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Abstract

Cardiovascular disease (CVD) remains the leading cause of death in the Western world. Despite 

advances in the prevention and in the management of CVD, the role of RNA epigenetics in the 

cardiovascular system has been until recently unexplored. The rapidly expanding research field of 

RNA modifications has introduced a novel layer of gene regulation in mammalian cells. RNA 

modifications may control all aspects of RNA metabolism, and their study reveals previously 

unrecognized regulatory pathways that may determine gene expression at a post-transcriptional 

level. Understanding the role of RNA modifications in CVD may lead towards a better 

understanding of disease mechanisms and the development of novel biomarkers or therapeutic 

strategies. In this review, we highlight the most recent and major reports in the field of RNA 

methylation and adenosine to inosine RNA editing related to the cardiovascular field and we 

discuss how this breakthrough will advance the field of precision medicine.

1. Introduction

Cardiovascular disease (CVD) is the leading cause of death in Western society, and places a 

significant health and economic burden on the US and the world. As instances of obesity, 

high cholesterol, high blood pressure, and diabetes / metabolic syndrome increase, so too 

does the risk of CVD [1]. CVD encompasses a wide range of disorders, including coronary 

heart disease and atherosclerosis, genetic cardiomyopathies, congenital cardiovascular 

defects, heart rhythm disorders, valvular diseases, and many others. Despite recent 

advancements in the early diagnosis and management of many of the above disorders, CVD 

mortality throughout the world remains higher than cancer. Treatment strategies for CVD 
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have not often been tailored to the specific needs of the patient in the past, but the landscape 

for precision medicine in CVD is changing. In recent years, genetic editing and gene-based 

therapeutics have been applied in the clinic, and remarkable advances are being made in 

patients with Duchenne muscular dystrophy, spinal muscular atrophy, and CVD [2–8]. The 

notion that messenger RNA (mRNA) is not a static molecule, but is in fact dynamically 

regulated by a diverse array of modifications, has broadened the potential for RNA-based 

therapeutics (antisense oligonucleotides, aptamers, siRNAs, miRNAs, and CRISPR/Cas9) in 

multiple disease systems including CVD, and many clinical trials for RNA therapies are in 

progress [9]. Despite the attractiveness of these RNA-based therapeutics for disease 

management, however, problems with stability, ease-of-delivery, and off-target effects have 

pushed ongoing research to discover additional, novel mechanisms to regulate RNA and 

influence disease pathophysiology [10].

RNA contains over 140 distinct chemical modifications, many of which were first identified 

in tRNAs and other non-coding RNAs in a diverse range of organisms [11]. RNA 

methylation is the most prevalent chemical addition to RNA nucleotides, and can affect 

guanosines (7-methylguanosine, m7G [12]) cytosines (5-methylcytosine, m5C [13]; 5-

hydroxymethylcytosine, hm5C [14]), adenosines (N1-methyladenosine, m1A [15, 16]; N6-

methyladenosine, m6A [17, 18]; N6,2’-O-dimethyladenosine, m6Am [19]), and ribose (2’-

O’methylation, 2’-OMe or Nm [20]). The most prevalent of these, m6A, was first identified 

in 1974, and in recent years has captured scientific attention as a conserved and dynamic 

moiety differentially regulated in many cellular- and state-dependent contexts [21–23]. m6A 

occurs in ribosomal RNA (rRNA) [17], transfer RNA (tRNA) [24], small nucleolar RNA 

(snoRNA) [25], long noncoding RNA (lncRNA) [26], circular RNA (circRNA) [27], 

microRNA (miRNA) [28], and messenger RNA (mRNA) [22]; it is present on over 7000 

(roughly 20%) human mRNAs, distributed throughout the coding and untranslated regions, 

and enriched in long last exons and upstream of the stop codon [17]. m6A locations 

throughout mRNA, and especially in the untranslated regions, hint to the modification’s 

function – a putative connection to RNA processing and translation. Ongoing studies are 

aimed at defining the precise role of m6A in cell processes and disease states, as well as 

investigating the potential of manipulating m6A to alter these events.

Although m6A is the most prevalent mRNA modification, it is not the only form of 

methylation to influence RNA metabolism. m1A, known to regulate the stability of tRNA 

and rRNA, can dramatically alter mRNA-protein interactions through electrostatic effects 

[15, 16]. Its position near translation start sites may upregulate translation, and its deposition 

is, like m6A, dynamically regulated during stress [16, 29]. m6Am can also have a prominent 

effect upon translation efficiency by preventing decapping and miRNA-mediated mRNA 

degradation, thereby stabilizing mRNA [19]. m5C modifications in tRNA can control cell 

growth and differentiation, and although also deposited on mRNA and lncRNA by the 

methyltransferase NSUN2, the precise function of this modification in biological function 

remains unknown [13, 30]. Finally, like m1A, 2’-O-Me on ribose can affect RNA secondary 

structure and accessibility to RNA-binding proteins [31]. Although a great deal of work has 

focused on identifying the role of methyl modifications during RNA metabolism, additional 

studies are necessary to elucidate the full range of regulatory mechanisms afforded by RNA 

methylation.
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Another class of modifications are the substitutional RNA modifications. In RNA editing, 

RNA molecules are enzymatically modified on specific nucleic acids following 

transcription. RNA editing was first identified more than 30 years ago as an unwinding 

activity of transfected RNA duplexes in Xenopus laevis embryos [32, 33]. This was the 

result of covalent modification of RNA and was specific to double-stranded RNAs [34]. 

Editing is an important mechanism regulating gene expression at the RNA level, but only 

recently have methodological advances enabled a thorough investigation and highlighted an 

essential role for editing in cell physiology [35]. RNA editing is a ubiquitous and crucial 

posttranscriptional modification of the genome-encoded RNA sequence that modifies 

primary RNA transcripts and provides an additional layer of gene regulation to expand both 

the protein-coding potential of the transcriptome and the range of RNA transcript functions.

The most prominent form of RNA editing is adenosine to inosine (A-to-I) deamination, 

catalysed by the adenosine deaminases acting on RNA-1 and −2 (ADAR-1/−2) in mammals 

[36]. Another less prevalent form of RNA editing is the hydrolytic deamination of cytidine 

to uracil (C-to-U), catalysed by the cytosine deaminases of the apolipoprotein B mRNA 

editing catalytic polypeptide family APOBEC1 and APOBEC3A [37]. RNA editing occurs 

only on double-stranded RNAs (dsRNAs), with the majority of editing sites present in 

repetitive sequences such as Alu and long interspersed elements (LINEs) located in introns 

and 5’ and 3’ untranslated regions (UTR). Different editing enzymes demonstrate specific 

editing preferences: for example, ADAR1 appears to preferentially edit the Alu elements in 

non-coding regions while ADAR2 targets more non-repetitive sequences in exons or 

primary/precursor microRNAs [38]. Recently, millions of adenosines (mostly within Alu 
repeats) in the human transcriptome have been mapped as potential sites of ADAR-mediated 

A-to-I editing, demonstrating the likely wide-ranging impacts of this modification [39].

This review will discuss in more detail the role of m6A and A-I editing, as these two RNA 

modifications have been recently implicated in crucial regulation of cardiovascular 

homeostasis and stress responses [40–43]. Specifically, we will discuss the impact of m6A 

upon RNA regulation, including the m6A ‘life cycle’ (deposition, recognition, and removal), 

m6A alterations during development and various diseases, including recent studies 

investigating m6A in cardiac disease, and finally the potential of m6A modulation in 

understanding CVD pathogenesis and therapeutic design. Key aspects related to m6A are 

also summarized in figure 1. We will also present a brief overview of A-to-I RNA editing 

and its impact on cardiovascular RNA epigenetics (visualized in figure 2). Recent reviews 

are also available for a deeper understanding of the molecular mechanisms and the 

pathophysiological process triggered by RNA editing [36, 44, 45].

2. m6A and A-to-I RNA modifications control mRNA fate

2.1 m6A dictates mRNA metabolism

As the most abundant internal mRNA modification, N6-adenosine methylation can affect 

almost every aspect of RNA metabolism, from splicing and processing in the nucleus to 

translation and degradation in the cytoplasm (see Figure 1). Typically, m6A is deposited onto 

mRNA at a conserved consensus sequence, RRm6ACH ([G/A/U][G/A]m6AC[U/A/C]), at 

particular locations on mRNA that can dictate the modification’s function [23, 46]. The 
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process of m6A deposition and removal is highly regulated, and differs significantly based 

on cell type, differentiation state, presence or absence of stress, and countless other factors. 

Furthermore, m6A recognition (‘reading’) is equally (if not more) complex, and recent 

studies have focused on identifying m6A reader proteins and investigating how similar 

reader enzymes can have separate and unique impacts on RNA fate [47–49]. In addition to 

the direct effect of m6A and its recognition by specific proteins, m6A also acts indirectly on 

RNA molecules by weakening local RNA duplexes, which opens up the sequence to 

additional RNA-binding proteins (termed the ‘m6A switch’) (see Figure 1, path B) [50–52].

2.2 The m6A lifecycle: writers, readers, and erasers

The components of the m6A methyltransferase complex were discovered starting in 1994 

with the work of Bokar, Rottman, and colleagues, who cloned methyltransferase-like 3 

(METTL3, also known as MTA-70, MTA, or IME4) [53]. This was followed closely by the 

discovery of the METTL3 adaptor protein Wilms tumor 1-associated protein (WTAP) and 

later, METTL14 and KIAA1429 (also called VIRMA) [54–57]. METTL3 is the canonical 

catalytic enzyme responsible for m6A addition to mRNA, although all parts of the 

methyltransferase complex are required for efficient m6A deposition. Despite METTL14’s 

significant (approximately 43%) sequence homology with METTL3 and the presence of 

similar motifs required for catalytic activity, several studies have determined that METTL14 

is in fact not catalytically active and instead acts as a scaffold for RNA binding to promote 

METTL3 activity; therefore METTL14 is dubbed a ‘pseudomethyltransferase,’ albeit an 

indispensable component of the methyltransferase complex [58–60]. WTAP mediates 

METTL3-METTL14 localization to nuclear speckles and is a similarly necessary 

component of the complex, as is KIAA1429/VIRMA (although the function of this 

component is not yet understood) [54]. Finally, recent work has identified RBM15 and 

RBM15B as additional components of the methyltransferase complex, which confer 

targeting specificity to certain adenosines [26, 61, 62].

Arguably the event that re-kindled scientific excitement towards m6A was the discovery that 

the fat mass and obesity-associated (FTO) protein, which regulates metabolism and energy 

utilization and is implicated in obesity, is an m6A demethylase or ‘eraser’, thus implicating 

m6A in human physiological processes [63]. FTO’s ability to erase m6A marks suggested 

the dynamic, regulatory, and potentially targetable nature of mRNA methylation (Fig. 1, path 

A). Despite initial enthusiasm for this protein as both a demethylase and a culprit in obesity, 

several studies have recently demonstrated that obesity-associated mutations in FTO do not 

affect the FTO protein, but rather the neighboring genes Irx3 and Rpgrip1l [64, 65]. In 

addition, several groups have hinted that m6A may not be the only FTO substrate [19]. 

Antibodies to m6A do not discriminate between m6A and the similar m6Am in m6A-RNA 

Immunoprecipitation followed by RNA sequencing (MeRIP-seq) experiments, and Mauer et 

al. demonstrated that FTO knockdown significantly affects m6Am, but does not appreciably 

increase m6A levels in vitro [19]. Despite this, there remains significant controversy about 

FTO substrate specificity, as Wei et al have demonstrated that FTO preferentially targets 

nuclear m6A in various RNAs and both m6A and m6Am in cytoplasmic mRNA [66]. They 

have addressed controversial FTO-m6Am specificity by demonstrating that indeed FTO 

demethylates m6Am with higher affinity in vitro, but in various cell lines FTO may act on 
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both substrates, a system which depends on cell state and even RNA species [67]. A 

common theme surrounding methylation deposition and removal appears to be extreme 

complexity in regulation, which is not fully understood. In the future, this intricate system 

may be exploited to target particular mRNAs, or even specific m6A moieties, to regulate 

physiological processes.

In addition to FTO, alkB homolog 5 RNA demethylase (ALKBH5) is an m6A demethylase, 

but it does not act on m6Am. ALKBH5 is localized in the nucleus, hinting that demethylation 

can rapidly occur after methylation, before the mature mRNA is shuttled to the cytoplasm 

[68]. However, due to its nuclear location ALKBH5 is able to demethylate other m6A-

containing noncoding RNAs, such as the lncRNA MALAT1 and some small nuclear RNAs 

(snRNAs) and snoRNAs [25]. Murine global ALKBH5 knockout confers a relatively mild 

phenotype - knockout mice have defective spermatogenesis but are otherwise normal, 

suggesting that ALKBH5-mediated m6A demethylation plays a subtle role in signaling that 

may be compensated by other pathways (Figure 1, path A) [68].

The final class of proteins directly involved in RNA metabolism are the m6A readers or 

YTH proteins (YT521-B homology), which fall into three major classes: the DF family 

(YTHDF1, 2, and 3), YTHDC1, and YTHDC2. The YTH domain of these 5 proteins is the 

conserved site of selective m6A binding [69]. The DF family members are highly similar to 

each other, reside in the cytoplasm, and have a large low-complexity domain enriched in Q, 

N, and P residues [69]. DC1 appears to be the major nuclear m6A reader and can mediate 

splicing m6A-regulated splicing events (see Figure 1, path C), whereas DC2 binds 

noncoding RNAs and intronic and intergenic regions, but its function is poorly understood 

[26, 70, 71]. As the DF readers are a major determinant of the impact of a particular m6A 

modification on RNA metabolism, they will be discussed in more detail below.

2.3 m6A-protein interactions specify RNA fate

The YTHDF proteins were originally thought to have separate, discrete functions on m6A-

modified mRNAs. He and colleagues first studied the function of YTHDF2, demonstrating 

that YTHDF2 knockdown induces half-life increases in several thousand transcripts, 

concluding that YTHDF2-m6A binding induces mRNA instability [66]. Despite this, 

ribosome profiling experiments showed a negligible effect of YTHDF2-m6A binding on 

translation efficiency, suggesting that this reader may be influencing mRNA transcript 

turnover more than translation efficiency [66]. More recently, YTHDF2 has been shown to 

recruit the CCR4-NOT deadenylase complex to m6A-containing mRNAs, thereby directing 

them to cytoplasmic P bodies and promoting their decay (Figure 1, path D) [72].

Similarly, the reader YTHDF1 is also directly involved mRNA stability and translation. The 

He group found that, in contrast to YTHDF2, YTHDF1 acts to promote translation by 

directly interacting with eiF3 and other translation initiation factors, promoting cap-

independent translation of m6A-containing mRNAs [49]. Although first thought to have 

Different mRNA targets than YTHDF2, recent work has shown that YTHDF1 in fact shares 

the same pool of mRNA targets as its family members YTHDF2 and YTHDF3 (Figure 1, 

path D) [26].
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The final DF reader, YTHDF3, does not seem to have as clearly defined a function as 

YTHDF1 or YTHDF2. In fact, YTHDF3 interacts cooperatively with YTHDF2 to enhance 

mRNA decay, but can also act in concert with YTHDF1 to promote translation of targets 

[47, 73]. He’s group suggested a dynamic model by which m6A-methyated mRNAs are 

shuttled out of the cytoplasm and recognized by YTHDF3, which then acts as a “buffering 

agent” to mediate interactions with YTHDF1 (for translation) or to YTHDF2 (for decay) 

(Figure 1, path D) [73]. This system would allow for precise control of protein production 

during states in which cells require rapid protein expression turnover, such as cell 

differentiation and circadian rhythm. For more detailed reviews on m6A-binding proteins 

and impacts on RNA metabolism, see Refs. [61, 69, 74, 75].

2.4 A-to-I RNA editing in RNA metabolism

Similar to m6A modifications, RNA editing can affect every aspect of RNA metabolism, 

from transcription to RNA degradation. ADAR1 and ADAR2 exert a similar catalytic 

activity that modifies adenosine to inosine. RNA editing by ADARs may control RNA 

metabolism through Differential regulation of the binding of RNA-binding proteins to their 

targets [76]. This is dependent on the precise location of editing on the RNA segment. 

Edited transcripts have varied fates, which may be either physiological or pathological, 

depending on context (Figure 2). RNA editing may participate in genome recoding events at 

the RNA level which can in turn influence protein function [76]. Since RNA editing occurs 

cotranscriptionally, it can regulate alternative splicing, [77] RNA silencing, [78] trapping of 

the RNA in the nucleus, [79] or induce RNA degradation [80]. The many Different fates of 

edited RNA transcripts suggest that ADAR-mediated editing acts to regulate RNA 

metabolism in various ways depending on cell state (Figure 2).

3. m6A and A-to-I RNA editing regulate cellular processes: implications for 

CVD

3.1 m6A in development

During development, cells respond to an array of signals dictating how they must 

Differentiate spatially and functionally, and this requires precise coordination of 

transcription and translation to guarantee that the necessary genes are expressed at 

appropriate times. As previously described, m6A deposition, recognition, and removal can 

dramatically impact the stability and translation of certain mRNAs, and therefore m6A was 

hypothesized to play a role in stem cell differentiation. METTL3 knockout in mouse 

embryonic stem cells prevented differentiation and instead maintained cells in a naïve 

pluripotent state [81, 82]. In addition, several transcripts essential for maintaining 

pluripotency in humans and mice (such as Nanog) are normally m6A methylated and thereby 

targeted for degradation [81–83]. The impact of m6A upon differentiation is so significant 

that global knockout of METTL3 in mice is lethal during early development [82]. 

Interestingly, as previously discussed, global knockout of the demethylase ALKBH5 

produces mice with a relatively mild phenotype, namely impairments in testes development 

and spermatogenesis, and these defects have been hypothesized to be caused by aberrant 

gene expression regulation [68]. Noticeably similar phenotypes (i.e. developmental 
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impairment) are obtained between global METTL3 knockout, global ALKBH5 knockout, 

and germ-cell-specific METTL3 knockout (which also causes depletion of spermatogonial 

stem cells and sterility) [84]. This reinforces the notion that proper m6A deposition, 

recognition, and removal is necessary for coordinated expression of pluripotency and lineage 

commitment markers and proper, timely cellular differentiation.

3.2 ADAR1 and ADAR2 in development

RNA modifications catalysed by ADAR1 or ADAR2 are an essential component of life, and 

therefore homeostatic and regulated levels of these enzymes are critical. Genetic ablation of 

either ADAR1 [85] or ADAR2 [86] in mice led to either prenatal or early postnatal lethality, 

highlighting the importance of RNA editing in normal physiology. ADAR1 seems to play an 

essential role in haematopoiesis, organ homeostasis, and suppression of innate immune 

system activation [87]. However, the exact mechanisms at the cellular level are poorly 

understood [88]. In contrast, ADAR2−/− mice are prone to seizures and die prematurely 

before P20, caused by neuronal death after excess influx of Ca2+ through the unedited 

glutamate receptor [86]. In this case, RNA editing of the glutamate receptor pre-mRNA is 

essential for the physiologic function of this gene. Although ADAR1 and ADAR2 possess 

the same deaminase domain, the site of RNA editing and the RNA molecules being targeted 

are subtly Different and may explain the Different phenotypes observed.

3.3 m6A in stress responses

Environmental perturbations and cellular stress have profound effects on gene expression 

and translation, and given the dynamic nature of m6A modifications and their ability to 

influence mRNA metabolism, several studies have focused on the role of m6A in cell stress. 

Zhou et al. discovered that following heat shock, increased m6A methylation in the 5’UTR 

promotes translation initiation in a cap-independent manner [89]. This response is directly 

linked with increased expression of YTHDF2, which the authors demonstrated directly 

competed with FTO in the nucleus to bind m6A on select heat-shock-response mRNAs and 

promote their translation [89]. Similarly, Xiang et al. showed that METTL3 activity, and 

therefore presence of m6A, was required for efficient repair of UV-induced DNA damage in 

a human osteosarcoma cell line [90]. In this scenario, m6A is necessary for timely 

localization of the DNA repair enzyme DNA Polymerase κ (Polκ) to the site of DNA 

damage [90]. Finally, a recent study has examined the roles of both m6A and m6Am 

(m6A/m) in stress response regulation in a mouse model of fear behavior and human Major 

Depressive Disorder (MDD); m6A/m changes alter transcriptome regulation following acute 

stress in mice, and the authors propose that m6A/m regulation in the peripheral blood of 

MDD patients may approximate the brain’s response to the same modifications [91]. A clear 

understanding of which transcripts are methylated during stress, and furthermore their larger 

effects on the cell, will likely be complicated by the diverse stress-response mechanisms 

employed by Different cell types.

m6A is crucial for stem cell fate and regulation of the stress response, and therefore seems to 

have a natural connection to cancer biology. Aberrant FTO expression has been described in 

certain subtypes of acute myeloid leukemia (AML), where forced FTO expression enhances 

AML cell survival and proliferation by decreasing levels of ASB2 and RARA, suggesting 
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FTO as an ‘oncogenic m6A demethylase’ [92]. Notably, this is Different from the 

observation that many transcripts are stabilized by demethylation, e.g. by overexpression of 

FTO. Similarly, the demethylase ALKBH5 has been shown to enhance self-renewal of 

glioblastoma stem cells via demethylation and subsequent upregulation of FOXM1, and to 

promote proliferation of breast cancer stem cells via NANOG in a similar manner [93, 94]. 

As the major components of the methyltransferase complex, METTL3 and METTL14 has 

also recently been implicated in cancer pathogenesis. Lin and Choe et al first reported that 

METTL3 interacts with cap-dependent translation machinery, specifically eiF3, to promote 

the translation of oncogenes such as EGFR and TAZ, and furthermore that METTL3 is 

required for the proliferation of lung adenocarcinoma cells [95]. Subsequently, the 

methyltransferase writer complex was confirmed to be crucial for AML progression in three 

independent studies [96–98]. These studies, which have been reviewed extensively 

elsewhere, ([69, 99]) demonstrate the importance and specificity of m6A ‘writing’ and 

‘erasing’ in Different cancers, especially leukemias, and the potential therapeutic benefit 

m6A modulation may provide. Despite this, future work is necessary to fully understand and 

exploit methylation-dependent transcriptome changes during stress and cancer, and these 

will likely vary depending on the type of cancer and the cellular environment which it 

creates.

3.4 A-to-I RNA editing in stress responses

Accumulating evidence suggests that cellular stress responses are critically regulated by 

RNA editing. The first work on this area showed that disruption of the dADAR gene in 

Drosophilia melanogaster leads to heat shock vulnerability and necessitates increased 

adaptation periods after oxygen deprivation [100]. Following this, it was suggested that A-

to-I RNA editing may be one of the mechanisms cells use to regulate changes in gene 

expression after hypoxia, as RNA editing patterns are altered after hypoxia in mammalian 

cell lines. In addition to hypoxia, Differential regulation of ADAR1 has been demonstrated 

following inflammation [101] and increased oxidative stress [102]. Environmental factors 

such as energy and nutrient deprivation have been also shown to influence the expression or 

activity of ADARs [103, 104]. All these stress responses are firmly associated with 

cardiovascular disease, however there is little known at transcript level regarding the specific 

role of A-to-I RNA editing in these pathologies.

3.5 mRNA methylation and demethylation in cardiac disease

Given the explosion of studies investigating the role of m6A in development, stress 

responses, and cancer, it is not surprising that there has recently been interest in elucidating 

the role of m6A in cardiovascular health and disease. The importance of m6A for proper 

timing and regulation of the circadian rhythm hinted to its connection with cardiovascular 

disease, as misalignment of the circadian clock is also shown to increase CVD risk factors 

(hypertension, inflammatory markers, etc.) in humans [105]. In addition, METTL3 and 

appropriate m6A deposition is necessary for directed differentiation of mouse embryonic 

stem cells into cardiomyocytes and for the maintenance of MyoD in proliferative skeletal 

muscle myoblasts, underscoring the importance of this modification in muscle physiology 

[81, 106].
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Two studies have been recently published investigating the role of m6A, through modulation 

of either FTO or METTL3, in cardiac remodeling and function following stress [40, 41]. 

The first of these studies, by the Sahoo group, examined the functional effect of FTO on 

cardiac contractile function and contractile transcripts during both cardiac homeostasis and 

myocardial ischemia-induced heart failure. They found that m6A is increased in failing 

human, pig, and mouse hearts, hinting at the modification’s clinical relevance in cardiac 

disease. MeRIP-seq experiments identified hypermethylation following myocardial 

infarction in mice in transcripts associated with cardiac hypertrophy, contraction, and 

sarcomere dynamics (NPPA, SERCA2a, MYH7, etc.) [40]. In addition, the authors show a 

corresponding decrease in FTO expression levels during heart failure, and reasoned that 

increased FTO expression could attenuate maladaptive cardiac remodeling following 

myocardial ischemia [40]. FTO knockdown induced arrhythmic events in primary isolated 

cardiomyocytes as well as proarrhythmic remodeling and altered ventricular repolarization 

in mice lacking FTO. Conversely, FTO overexpression attenuated hypoxia-induced 

cardiomyocyte dysfunction and restored calcium handling and sarcomere dynamics [40]. 

The authors of this study concluded that, due to m6A-mediated downregulation of several 

calcium-handling and sarcomere contractile transcripts and corresponding decreased protein 

expression, forced expression of FTO attenuated ischemia-induced cardiac remodeling and 

may therefore represent a potential therapeutic target [40]. Overall, this study presents a 

novel role for the demethylase FTO in the regulation of cardiac contractility and remodeling 

following ischemic injury.

Recently, our group has published a similar study examining the effects of m6A and its 

writer, METTL3, on cardiac homeostasis and hypertrophy. We have found that m6A is a 

dynamic modification increased in specific transcripts (including members of the Mitogen-

Activated Protein Kinase (Mapk) family) in isolated primary cardiomyocytes stimulated to 

hypertrophy, suggesting that METTL3 and m6A act to regulate the hypertrophic response 

[41]. Cardiomyocyte-specific METTL3 overexpression both in vitro and in vivo stimulates 

physiological cardiomyocyte hypertrophy, and interestingly does not induce cardiac 

dysfunction in METTL3-overexpressing mice following long term pressure-overload stress 

[41]. In contrast, cardiomyocyte-specific METTL3 knockout prevents hypertrophy in vitro 
and negatively impacts cardiac homeostasis in vivo; METTL3-knockout hearts develop 

maladaptive eccentric remodeling and cardiac functional defects with aging and rapid, 

progressive dysfunction following acute pressure-overload stress [41]. Interestingly, the 

defects in hypertrophy seen in METTL3 knockout mice seem to affect cardiomyocyte 

morphology prior to the development of functional defects, suggesting that m6A content is 

crucial for regulating cardiomyocyte geometry and structural adaptation to stress prior to 

symptom onset [41]. In fact, it appears that m6A is both necessary and sufficient for cardiac 

hypertrophy to occur, and therefore targeting the m6A-METTL3 pathway is a potential, 

novel therapeutic avenue for patients in which cardiac hypertrophy is aberrant and 

homeostasis is perturbed.

3.6 A-to-I RNA editing in CVD

The relevance and mechanistic role of adenosine to inosine RNA editing in the 

cardiovascular system and disease is largely unknown, with the exception of only few 
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reports documenting a critical role of RNA editing in cardiovascular biology. A pilot study 

towards this aim has previously reported that children with cyanotic congenital heart disease 

manifested significantly higher rates of A-to-I RNA editing in the MED13 RNA than 

acyanotic, suggesting that RNA modification may influence the cellular and metabolic 

pathways in congenital cardiac defects [42]. We have recently shown that ADAR1 plays a 

critical role in the regulation of proinflammatory endothelial cells. Specifically we described 

that ADAR-1 induced A-to-I RNA editing controls the mRNA stability of the extracellular 

matrix degradation enzyme cathepsin S, and that the increase of ADAR1 expression in 

atherosclerotic inflammatory diseases results in increased expression of cathepsin S [38]. 

Interesting other findings have also contributed to establishing a link between RNA editing 

and CVD. Fei et al unraveled a new mechanism of contractile protein repression in smooth 

muscle cell (SMC) dedifferentiation through ADAR1-mediated RNA editing [43]. As 

mentioned previously, miRNA can also be affected by RNA editing. The editing of certain 

miRNAs such as miR487b, which is increased in murine muscle tissue during postischemic 

neovascularization, results in a new proangiogenic RNA with Different target specificity 

[107]. More recently, Jain et al demonstrated that Filamin A pre-mRNA editing by ADAR2 

triggers a Q-to-R codon exchange at the end of exon 42 which regulates the activity of key 

smooth muscle contraction regulators such as PLC and ROCK machinery [108]. Lack of 

editing in Filamin A pre-mRNA produces a Filamin A isoform that only encodes a 

glutamine residue (Q) leading to mislocalization of p190RhoGAP, misregulation of PLC and 

ROCK signaling, increased MLC phosphorylation, aortic hypercontraction, thickening of the 

smooth muscle layer, and increased perivascular collagen deposition [108]. Consequently, 

loss of Filamin A editing leads to persistently elevated diastolic blood pressure resulting in 

left ventricular hypertrophy in mice [108].

4. Conclusions and Future Perspectives

The above studies contribute to a field of cardiovascular epitranscriptomics that is still in its 

infancy, and more work will be necessary to determine how m6A writers, erasers, and 

readers, as well as ADAR-associated events, are able to influence cardiac function and 

pathophysiology. Research will no doubt require focus on unraveling the complexities 

associated with this field, such as the importance of m6A in cardiomyocytes versus other cell 

types in the heart, Different forms of cardiac injury (ischemia +/− reperfusion, pressure 

overload, response to neurohumoral stimulation, etc.), and the interplay between the 

cardiovascular system and other organ systems frequently perturbed during CVD. As it 

appears that a proper amount of m6A is necessary on very specific targets is necessary for 

proper cardiomyocyte function, both at baseline and with injury, a ‘simple solution’ of 

inhibiting or activating m6A writers or erasers in a particular cell type or organ would likely 

not provide a lasting solution for CVD in vivo. Further specificity may be achieved by 

manipulating the levels of particular m6A readers in a cell-type or state-dependent manner, 

however these types of studies are only beginning to be done. Besides m6A mRNA 

methylation, it is also unclear how other RNA modifications (methylations of other 

nucleotides or even small and noncoding RNAs, pseudouridine formation, etc.) contribute to 

transcript regulation in CVD, or whether these modifications will have entirely distinct 

functions on RNA metabolism. Also, the use of the most recent technological advances in 
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multiplex genome-editing tools such as CRISPR/Cas [109, 110] coupled with the power of 

A-to-I RNA substitutional editing, may provide a new therapeutic option. Overall, current 

advances in sequencing and mapping technologies for RNA modifications will undoubtedly 

lead to the discovery of even more novel mechanisms of gene expression regulation for CVD 

in the future.

Glossary

m6A N6-methyladenosine

mRNA messenger RNA

METTL3 Methyltransferase-like 3

METTL14 Methyltransferase-like 14

WTAP Wilms tumor-1 associated protein

KIAA1429 vir like m6A methyltransferase associated

FTO fat mass and obesity-associated

ALKBH5 AlkB homolog 5, RNA demethylase

RNA-BP RNA binding protein

YTHDC1 YTH domain-containing protein 1

YTHDF YTH domain-containing family protein

P body processing body

CCR4-NOT CCR4-NOT deadenylase complex

eiF3 elongation initiation factor 3

40S 40S ribosomal subunit
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Figure 1: m6A dictates mRNA metabolism.
m6A is deposited onto mRNAs in the nucleus by the methyltransferase complex, comprised 

of METTL3, METTL14, WTAP, and KIAA1429. It can then be then demethylated by FTO 

and ALKBH5 (path A), after which it exits the nucleus and, depending on signals from the 

host cell, can either be translated or marked for decay (Unknown, additional signals from the 

cell are represented with “?”). Alternatively, m6A remains on mRNAs, allowing for 

additional regulation of mRNA metabolism. m6A can disrupt RNA secondary structure, 

exposing binding sites for RNA binding proteins, termed the ‘m6A switch’ (path B). The 

m6A reader YTHDC1 can bind m6A on mRNAs and dictate alternative splicing (path C). 

m6A-modified mRNAs can exit the nucleus and be bound by the m6A ‘readers’ YTHDF1, 

YTHDF2, and YTHDF3 in the cytoplasm (path D). YTHDF1 generally promotes translation 

of the methylated mRNA, whereas YTHDF2 promotes decay by recruiting the mRNA to P 

bodies and binding the CCR4-NOT deadenylase complex. YTHDF3 can promote either 

translation or decay, depending upon as-yet-undefined signals from the host cell.
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Figure2: RNA editing controls RNA-protein interaction and cellular function.
Cartoon illustrates the effect of adenosine to inosine RNA editing on double-stranded RNAs 

(dsRNAs) by the Adenosine Deaminases Acting on RNA (ADARs) enzymes. ADARs 

deaminate the adenosine residues into inosines, which no longer pair with uracil. This 

induces a change in RNA secondary structure, which may affect the binding of proteins to 

RNA molecules and thus may control several aspects of RNA metabolism and cellular 

function.
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