.009) and PRSAD (PT = 0.352). We set the

PRSsMDD as independent variable in the mediation analysis

and instrumental variable in the Mendelian randomization

analysis. In the mediation analysis, we found a significant

direct effect from the PRSsMDD to the aMCI group assign-

ment (P50.001); from the PRSsMDD to the left hippocampal

volume (P5 0.01); and from the left hippocampal volume to

the aMCI group assignment (P5 0.001). A significant indir-

ect effect was also found in the left hippocampal volume

(P5 0.001), which accounted for 19.20% of variance for

the aMCI-C in this mediation model (Fig. 2K). In the con-

ventional two-stage Mendelian randomization analysis, we

found a negative association between PRSsMDD and hippo-

campal volume (� =�0.15, SE = 0.06, P = 0.01); the pre-

dicted value of the left hippocampal volume was

significantly associated with the aMCI-C (� = �2.41,

OR = 0.09, SE = 0.78, P = 0.002). Mendelian randomization-

Egger regression indicated no unbalanced horizontal plei-

otropy (intercept = 0.011, P = 0.07) in the association be-

tween left hippocampal volume and aMCI conversion using

PRSsMDD as the instrumental variable. We also found signifi-

cant causal effect of the left hippocampal volume on the

aMCI conversion in the Mendelian randomization-Egger re-

gression analysis (�Egger =�2.12, OR = 0.12, SE = 0.77,

P = 0.002). These results confirmed a causal chain from

PRSsMDD to hippocampal volume to conversion risk of aMCI.

Enrichment analyses using genes
prioritized with hippocampal
biological information

The 8762 SNPs used for calculating the PRSsMDD were

prioritized by integrating the hippocampus-specific eQTL

and epigenomic features. The weight of the prioritization

and the PGC-MDD GWAS P-value of each SNP were im-

ported into the GATES software to fine-map these SNPs

into 1860 significant genes (within a 5-kb window, 5705

SNPs located inside genes, P50.001).

To functionally annotate the 1860 genes, WebGestalt and

GOrilla were applied to identify significant enrichment in

GO and pathways (Fig. 3A–C and Supplementary Tables

7–9). In the annotation of GO, 505/1860 genes were en-

riched in the development process, 855/1860 in the protein

binding, and 738/1860 in membrane part (Fig. 3A and

Supplementary Table 7). Specifically, these genes mainly

over-represented in biological processes of the anatomical

structure morphogenesis (qc = 4.27 � 10�5), cellular devel-

opmental process (qc = 7.08 � 10�4) and development pro-

cess (qc = 1.14 � 10�3) (Fig. 3B and Supplementary Table

8), in the molecular function of the amyloid-b binding

(qc = 8.64 � 10�5), and in the cellular components of the

neuron part (qc = 3.10 � 10�11) and neuron projection

(qc = 1.69 � 10�5) (Fig. 3C and Supplementary Table 8).

In the KEGG pathway analysis, these genes were enriched

in neuronal development-related axon guidance

(qc = 3.95 � 10�3) (Fig. 3C and Supplementary Table 8).

These functional annotations suggest that the PRSsMDD

genes were mainly related to the developmental process,

and involved in the molecular binding between amyloid-b
protein and its precursor, which is a well-known neuro-

pathology of Alzheimer’s disease.

To combine protein-level information, we mapped 1860

genes to the PPI network (642 unmatched genes were

excluded). To illustrate potential functional connectivity of

the remaindering 1218 genes, we used a network-based ap-

proach to identify a tightly connected PPI network (only 846

genes were included in the network). Using the network top-

ology-based analysis, the top 10 neighbouring genes with the

most functional similarity with seed genes were also included

in the construction of the final PPI network consisting of 856

genes. As the most functionally neighbouring genes (Fig. 3D),

the amyloid-b precursor protein (APP) formed the protein basis

of the amyloid plaques in the brain of Alzheimer’s disease

patients. The 856 genes in the final PPI network were enriched

mainly in development processes of the nervous system, such

as nervous system development (qc = 2.83 � 10�5), neuron

projection development (qc = 9.08 � 10�5), neuron projection

guidance (qc = 4.20 � 10�4), neurogenesis (qc = 6.51 � 10�4)

and generation of neurons (qc = 9.37 � 10�4) (Fig. 3D and

Supplementary Table 10).

The prior analyses indicate that PRSsMDD fine-mapping

genes are involved in brain developmental processes. We

further explored in which developmental periods these

genes were over-represented in the hippocampus. The

CSEA online tool was used to explore the temporal-specific

expression of these genes in the hippocampus. Under a pSI

threshold of 0.05, 60 genes showed temporal-specific ex-

pression in the hippocampus in the middle-late foetal de-

velopmental period (qc = 6.02 � 10�4) (Fig. 3E). Under the

most stringent threshold (pSI = 0.001), only cell division

cycle 20B (CDC20B) exhibited a temporal-specific high ex-

pression in the hippocampus in the middle-late foetal stage.

The Human Brain Transcriptome dataset showed that the

CDC20B was highly expressed in the early and late mid-

foetal development period (Fig. 3E).

Among the nine major cell types in the mouse cortex and

hippocampus, eight cell types exist in the hippocampal CA1

(Fig. 4A). The PRSsMDD genes showed substantial over-

representation mainly in the hippocampal pyramidal neurons

(qc = 1.60 � 10�7) and interneurons (qc = 3.61 � 10�7) (Fig.

4B). However, these genes also demonstrated specific expres-

sion in the microglia cells (qc = 0.01) and astrocytes

(qc = 0.01) (Fig. 4B).

Enrichment analyses using genes fine-
mapped based on physical position

We also re-mapped 8762 MDD-specific SNPs into

1608 genes only based on the physical position of each
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variant (within 5-kb window). We found that 1468 genes

were common between the two fine-mapping

methods (with and without hippocampal biological infor-

mation), suggesting that most genes related to these

MDD-specific SNPs are associated with hippocampal gene

expression. We performed enrichment analyses for the

1608 genes and found significant enrichment in develop-

mental process and amyloid-b binding (Supplementary

material, Supplementary Fig. 2 and Supplementary Tables

9 and 10).

Discussion
To our knowledge, this is the first study that integrates

cross-scale neurobiological analyses and functional

Figure 3 Gene enrichment of PRSsMDD fine-mapping 1860 genes. (A) Enrichment of the PRSsMDD genes in GO items. The x-axis shows

the numbers of genes enriched in each item (y-axis). The red, purple, green bars denote the biological process, molecular function and cellular

component, respectively. (B) Top 40 significant enriched GO biological process items of the PRSsMDD genes. The x-axis shows enrichment factor

of each GO item (y-axis). The size of the spheres reflects the number of genes (labelled beside the balls) enriched in each item. The colour of the

spheres demonstrates the significance of the enrichment analyses. (C) Top 20 significant enriched GO molecular function and cellular component

items, and all significant KEGG pathway items of the PRSsMDD genes. The purple, green and grey background colours show the molecular function,

cellular component and KEGG pathway, respectively. (D) Top 40 significant enriched GO biological process items of the PPI network. (E) Left:

PRSsMDD genes were highly expressed in the middle-late foetal developmental period in the hippocampus. Right: CDC20B was highly expressed in

the early and late mid-foetal development periods in the hippocampus. Periods 1–15 are described in Supplementary Table 11. AMY = amygdala;

BP = biological process; CBC = cerebellar cortex; CC = cellular component; CDC20B = cell division cycle 20B; cp = cell projection; GO = gene

ontology; HIP = hippocampus; MF = molecular function; MD = mediodorsal nucleus of the thalamus; NCX = neocortex; pr = positive regulation;

rg = regulation; STR = striatum; tt = transmembrane transporter.
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annotations to investigate the independent predictive

effect of MDD-specific genomic variants on the conver-

sion from aMCI to Alzheimer’s disease and the under-

lying neurobiological mechanisms. The PRSsMDD could

predict the conversion by affecting the hippocampal

volume. These genes were functionally related to the

hippocampal development and amyloid-b binding. In

addition, these genes showed temporal-specific expres-

sion in the hippocampus in the foetal developmental

period and cell type-specific expression in the hippocam-

pal pyramidal neurons and interneurons. These findings

support a model of double attacks of hippocampus to

explain for the neurobiological mechanisms of the inde-

pendent contributions of MDD- and Alzheimer’s disease-

specific genomic variants to the conversion from aMCI

to and Alzheimer’s disease.

PRSsMDD could independently predict
the conversion from aMCI to
Alzheimer’s disease

That Alzheimer’s disease is a progressive polygenic disorder

(Dubois et al., 2007) and no effective therapies at the late

stage makes early diagnosis and treatment to be the only

way to improve prognosis (Chu, 2012). As the putative

premorbid state of Alzheimer’s disease (Mariani et al.,

2007), patients with aMCI have a high risk of developing

into Alzheimer’s disease (Palmer et al., 2008). Because not

all aMCI patients would convert to Alzheimer’s disease, it

is clinically important to predict the conversion from aMCI

to Alzheimer’s disease for early intervention. Consistent

with previous studies (Rodriguez-Rodriguez et al., 2013;

Adams et al., 2015), the PRSAD was found to predict con-

version. More importantly, we found that the PRSMDD

could also predict the conversion of non-depressed aMCI

patients. Thus, the predictive ability of the PRSMDD cannot

be explained by parallel depressive symptoms (Kida et al.,

2016; Mourao et al., 2016; Sacuiu et al., 2016; Barca et al.,

2017) and the coexistence of MDD (Modrego and

Ferrandez, 2004). To exclude the possibility that the pre-

dictive effect of the PRSMDD is driven by genetic variants

common to MDD and Alzheimer’s disease, we found that

the PRSsMDD could also predict the status of aMCI-C. LD

score regression and co-localization analysis were per-

formed to validate that these SNPs calculated for

PRSsMDD are specific to MDD rather than Alzheimer’s dis-

ease. Moreover, aMCI patients with high PRSsMDD showed

14.97% and 17.05% higher conversion rates than those

with low PRSsMDD in the low and high PRSsAD groups,

respectively. These findings suggest that the PRSsMDD has

an independent contribution to the conversion from aMCI

to Alzheimer’s disease.

In terms of the clinical prediction for the conversion from

aMCI to Alzheimer’s disease, aMCI patients with the

double high risk (high PRSsMDD and high PRSsAD)

showed a much higher conversion rate than those with

the double low risk (low PRSsMDD and low PRSsAD)

(89.65% versus 33.33%). With the increased availability

and decreasing cost of the sequencing technique, the gen-

omic data of aMCI patients could be easily obtained, which

could be used to construct the PRSsMDD and PRSsAD using

the method of this study. In clinical practice, one could

jointly use the PRSsMDD and PRSsAD to select aMCI pa-

tients with a much greater risk for Alzheimer’s disease.

Figure 4 Cell type-specific expression analyses. (A) The frequency of the nine major cell types in the CA1 and S1 (top) and only in the

CA1 (bottom) of the mouse brains (Zeisel et al., 2015). (B) The first bar plot shows the numbers of genes in eight labelled cell types of

hippocampus from the Zeisel et al. study. The second bar plot shows the numbers of overlapping genes between PRSsMDD fine-mapping 1860

genes and significantly expressed genes in each cell type of hippocampus. The last three bar plots show the cell type-specific expression results of

the PRSsMDD-related genes in the eight labelled cell types of the hippocampus. The dashed red line shows the significant level under qc5 0.05 in

FDR-BH correction. CA = cornu ammonis; GMV = grey matter volume; OR = odd ratios; S1 = somatosensory cortex.
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Appropriate intervention procedures for these aMCI pa-

tients may prevent or delay them from progressing into

Alzheimer’s disease.

Hippocampal volume mediates the
prediction of PRSsMDD in aMCI-C

Correlation, mediation and Mendelian randomization ana-

lyses revealed that hippocampal volume mediated the pre-

dictive effect of the PRSsMDD on the conversion from aMCI

to Alzheimer’s disease. It has been recognized that reduced

hippocampal volume is the most consistent subcortical ab-

normality in MDD patients in a meta-analysis of 1728 pa-

tients and 7199 controls (Schmaal et al., 2016). The genetic

variants have been proposed as an important cause for the

reduced hippocampal volume in MDD. For example, MDD

patients with risk alleles show a smaller hippocampal

volume than those without risk alleles (Egan et al., 2003;

Frodl et al., 2004, 2007, 2012; Kohli et al., 2011). The

reduction in hippocampal volume has been attributed to

reduced gene expression in the hippocampus (Egan et al.,

2003; Kohli et al., 2011). In children with few life stress

events, the high PRS constructed by depression-related

stress system genes could predict reduced hippocampal

volume (Pagliaccio et al., 2014). Moreover, in healthy in-

dividuals without depressive episodes, the depression-

related risk-allele carriers also displayed a reduced hippo-

campal volume compared with non-carriers (Frodl et al.,

2008). These findings suggest that genetic variants for

MDD could result in the reduction in the hippocampal

volume in different populations.

It is well known that the volumetric reduction in the

hippocampus is the most prominent early pathological fea-

ture of Alzheimer’s disease (Yang et al., 2012) and one of

the most reliable predictive measures for the conversion

from aMCI to Alzheimer’s disease (Brueggen et al.,

2015). The additional burden to the hippocampus by

MDD-specific genetic variants may exacerbate hippocampal

atrophy and facilitate the conversion from aMCI to

Alzheimer’s disease. Thus, the model of double attacks on

the hippocampus may explain the increased predictive

value of the PRSsMDD on the conversion from aMCI to

Alzheimer’s disease.

Neurobiological mechanisms
underlying the predictive effect
of PRSsMDD on aMCI-C

To understand why hippocampal volume could mediate the

predictive effect of the PRSsMDD on conversion, the MDD-

specific genetic variants were fine-mapped into the most

common genes between the two different strategies (with

and without hippocampal biological information), which

suggested that most genes related to these MDD-specific

SNPs are associated with hippocampal biological

information.

The GO annotation revealed that MDD-related genes

were related to amyloid-b binding, which is also supported

by the PPI network analysis, showing that APP was the

most important neighbouring gene in the network con-

structed by the MDD-related genes. The increased hippo-

campal amyloid-B, which is an important

neuropathological change in Alzheimer’s disease, is also

related to depression (Rapp et al., 2006) or depressive

symptoms (Donovan et al., 2018). These findings suggest

that MDD-related genes may be involved in amyloid-b
binding, an important neuropathological process of

Alzheimer’s disease.

The enrichment analysis of the biological process re-

vealed that MDD-related genes were mainly involved in

the nervous developmental process. The temporal-specific

expression analysis further indicated that these genes were

mainly expressed in the middle to late foetal periods in the

hippocampus, which is in line with the critical developmen-

tal period of hippocampal neurons (Tran and Kelly, 2003).

For example, CDC20B showed the highest expression in

the hippocampus in the middle-late foetal periods (Fig.

3E). This gene is a developmental regulator of hippocampal

neurons (Kim et al., 2009; Yang et al., 2010) and plays an

essential role in dendritic morphogenesis (Kim et al., 2009),

axon growth (Yamada et al., 2013) and presynaptic differ-

entiation (Yang et al., 2009), all of which are associated

with hippocampal volume (Stockmeier et al., 2004; Duman

et al., 2016). In addition, cell type-specific expression con-

firmed that these genes were mainly expressed in the hip-

pocampal pyramidal neurons and interneurons. These

findings suggest that MDD-related genes affect the hippo-

campal volume via modulating the gene expression of hip-

pocampal neurons, which are the main cell types with

prominent pathological impairment in Alzheimer’s disease

(Blazquez-Llorca et al., 2011).

Limitations

Two limitations should be mentioned regarding this study.

First, only volumetric measure was used as the intermediate

phenotype. Consequently, we cannot exclude the possibility

that other intermediate phenotypes may also mediate the

association between PRSsMDD and aMCI conversion.

Second, the cell type-specific expression analysis was

based on the hippocampus of mouse rather than human,

because there are no publicly available cell type-specific

expression data in the human hippocampus.

Conclusion
In this study, we found that the PRSsMDD could independ-

ently predict conversion from aMCI to Alzheimer’s disease,

and the combined use of the PRSsMDD and PRSsAD could

select aMCI patients with a much higher risk for conver-

sion. The predictive effect of the PRSsMDD on conversion
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may be mediated by the hippocampus via affecting its early

developmental process and amyloid-b binding.
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