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Abstract
Objective
To develop imaging biomarkers of diseases in the Lewy body spectrum and to validate these
markers against postmortem neuropathologic findings.

Methods
Four cognitively normal participants with Parkinson disease (PD), 4 with PD with cognitive
impairments, and 10 with dementia with Lewy bodies underwent amyloid imaging with [11C]
Pittsburgh compound B (PiB) and dopamine transporter (DAT) imaging with [11C]Altro-
pane. All 18 had annual neurologic examinations. All cognitively normal participants with PD
developed cognitive impairment before death. Neuropathologic examinations assessed and
scored Braak Lewy bodies, Thal distribution of amyloid, Consortium to Establish a Registry for
Alzheimer’s Disease neuritic amyloid plaques, Braak neurofibrillary tangles, and cerebral am-
yloid angiopathy, as well as total amyloid plaque burden in the superior frontal, superior
parietal, occipital, and inferior temporal cortical regions. PET data were expressed as the
standardized uptake value ratio with cerebellar reference. Analyses accounted for the interval
between imaging and autopsy.

Results
All 18 patients met neuropathologic criteria for Lewy body disease; the DAT concentration was
low in each case. All patients with elevated [11C]PiB retention measured in a neocortical
aggregate had β-amyloid deposits at autopsy. [11C]PiB retention significantly correlated with
neuritic plaque burden and with total plaque burden. [11C]PiB retention also significantly
correlated with the severity of both Braak stages of neurofibrillary tangle and Lewy body scores.
Neuritic plaque burden was significantly associated with neurofibrillary tangle pathology.

Conclusion
Antemortem [11C]Altropane PET is a sensitive measure of substantia nigra degeneration.
[11C]PiB scans accurately reflect cortical amyloid deposits seen at autopsy. These findings
support the use of molecular imaging in the evaluation of patients with Lewy body diseases.
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The Lewy body spectrum of diseases include Parkinson
disease (PD), PD with dementia (PDD), and dementia
with Lewy bodies (DLB). They all share underlying
pathologic changes, including aggregates of α-synuclein
that accumulate in substantia nigra neurons; in PDD and
DLB, synuclein containing neurons and neurites spread
into cortical regions.1–3 In addition, neuropathologic
changes characteristic of Alzheimer disease (AD), in-
cluding β-amyloid (Aβ) plaques and neurofibrillary tangles
(NFT), are commonly observed at autopsy in both PDD
and DLB.4–6 Because of these overlapping pathologic findings,
the differential diagnosis between PDD/DLB and AD is often
uncertain. In 2016, the Alzheimer’s Disease-Related Dementias
summit report identified several key challenges for Lewy body
disease (LBD) research, including developing neuroimaging
biomarkers to aid in the diagnosis and validating such markers
against postmortem neuropathology.7 In initial steps to address
these goals, we and others have previously shown that amyloid
burden measured in life with the PET radioligand [11C]
Pittsburgh compound B (PiB) was increased in DLB and to
a lesser extent in PDD compared to normal healthy elderly
patients and patients with PD with normal cognition.8–11

Furthermore, high levels of amyloid in PD, PDD, and DLB
were also associated with faster rates of cognitive decline.12,13

We and others have also demonstrated that dopamine trans-
porter (DAT) imaging aids in discriminating PDD and DLB
from AD.14–17 Validation of these biomarkers, however,
requires postmortem verification. With this goal in mind, we
describe the concordance between molecular imaging and
neuropathologic findings in a cohort of parkinsonian patients
with cognitive impairments and dementia.

Methods
Eighteen participants in the Lewy body spectrum of disease
were recruited from Massachusetts General Hospital’s
Movement and Memory Disorder Units into a longitudinal
study from 2006 to 2011 (table 1). All 18 underwent [11C]
PiB imaging, neurologic examination, and detailed neuro-
psychological evaluation at their first visit, followed by an-
nual clinical and cognitive testing.10 Ten of these
participants also underwent DAT imaging with [11C]
Altropane.18 At baseline examination and imaging, the
clinical diagnoses were DLB in 10, PDwith normal cognition
in 4, PD with mild cognitive impairment (MCI) in 3, and
PDD in 1. At the final study visit, the diagnoses were DLB in
10, PD-MCI in 4, and PDD in 4. Participants with DLB met
clinical consensus criteria for probable DLB, including the

presence of at least 2 of the following: parkinsonism, visual
hallucinations, fluctuations of cognition, and REM sleep
behavioral disorder.2 Participants with PD met the di-
agnostic criteria for idiopathic PD of the United Kingdom
Parkinson’s Disease Society Brain Bank Diagnostic Crite-
ria.19 Participants with PD-MCI and PDD met respective
level II PD-MCI20 and PDD21 diagnostic criteria of the
Movement Disorders Society, with objective impairment in
at least 2 cognitive domains. In contrast to subjects with PD-
MCI, those with PDD demonstrated impairment in daily
function on the basis of their cognitive impairment. Inter-
views with caregivers were acquired in all cases.

In all participants but 1, [11C]PiB PET was acquired on
a Siemens/CTI ECAT HR+ scanner (63 parallel planes,
axial field of view 15.2 cm, in-plane resolution 4.1-mm full
width at half-maximum, slice width 2.4 mm; Siemens,
Munich, Germany). In 1 participant, [11C]PiB was ac-
quired on a GE PC4096 scanner (2D mode, 15 image
planes, 10.0-cm axial field of view, 7.0-mm transaxial res-
olution, 6.0-mm slice interval, 39 frames, 8 × 15 seconds, 4
× 60 seconds, 27 × 120 seconds; GE, Milwaukee, WI).
[11C]PiB data were acquired with a 39-frame dynamic
protocol (8 × 15 seconds, 4 × 60 seconds, and 27 × 120
seconds), reconstructed, and corrected for scatter, attenu-
ation, and randoms with vendor-supplied software. [11C]
PiB PET data were spatially transformed into the PET
native space with Statistical Parametric Mapping (SPM12,
Wellcome Trust Centre for Neuroimaging, London, UK)
using early frame data (0–8 minutes after injection). [11C]
PiB data were recorded as the standardized uptake value
ratio (SUVR) with whole cerebellar reference that included
gray and white matter, as reported22 using data from 40 to
60 minutes after injection. A probabilistic template space
atlas based on the FreeSurfer GTM segmentation23 was
used to define regions of interest. For comparison with
global neuropathologic measures of amyloid deposition, we
evaluated an aggregate region of interest comprising the
frontal, lateral temporal, and retrosplenial regions (FLR).24

FLR binding for the 1 dataset acquired on the GE PC4096
scanner was interpolated from precuneus binding, a site of
early and robust amyloid deposition that correlates strongly
(>0.9) with FLR cortical [11C]PiB retention (r = 0.92 in
this dataset). Regional PiB binding was unavailable for this
participant. High [11C]PiB binding was taken as FLR
SUVR ≥1.2 on the basis of a gaussian mixture model on
a reference dataset of clinically normal elderly.25

Glossary
Aβ = β-amyloid; AD = Alzheimer disease; CERAD = Consortium to Establish a Registry for Alzheimer’s Disease; DAT =
dopamine transporter; DLB = dementia with Lewy bodies; FLR = frontal, lateral temporal, and retrosplenial regions;
LBD = Lewy body disease; MCI = mild cognitive impairment; NFT = neurofibrillary tangles; PD = Parkinson disease;
PDD = Parkinson disease with dementia; PiB = Pittsburgh compound B; SUVR = standardized uptake value ratio.
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We assessed striatal DAT concentration with Altropane
[2β-carbomethoxy-3β(4-fluorophenyl)-n-(1-iodoprop-1-
en-3-yl) nortropane], a cocaine analog DAT ligand with
fast kinetics26 and high DAT selectivity.27 [11C]Altropane
PET was acquired on a Siemens/CTI ECAT HR+ scanner,
as described previously,18 and compared to 20 age-
matched healthy controls (age 72.7 ± 8.4 years; 7 male,
13 female; Mini-Mental State Examination score 29.1 ±
1.4). Briefly, [11C]Altropane was prepared onsite, and 15
mCi [11C]Altropane was injected as a bolus, followed
by a 60-minute dynamic acquisition. PET data were
reconstructed and corrected for attenuation with vendor-
provided software. The DAT concentration was estimated
with specific binding of [11C]Altropane, which was com-
puted in regions of interest, including the putamen, using
the SUVR measured between 40 and 60 minutes after in-
jection, with whole cerebellar reference.

By the time of death, all participants with DLB and PD were
cognitively impaired. Postmortem brain tissue was examined
to determine the accuracy of the clinical diagnosis and to rate
the severity of LBD and AD pathologic changes. At the time of
autopsy, brains were divided at the midline, with one-half then
cut into coronal slabs for freezing at −80°C and the other half

fixed in 10% buffered formalin. Tissue blocks were prepared
from the formalin-fixed side after 10 to 14 days of fixation,
processed on a Thermo Scientific Excelsior ES tissue pro-
cessor (Thermo Fisher Scientific, Waltham, MA), and
embedded in paraffin. All sections were cut on a microtome
at 7 μmol/L and stained with Luxol fast blue/hematoxylin
& eosin for routine assessment. Bielschowsky silver stain
was performed on sections from select blocks. Immuno-
histochemistry for hyperphosphorylated tau (polyclonal
rabbit anti-human tau, Dako, Glostrup, Denmark) at a ti-
tration of 1:6,000, Aβ (monoclonal mouse anti-human Aβ
clone 6F/3D, Dako, Glostrup, Denmark) at a titration of 1:
600, and α-synuclein (mouse anti-α-synuclein LB509, Life
Technologies Corp, Frederick, MD) at a titration of 1:200
was also performed on sections from select blocks and
processed on a Leica Bond RX automated stainer (Leica
Biosystems, Wetzlar, Germany) according to the manu-
facturer’s instructions.

AD neuropathologic changes were scored according to the
current National Institute on Aging–Alzheimer’s Associa-
tion’s neuropathologic assessment guidelines28 with the
ABC rating scale, where A refers to Thal amyloid phase,29

a measure of the hierarchical involvement of brain regions of

Table 1 Demographic summary

Patient
Clinical diagnosis
at PET Sex

Age at
PET, y

Final clinical
diagnosis

MMSE
score

Disease onset–PiB (Altropane)
interval, y

PiB (Altropane)–autopsy
interval, y

1 DLB M 60.4 DLB 21 2 (4) 1.9 (0.6)

2 DLB M 69.2 DLB 19 3 (3) 7.6 (7.4)

3 DLB M 71.5 DLB 13 2 (−) 1.9 (−)

4 DLB M 72.3 DLB 4 3 (3) 2.1 (1.7)

5 DLB M 74.9 DLB 27 3 (3) 2.7 (2.5)

6 DLB M 75.3 DLB 17 3 (−) 5.7 (−)

7 DLB M 77.4 DLB 15 4 (−) 3.1 (−)

8 DLB F 79.4 DLB 6 4 (−) 0.2 (−)

9 DLB M 81.1 DLB 19 3 (−) 4.0 (−)

10 DLB M 83.9 DLB 5 4 (−) 4.1 (−)

11 PD-N M 65.5 PD-MCI 30 17 (18) 6.3 (6.2)

12 PD-N M 68.1 PD-MCI 22 4 (4) 5.4 (5.2)

13 PD-N M 82.7 PD-MCI 27 4 (−) 7.0 (−)

14 PD-N F 78.7 PD-D 23 7 (7) 7.5 (7.4)

15 PD-MCI M 68.8 PD-MCI 26 9 (9) 5.6 (5.6)

16 PD-MCI M 57.7 PD-D 25 6 (6) 4.7 (4.8)

17 PD-MCI M 76.4 PD-D 27 2 (4) 6.5 (5.1)

18 PD-D M 65.6 PD-D 25 4 (−) 2.2 (−)

Abbreviations: DLB = dementia with Lewy bodies; MMSE = Mini-Mental State Examination; PD-D = Parkinson disease with dementia; PD-MCI = Parkinson
disease with mild cognitive impairment; PD-N = cognitively normal Parkinson disease; PiB = [11C]Pittsburgh compound B.
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Table 2 PET and neuropathologic findings

Patient
PiB
SUVR

DAT
SUVR

Pathologic
diagnosis

Lewy body
stage

Nigral cell
loss

A
Thal
phase

B
NFT
stage

C
Neuritic plaque
score

CAA
severity

Total amyloid plaque score

Superior
frontal

Superior
parietal Occipital

Inferior
temporal

1 0.908 1.517 LBD 4 + 0 1 0 0 0 0 0 1

2 1.351 2.137 LBD 5 + 3 2 2 2 3 3 2 3

3 1.142 — LBD 5 + 2 2 1 2 2 1 1 2

4 1.690 1.527 LBD 6 + 1 3 2 3 1 1 1 2

5 1.153 1.902 LBD 5 + 2 2 1 0 0 0 1 1

6 1.030 — LBD 4 + 3 2 2 0 2 3 1 3

7 1.436 — LBD 6 + 2 2 2 0 1 0 1 0

8 1.905 — LBD 6 + 3 3 2 2 3 3 3 3

9 1.312 — LBD 5 + 2 1 2 0 1 2 1 1

10 1.148 — LBD 4 + 2 2 2 2 1 1 1 1

11 0.911 1.631 LBD 4 + 3 1 2 2 2 1 1 1

12 1.454 1.555 LBD 4 + 3 3 2 2 2 3 3 3

13 1.062 — LBD 3 + 3 2 2 2 2 2 1 3

14 0.845 1.346 LBD 4 + 2 2 1 1 3 2 2 2

15 0.887 1.735 LBD 4 + 2 0 2 0 2 1 1 1

16 0.913 1.474 LBD 4 + 1 0 1 0 0 0 0 0

17 1.013 1.894 LBD 4 + 1 1 1 0 2 1 2 1

18 1.430 — LBD 4 + 1 3 3 1 2 1 1 2

Abbreviations: CAA = cerebral amyloid angiopathy; DAT = Dopamine Transporter; LBD = Lewy body disease; NFT = neurofibrillary tangle; PiB = [11C]Pittsburgh compound B; SUVR = standardized uptake value ratio.
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any plaque (Thal range 0–5, A range 0–3); B is a measure of
NFT pathology based on Braak staging (Braak NFT stage
range 0–6, B range 0–3)30; and C is a numeric equivalent of
the Consortium to Establish a Registry for Alzheimer’s
Disease (CERAD) neuritic plaque score (range 0–3).31

Cerebral amyloid angiopathy severity was rated with the
Vonsattel score (range 0–3).32 Lewy body pathology was
scored with the Braak staging system on a scale from 0 to 6
(table 2).1,33

In addition, because the currently used CERAD scoring
system for regional plaque burden is restricted to the eval-
uation of neuritic and cored plaques (using Bielschowsky
silver stain and immunohistochemistry for hyper-
phosphorylated tau in our institution),31 we measured total
regional amyloid plaque burden (using immunohistochem-
istry for Aβ), accounting for both neuritic/cored and
nonneuritic/noncored plaques containing fibrillar amyloid.
We evaluated regional amyloid severity on a 4-point scale
(0–3), where 0 = absent, 1 = sparse, 2 = moderate, and 3 =
severe plaque pathology within a tissue section. To enable
regional cortical correlations of total amyloid plaque burden
with [11C]PiB retention, 2 neuropathologists (N.C., M.F.)
independently assigned a regional amyloid severity score in
the superior frontal, superior parietal, pericalcarine, and in-
ferior temporal regions while blinded to each other’s score.
Scores were then reviewed for consensus. Of the 72 blind
assessments, there was complete agreement in 60 (83%).
The remaining 12 (17%) showed a difference in score in
each instance of only 1 degree, and these were modified to
reflect consensus among the 2 pathologists. Regional amy-
loid severity measurements were not available for the 1
participant acquired on the GE PC4096 scanner. To facili-
tate comparison of PiB correlations with CERAD and with
total amyloid plaque burden, we computed average CERAD
scores and average regional amyloid severity scores across
the same regions. All neuropathologic evaluations were
blinded to clinical diagnosis, DAT concentration, and [11C]
PiB retention.

Neuropathology correlates of [11C]PiB retention were
investigated with partial Spearman correlations that con-
trolled for the interval between imaging and autopsy. These
adjusted correlations are reported in the text. Significant
correlations were further explored by incorporating Von-
sattel scores as covariates. For standard neuropathologic
measures, [11C]PiB retention in the FLR aggregate region
was used. For regional amyloid severity measurement, the
regional imaging correlate was matched to hemisphere and
to the region of interest. Correlations between neuropa-
thology measures were assessed via Spearman coefficients.
Differences between neuropathology measures based on
disease status and differences in DAT concentration be-
tween imaged cases and healthy participants were evalu-
ated with Student 2-tailed t tests and Mann-Whitney U
tests as appropriate. All analyses were conducted with R
Software.

Standard protocol approvals, registrations,
and patient consents
This study was approved by the Institutional Review Board of
Partners Healthcare, Inc. All participants gave written in-
formed consent and received a small stipend for participation.

Data availability
Data are available on request.

Results
The clinical diagnosis of PD or DLB was confirmed neuro-
pathologically in all 18 cases on the basis of extensive neuronal
loss in the substantia nigra with Lewy bodies (table 2). All
cases had Braak Lewy body scores ≥3, but the Braak stage was
significantly higher (p = 0.002) in the DLB group than in the
PD-MCI and PDD groups. The [11C]Altropane DAT PET
reflected the resultant dopamine deficiency; putamen uptake
was reduced in all 10 cases acquired (mean ± SD 1.67 ± 0.24
SUVR) compared with healthy controls (mean ± SD 3.03 ±
0.39 SUVR, p < 0.0001). Other neuropathologic findings were
similar across all 18 participants. Specifically, no diagnostic
group differences were noted for ABC scores and estimates of
cerebral amyloid angiopathy.

Most participants (17 of 18) had evidence for Aβ deposits, as
measured by CERAD neuritic plaque scores ≥1 and Thal
amyloid distribution scores ≥1. In most cases, [11C]PiB re-
tention accurately reflected the extent of amyloid deposits.
One participant had no neuritic plaques and Thal phase 0; in
this case, [11C]PiB retention was minimal (SUVR <1.00,
patient 1 [DLB]. Of note, comparably low [11C]PiB re-
tention was also observed in 4 participants with sparse or
moderate neuritic plaque burden (CERAD scores of 1–2) and
Thal phase A scores ranging from 1 to 3 (participants 11 and
14–16). At PET, 2 of these mismatched cases were cognitively
normal with PD and 2 had PD-MCI; by the time of death, all
had developed cognitive impairment. In these instances, the
median interval between [11C]PiB scan and death was 6.0
(range 4.7–7.5) years compared to the overall median of 4.4
(range 0.2–7.6) years.

[11C]PiB retention correlated with CERAD neuritic pla-
ques score (r = 0.62, p = 0.0075) (figure 1A). [11C]PiB
retention lacked a significant correlation with Thal amyloid
phase (r = 0.45, p = 0.07; figure 1B). Because [11C]PiB
labels nonneuritic and neuritic plaques,11 the CERAD score
is likely an underestimate of total amyloid burden. We
therefore measured the total amyloid plaque burden—
neuritic and nonneuritic Aβ—in each cortical lobe on a scale
of 0 to 3+. [11C]PiB retention correlated with this measure
of regional amyloid severity averaged over the 4 regions
sampled (r = 0.49, p = 0.046). By region, local [11C]PiB
retention correlated with regional total amyloid burden in
occipital (r = 0.68, p = 0.0035) and superior parietal (r =
0.56, p = 0.025) but not in inferior temporal or superior
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frontal regions (figure 2). The correlation in the occipital
region remained significant after controlling for multiple
comparisons (Bonferroni, p = 0.013). To directly compare
the [11C]PiB correlation with CERAD to the [11C]PiB
correlation with total amyloid plaque burden, we computed
average CERAD scores across the same regions. [11C]
PiB retention correlated with average CERAD scores as well

(r = 0.68, p = 0.0028). Thus, [11C]PiB retention signifi-
cantly correlated with measures of amyloid plaque burden.

An intriguing finding was the relationship between [11C]PiB
uptake and non-Aβ pathologic findings. Braak neurofibrillary
stage (and B score) correlated strongly with [11C]PiB re-
tention (r = 0.73, p = 0.001) and with Braak Lewy body stage

Figure 1Boxplots of [11C]PiB retention as a function of neuritic plaque score and Thal amyloid phase in Lewy body disease

Partial correlations adjusting for the interval be-
tween [11C]Pittsburgh compound B (PiB) PET and
death: (A) neuritic plaque score (r = 0.62, p = 0.0075)
and (B) Thal amyloid phase (r = 0.45, p = 0.07). A
typical cut point for [11C]PiB positivity is 1.2. Filled
circles indicate dementia with Lewy bodies; open
diamonds, Parkinson disease with mild cognitive
impairment and Parkinson disease with dementia.
SUVR = standardized uptake value ratio.

Figure 2 [11C]PiB retention was significantly correlated with total amyloid deposits in occipital and superior parietal
regions

Partial correlations controlling for the
interval between PET and autopsy: (A)
occipital (r = 0.68, p = 0.0035), (B) supe-
rior parietal (r = 0.56, p = 0.025), (C) in-
ferior temporal (r = 0.31, p = 0.3), and (D)
superior frontal (r = 0.15, p = 0.6). Filled
circles indicate dementia with Lewy
bodies; open diamonds, Parkinson dis-
ease with mild cognitive impairment
and Parkinson disease with dementia.
PiB = [11C]Pittsburgh compound B;
SUVR = standardized uptake value ratio.
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(r = 0.54, p = 0.025), with the latter result largely driven by the
DLB group of participants (figure 3). In contrast, [11C]
Altropane retention was not significantly correlated with
Braak Lewy body stage in this cohort (p = 0.21) (figure 3).
Across the established neuropathology metrics of ABC and
Braak Lewy body stages, only the CERAD neuritic score
and Braak NFT stages were significantly correlated (r = 0.50,
p = 0.04).

Discussion
The results of this study indicate that DAT and amyloid
molecular neuroimaging reflects the underlying pathologic
changes that characterize the Lewy body spectrum of diseases.
Using DAT imaging to support the diagnosis of PD is well
documented17,34 and approaches 90% in sensitivity and
specificity. In the present study, [11C]Altropane uptake was
decreased in all 10 cases in whom it was performed, with no
differences across the diagnostic groups.

The place of amyloid scans in the Lewy body set of diseases is
less well documented and accepted. One of the first autopsies
to examine the accuracy of [11C]PiB for detecting Aβ amy-
loid was in fact a case with DLB.35 This article was a single case
report, and 2 small studies in PDD have since been
completed.36,37 In contrast to LBD, however, there have been
ample reports affirming [11C]PiB accuracy in detecting an-
temortem the amyloid deposits seen at autopsy in elderly
participants with MCI and AD.22,38–40 Overall, the sensitivity
and specificity have been very high, with demonstrated
binding to both neuritic and nonneuritic yet fibrillar forms of
Aβ.41–43 Our findings in the Lewy body spectrum of diseases
largely confirm these reports and extend them to specify the
nature and distribution of the [11C]PiB-neuropathology
relationship.

PiB binds all fibrillar forms of amyloid, avidly staining both
cored neuritic plaques and nonneuritic fibrillar diffuse plaques
that are frequently present in both PDD and DLB. Because
the CERAD plaque score measures only neuritic plaques, it is
likely an underestimate of the total amyloid burden. Even so,
[11C]PiB retention was significantly correlated with the
postmortem CERAD score. To gain a more comprehensive
understanding of [11C]PiB-amyloid correlations, we gener-
ated a total plaque score in 4 cortical regions that combined
neuritic and nonneuritic fibrillar Aβ. [11C]PiB retention
correlated with this total plaque score. When we analyzed
each region individually, [11C]PiB retention and the total
plaque score correlated significantly in the occipital region
after multiple comparison testing and nominally in the su-
perior parietal cortical region. Regional atrophy, which would
reduce [11C]PiB retention by partial volume averaging with
CSF, may have degraded regional correlations.

In this LBD cohort, [11C]PiB uptake did not increase
monotonically with increasing Thal amyloid phase, a measure
developed to capture the sequential spread of amyloid
deposits across brain regions over the course of AD.29 This
unexpected finding contrasts with prior reports in AD,22,38,44

raising the possibility that the hierarchical involvement of
amyloid plaque topography in LBD may be distinct from AD.
Even so, there was a moderately strong correlation of marginal
significance between [11C]PiB uptake and Thal amyloid
phase that would require a larger sample to evaluate at full
power. These results suggest that the conventional neuro-
pathologic measure of Thal amyloid phase may not readily

Figure 3 β-Amyloid as detected by [11C]PiB was positively
correlated with both neurofibrillary tangles and
Lewy bodies

Partial correlations controlling for the interval between PET and autopsy: (A)
neurofibrillary tangles (NFT) stage with [11C]Pittsburgh compound B (PiB) (r
= 0.73, p = 0.001), (B) Lewy body stage with PiB (r = 0.54, p = 0.025), and (C)
Lewy body stage with [11C]Altropane (p = 0.21). Filled circles indicate de-
mentia with Lewy bodies. Open diamonds, Parkinson disease with mild
cognitive impairment and Parkinson disease with dementia. DAT = dopa-
mine transporter; SUVR = standard uptake value ratio.
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capture cortical [11C]PiB retention in LBD, reinforcing the
value of the total plaque score, a metric that accounts for
combined neuritic and nonneuritic fibrillar plaque counts.

In this study, [11C]PiB uptake was also related to non-Aβ
pathologic changes. There was a strong correlation between
[11C]PiB retention and NFT severity. Because neuritic pla-
ques and NFT are significantly correlated in postmortem
studies,4 this finding further validates [11C]PiB imaging for
detecting this relationship in life. We also found a significant
correlation between [11C]PiB retention and Lewy body
stages: the higher the Lewy body score, the higher the [11C]
PiB uptake. This observation also is consistent with un-
derlying pathologic changes known from PD and DLB post-
mortem studies4,45 and contrasted with the lack of significant
correlation between [11C]Altropane uptake and Lewy body
stages. These correlations support the view that Aβ, tau, and
α-synuclein have the capacity to promote each other’s
aggregation.46–49 It is in this sense that [11C]PiB as a bio-
marker of Aβ shows additional promise as an index of NFT
and Lewy bodies in PDD and DLB.

The strengths of this study include a well-characterized clin-
ical population who underwent state-of-the-art neuroimaging
and then, at death, careful neuropathologic examinations.
Most of the patients were men, and all were white, so howwell
these findings relate to a more diverse population remains
unknown. Lack of autopsy data on the healthy controls who
underwent [11C]Altropane imaging is another theoretical
limitation, although the absence of parkinsonism in otherwise
healthy controls is likely to be a reliable predictor of an intact
substantia nigra. Another possible weakness is the relatively
small sample size, but there were enough patients to render
unequivocal conclusions about the fidelity of amyloid brain
scans to detect pathologic changes in the Lewy body spectrum
of diseases.
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