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Autophagy accounts for approximately one-third of mitochondrial protein turnover
and is protein selective
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ABSTRACT
The destruction of mitochondria through macroautophagy (autophagy) has been recognised as a major
route of mitochondrial protein degradation since its discovery more than 50 years ago, but fundamental
questions remain unanswered. First, how much mitochondrial protein turnover occurs through auto-
phagy? Mitochondrial proteins are also degraded by nonautophagic mechanisms, and the proportion of
mitochondrial protein turnover that occurs through autophagy is still unknown. Second, does auto-
phagy degrade mitochondrial proteins uniformly or selectively? Autophagy was originally thought to
degrade all mitochondrial proteins at the same rate, but recent work suggests that mitochondrial
autophagy may be protein selective. To investigate these questions, we used a proteomics-based
approach in the fruit fly Drosophila melanogaster, comparing mitochondrial protein turnover rates in
autophagy-deficient Atg7 mutants and controls. We found that ~35% of mitochondrial protein turnover
occurred via autophagy. Similar analyses using parkin mutants revealed that parkin-dependent mito-
phagy accounted for ~25% of mitochondrial protein turnover, suggesting that most mitochondrial
autophagy specifically eliminates dysfunctional mitochondria. We also found that our results were
incompatible with uniform autophagic turnover of mitochondrial proteins and consistent with protein-
selective autophagy. In particular, the autophagic turnover rates of individual mitochondrial proteins
varied widely, and only a small amount of the variation could be attributed to tissue differences in
mitochondrial composition and autophagy rate. Furthermore, analyses comparing autophagy-deficient
and control human fibroblasts revealed diverse autophagy-dependent turnover rates even in homo-
geneous cells. In summary, our work indicates that autophagy acts selectively on mitochondrial proteins,
and that most mitochondrial protein turnover occurs through non-autophagic processes.

Abbreviations: Atg5: Autophagy-related 5 (Drosophila); ATG5: autophagy related 5 (human); Atg7:
Autophagy-related 7 (Drosophila); ATG7: autophagy related 7 (human); DNA: deoxyribonucleic acid; ER:
endoplasmic reticulum; GFP: green fluorescent protein; MS: mass spectrometry; park: parkin (Drosophila);
Pink1: PTEN-induced putative kinase 1 (Drosophila); PINK1: PTEN-induced kinase 1 (human); PRKN: parkin
RBR E3 ubiquitin protein ligase (human); RNA: ribonucleic acid; SD: standard deviation; Ub: ubiquitin/
ubiquitinated; WT: wild-type; YME1L: YME1 like ATPase (Drosophila); YME1L1: YME1 like 1 ATPase (human)
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Introduction

Mitochondria play critical roles in energy production, calcium
homeostasis, metabolite synthesis and apoptosis [1-4]. They are
also the major cellular source of reactive oxygen species, which
damage mitochondrial DNA, lipids and proteins [3,5]. It is
therefore unsurprising that progressive accumulation of
damaged mitochondria has been implicated in aging and in
common diseases of the elderly [6–8]. Mitochondria have
a large repertoire of quality control mechanisms to oppose this
deterioration, including multiple pathways for the removal of
damaged mitochondrial components. Individual mitochondrial
proteins can be selectively degraded by mitochondrial resident
proteases [9] or the proteasome [10–12], or transported to the
lysosome in mitochondria-derived vesicles [13]. Alternatively,
entire mitochondria can be destroyed via macroautophagy

(henceforth ‘autophagy’), a process in which mitochondria are
sequestered and ultimately undergo lysosomal degradation [14].

Of the various mitochondrial protein-degradation pro-
cesses, the most extensively studied is autophagy, first identi-
fied in the 1960s. The pioneering work of Fletcher and Sanadi,
which found essentially identical turnover rates for three types
of mitochondrial protein as well as mitochondrial lipids [15],
concluded that mitochondria were ‘turning over as an entity’;
soon afterwards, electron micrographs showing mitochondria
inside lysosomes provided a plausible mechanism for destruc-
tion of whole organelles [16]. Later work revealed that auto-
phagy is a highly regulated process involving a complex net-
work of autophagy-related (ATG) gene factors [17], and
demonstrated multiple pathways leading to autophagic degra-
dation of mitochondria [18,19]. In particular, selective
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destruction of damaged mitochondria was identified and
termed ‘mitophagy’ [20,21]. A more mechanistic understand-
ing of mitophagy emerged through study of the neurodegen-
eration-associated proteins PINK1 (PTEN induced kinase 1)
and PRKN (parkin), which together target dysfunctional
mitochondria for autophagic degradation [22–24], and work
in Drosophila demonstrated that this mitophagy pathway is
required for normal mitochondrial protein turnover
in vivo [25].

While the above findings demonstrate the importance of
autophagy in mitochondrial quality control, there is also evi-
dence that non-autophagic mechanisms contribute substan-
tially to turnover of mitochondrial proteins. Although some
studies that followed Fletcher and Sanadi supported their view
that mitochondria are degraded as units [26,27], others
instead found different turnover rates for individual mito-
chondrial components [28–30], and later in vivo proteomic
studies showed that mitochondrial protein turnover rates are
in fact highly diverse [25,31–37]. These wide ranges of turn-
over rates, sometimes spanning more than two orders of
magnitude, are consistent with substantial mitochondrial pro-
tein degradation through non-autophagic mechanisms.
Accumulation of mitochondrial proteins after ablation of the
mitochondrial protease Lon [38] or inhibition of the protea-
some [12] further suggests that non-autophagic mechanisms
degrade considerable amounts of mitochondrial protein.
Work to date thus indicates that autophagy accounts for
some, but not all, mitochondrial protein turnover; however,
the actual proportion of turnover that occurs via autophagy is
unknown.

In the last few years, new findings have also begun to blur
the distinction between lysosomal destruction of whole mito-
chondria and targeted degradation of individual mitochon-
drial proteins. Work in yeast has demonstrated stress-induced
autophagic degradation of selected mitochondrial proteins
[39,40], and experiments using mammalian cultured cells
have suggested that related phenomena may exist in higher
eukaryotes [41,42]. However, whether mitochondrial auto-
phagy normally degrades individual mitochondrial proteins
at different rates in intact metazoans is unknown.

To answer these unresolved questions about the nature of
mitochondrial autophagy, we used an approach based on pro-
teomic measurement of protein turnover in the fruit fly
Drosophila melanogaster. We calculated the percentage contri-
bution of autophagy by comparing mitochondrial protein turn-
over rates in autophagy-deficient Atg7 (Autophagy-related 7)
null mutant flies to those in normal flies, and the percentage
contribution of parkin-dependent mitophagy using parkin
(park)null mutants. Approximately 35% of all mitochondrial
protein turnover occurred through autophagy and 25%
through parkin-dependent mitophagy, consistent with the
idea that autophagy primarily degrades mitochondria that
have become dysfunctional. We then investigated whether
autophagy had differential effects on individual mitochondrial
proteins. We modelled uniform, nonselective mitochondrial
protein turnover and found that our data were incompatible
with the model’s predictions. Most importantly, the calculated
autophagic turnover rates of individual mitochondrial proteins
ranged over two orders of magnitude. Only a small part of that

range could be explained by differences in mitochondrial pro-
tein expression and mitochondrial autophagy rate in the tissues
analysed, and autophagic turnover rates were equally diverse
when calculated by comparing protein turnover in homoge-
neous ATG7−/− or ATG5−/− human fibroblasts with WT cells.
Taken together, our findings show that autophagy degrades
mitochondrial proteins at unequal rates, and that most mito-
chondrial protein turnover in both Drosophila and vertebrates
occurs through non-autophagic processes.

Results

We measured the contribution of autophagy to mitochondrial
protein degradation in vivo by comparing turnover rates of
mitochondrial proteins in WT flies to their turnover rates in
Atg7 null mutants [43]. Atg7 encodes an evolutionarily con-
served E1-like enzyme required for autophagic vesicle forma-
tion [14]. In previous work, we demonstrated markedly
impaired mitochondrial protein turnover in Drosophila Atg7
null mutants [25], and we now used these well-characterised
autophagy-deficient flies to quantify the contribution of
autophagy to mitochondrial protein turnover. Briefly, we
used stable isotope labelling followed by mass spectrometry
to measure the rates at which unlabelled proteins were
degraded and replaced by labelled proteins. The technique
and other analyses of the data have been described [25].

Calculating the contribution of autophagy to
mitochondrial protein turnover

We identified 186 mitochondrial proteins from Drosophila
heads that met quality criteria in both Atg7 mutants and
controls (Dataset S1; see Materials and Methods). For each
protein, we determined the autophagy-dependent turnover
rate (the fraction of the protein’s total abundance degraded
via autophagy per unit time), which we then used to calculate
the contribution of autophagy to the protein’s overall
degradation.

The turnover rate of any mitochondrial protein (M) is the
sum of the mitochondrial autophagy rate and all non-
autophagic turnover rates for that protein. Non-autophagic
turnover includes degradation by mitochondrial proteases, the
ubiquitin-proteasome system, mitochondria-derived vesicles,
and any other non-autophagic degradation processes. We
calculated autophagy-dependent turnover rate by subtracting
the turnover rate of protein M in Atg7 mutants (in which
turnover occurs solely through non-autophagic mechanisms)
from the turnover rate of M in WT flies (which includes
turnover via both autophagy and non-autophagic mechan-
isms), as follows:

autophagy-dependent turnover rate of M ¼ ðWT rate of MÞ
� ðAtg7 mutant rate of MÞ

We then calculated the ratio of the autophagy-dependent
turnover rate to the protein’s overall degradation rate and
expressed the result as a percentage. We called this measure
of autophagy’s contribution to degradation percent autophagic
turnover.
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percent autophagic turnover of M ¼
autophagy-dependent turnover rate of M

WT turnover rate of M
� 100

Mitochondrial proteins in fly heads showed a substantial
range of percent autophagic turnover values, but the vast
majority (89%) had less than 50% turnover through auto-
phagy (Figure 1(a), Dataset S1). Mean percent autophagic
turnover for all mitochondrial proteins was 36.0% (± 11.7%;
Figure 1(b)). For comparison, we calculated percent autopha-
gic turnover for proteins of the cytosolic ribosome (n = 52),
another target of selective autophagy. In striking contrast to
mitochondrial proteins, 96% of ribosomal proteins
had percent autophagic turnover values greater than 50%,

and the mean percent autophagic turnover for the ribosome
was 63.9% ± 5.4% (p < 3.4 × 10−41 vs. mitochondrial proteins
by Student t test; Figure 1(a-b), Dataset S2). Thus, while the
majority of ribosomal protein degradation is autophagic,
autophagy accounts for approximately one-third of mitochon-
drial protein turnover.

Most mitochondrial autophagy requires parkin

A form of mitochondrial autophagy that has been intensively
studied in recent years is parkin-dependent mitophagy,
a process that detects dysfunctional mitochondria and marks
them for degradation [23]. We previously observed that mito-
chondrial protein turnover was impaired in parkin mutants,
though not as profoundly as in Atg7 mutants [25]. To compare
the influence of parkin and Atg7 more quantitatively, we cal-
culated the contribution of parkin to mitochondrial protein
turnover, comparing turnover rates in parkin mutants and
WT flies (Figure 1(c)). We included only the 168 mitochondrial
proteins that met quality standards in all three relevant geno-
types (parkin, Atg7, and WT; Dataset S1). The mean percent
parkin-dependent turnover in fly heads was 29.5% ± 12.6%
(Figure 1(d)). However, because parkin also takes part in non-
autophagic forms of mitochondrial protein turnover [44–47],
including production of mitochondria-derived vesicles, this
method of calculating parkin-dependent turnover could poten-
tially overestimate its contribution to mitochondrial autophagy.
We therefore recalculated mean percent parkin-dependent
turnover after excluding likely targets of non-autophagic
parkin-dependent degradation (Table S1; see Materials and
Methods). Mean percent parkin-dependent turnover for the
remaining proteins (n = 115) was 25.7% ± 11.8% (Figure 1
(d)). This adjusted mean parkin-dependent turnover value for
mitochondrial proteins was ~70% of the overall mean autop-
hagic turnover value derived from Atg7 mutants. Our findings
thus suggest that a large proportion of autophagic mitochon-
drial protein degradation requires parkin, and that quality
control surveillance is the major driver of autophagic mito-
chondrial protein degradation.

Mitochondrial autophagy is protein selective

We next considered the question of whether autophagy
degrades mitochondrial proteins uniformly or selectively.
The idea that autophagy degrades mitochondrial proteins
uniformly dates back to Fletcher and Sanadi’s concept of
mitochondria ‘turning over as an entity’, and we therefore
called it the classical model of mitochondrial autophagy.
According to the classical model, when a mitochondrion
undergoes autophagy, all proteins are degraded simulta-
neously and equally. As described above, however, recent
work in yeast and cell culture challenges this idea [39–42].
To determine whether basal autophagy is protein selective in
an intact metazoan, we compared our Atg7 mutant findings to
the predictions of the classical model. The key assumption of
the classical model is the idea that mitochondrial proteins all
undergo autophagic turnover at the same rate (Figure 2(a)).
By contrast, the rate of turnover via other degradation

Figure 1. Autophagy accounts for approximately one-third of mitochondrial
protein turnover. (a) Percent autophagic turnover of individual mitochondrial
proteins and cytosolic ribosomal proteins in Drosophila heads (n = 186 mito-
chondrial and 52 ribosomal proteins). (b) Mean percent autophagic turnover of
mitochondrial and ribosomal proteins (significantly different by Student t test, p
< 3.4 × 10−41). Error bars represent SD. (c) Contribution of parkin-dependent
mitophagy to turnover of individual mitochondrial proteins. Unadjusted percent
parkin-dependent turnover was calculated using 168 mitochondrial proteins
common to the parkin, Atg7, and WT datasets (Dataset S1). Adjusted percent
parkin-dependent turnover was calculated after excluding 53 putative targets of
nonautophagic parkin-dependent degradation (see Materials and Methods), and
is thus based on 115 proteins. (d) Mean percent parkin-dependent turnover for
the mitochondrial proteins in panel C. Error bars represent SD.
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pathways differs from protein to protein, and thus total turn-
over rates vary.

The classical model makes two testable predictions. First,
the model predicts that the calculated autophagy-dependent
turnover rates of mitochondrial proteins should fall within
a narrow range because they are all approximations of a single
true mitochondrial autophagy rate. Second, the model pre-
dicts that percent autophagic turnover for an individual mito-
chondrial protein should be inversely related to its overall WT
turnover rate, because total turnover rate increases as the
contribution of nonautophagic degradation becomes larger.

To test the first prediction, we compared autophagy-
dependent turnover rates for all mitochondrial proteins. The
autophagy-dependent turnover rates of mitochondrial proteins
spanned a 253-fold range (Figure 2(b)); when we considered
only the rates from the 5th to the 95th percentile (the 5%
trimmed range) to limit the impact of extreme values, the
range was still ~18-fold (Figure 2(c)). Even groups of proteins
localising to a particular region of the mitochondrion (e.g. inner
membrane proteins) had large ranges of autophagy-dependent
turnover rates (Figure 2(d)); the range of autophagy-dependent
turnover rates for complex I proteins alone was 4.1-fold (Figure
S1). To put the findings in perspective, we again compared them

to data from another target of autophagy, the cytosolic ribo-
some. The autophagy-dependent turnover rates of ribosomal
proteins fell within a relatively narrow range (full range 2.0-fold
and 5% trimmed range 1.6-fold; Figure 2(b-c)), indicating that
the large range of rates for mitochondrial proteins reflected
a biological phenomenon rather than experimental noise.

To test the second prediction, we plotted percent autopha-
gic turnover against WT turnover rate for each mitochondrial
protein. The correlation between percent autophagic turnover
and WT turnover rate was, surprisingly, significantly positive
rather than negative (Figure 2(e)). Proteins with low overall
turnover rates (long-lived proteins), predicted to have
high percent autophagic turnover, actually had very modest
percentages of turnover through autophagy. In fact, the mito-
chondrial proteins with the lowest WT turnover rates (n =
19, the lowest 10% of the dataset) all had percent autophagic
turnover values under 50%, and their mean percent autopha-
gic turnover was lower than the mean for the remaining
proteins in the dataset (28.5% vs. 36.8%; p < 0.005). Our find-
ings thus contradict both of the classical model’s predictions
and suggest that, instead of degrading all mitochondrial pro-
teins equally, mitochondrial autophagy has differential effects
on individual mitochondrial proteins.

Figure 2. Mitochondrial autophagy is protein selective. (a) Classical model of mitochondrial protein turnover. The total turnover rate of each mitochondrial
protein is the sum of its turnover rate via autophagy (presumed to be the same for all proteins) and its turnover rate via non-autophagic mechanisms
(different from protein to protein). The turnover rate via non-autophagic mechanisms is the sum of turnover by mitochondrial proteases, the ubiquitin-
proteasome system, mitochondria-derived vesicles and any other non-autophagic degradation processes. Note that long-lived proteins are those with low total
turnover rates. (b) Autophagy-dependent turnover rates (h−1) for individual mitochondrial and ribosomal proteins. (c) Mitochondrial proteins have a large
range of autophagy-dependent turnover rates, but cytosolic ribosomal proteins do not. The 5% trimmed ranges (95th/5th percentile values) are displayed; the
full ranges were 253.4-fold for mitochondrial proteins and 2.0-fold for ribosomal proteins. (d) Autophagy-dependent turnover rates of individual mitochondrial
proteins vary substantially even within a specific region of the mitochondrion, including matrix (5% trimmed range 17.2-fold, n = 95) and inner membrane
(IM; 5% trimmed range 24.7-fold, n = 72). (e) Percent autophagic turnover correlates positively rather than negatively with WT turnover rate (h−1).
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The mitochondrial autophagy findings are not
explained by genetic compensation

An alternative explanation for both the moderate percen-
tage contribution of autophagy and the wide-ranging
autophagy-dependent turnover rates of mitochondrial pro-
teins is compensatory upregulation of non-autophagic
degradation. Induction of a compensatory degradation
pathway in Atg7 mutants would decrease the effects of
Atg7 inactivation on mitochondrial protein turnover; if
the compensatory pathway were protein selective, its induc-
tion might also increase the range of autophagy-dependent
turnover rates. While compensation probably occurs to
some extent in all mutants, we do not believe that it
accounts for our major findings, based on the following
evidence. First, we looked for upregulation of compensatory
turnover pathways, using both RNA and protein data.
Microarray analysis of the Atg7 mutants showed no change
in expression of genes encoding proteasome subunits, mito-
chondrial proteases, mitochondrial vesicle factors, auto-
phagy factors other than Atg7, or specific mitophagy factors
(Table S2, Dataset S3). We also measured the abundance of
proteins in these same categories, and found significant
changes in only 2 of 58 proteins (~3%; Table S2, Dataset
S4). Second, we investigated whether turnover was less
autophagy dependent in proteins identified as substrates
of non-autophagic turnover processes. We hypothesised
that normal substrates of a given turnover pathway would
be most affected by compensatory induction of that path-
way. However, orthologues of the mitochondrial proteins
identified as proteasome substrates by Wagner et al. [48]
did not differ from other mitochondrial proteins in percent
autophagic turnover or autophagy-dependent turnover rate
(Figure 3(a-b)); neither did proteins bearing degron
sequences for the mitochondrial proteases YME1L (YME1
like ATPase) and Lon [49,50] (Figure 3(c-d)). We thus
found no evidence that our data are explained by genetic
compensation.

Tissue differences in protein expression and
mitochondrial autophagy rate contribute to the
range of autophagy-dependent turnover rates

Another possible explanation for the existence of diverse auto-
phagy-dependent turnover rates in the fly head samples arises
from the fact that they contain multiple tissues. Tissue differ-
ences in mitochondrial protein expression and mitochondrial
autophagy rate could interact to produce diverse autophagy-
dependent turnover rates for individual mitochondrial proteins
(see Figure S2 for a detailed explanation). As there is evidence
in vertebrates for both differential tissue expression of mito-
chondrial proteins [51] and tissue-specific mitochondrial
autophagy rates [52,53], we considered the possibility that the
range of autophagy-dependent turnover rates could be
explained in terms of tissue differences within Drosophila
heads.

We first determined whether fly heads had significant
differences in mitochondrial protein composition between
tissues. Gene expression values for three fly head tissues

(brain, fat body and eye) were available from the public data
repository FlyAtlas [54]. For genes encoding the mitochon-
drial proteins in our fly head data, we found that normalised
expression of individual genes in a given tissue varied by as
much as two orders of magnitude (Figure S3, Dataset S1). We
then tested whether this variation in tissue expression corre-
lated with autophagy-dependent turnover rate. Autophagy-
dependent turnover rate correlated negatively with brain
expression and positively with fat body expression, and had
no relationship with eye expression (Figure 4(a-c)). By con-
trast, in proteins from other organelles targeted by autophagy
(ribosomes, endoplasmic reticulum [ER], and peroxisomes),
we found no significant relationship between autophagy-
dependent turnover rate and expression in any of the head
tissues (Figure 4(d–f)); the findings in mitochondrial proteins
therefore appeared to reflect tissue differences in mitochon-
drial autophagy rate rather than in general autophagy. These
results are consistent with the idea that heterogeneous tissue
expression of proteins could explain some observed variation
in autophagy-dependent turnover rates (Figure S2), and they

Figure 3. The effects of Atg7 ablation are not explained by induction of potential
compensatory turnover mechanisms. (a) Autophagy-dependent turnover rates
(h−1) of fly orthologues of mitochondrial proteins with (n = 43) and without
(n = 143) evidence of proteasomal turnover (ubiquitinated [Ub] sites) [48]. Red
lines indicate means. (b) Percent autophagic turnover of fly orthologues of
mitochondrial proteins with and without ubiquitinated sites, as in panel A. (c)
Autophagy-dependent turnover rates (h−1) of individual mitochondrial proteins
with (n = 24) and without (n = 162) degrons for mitochondrial proteases Lon
and YME1L [49,50]. (d) Percent autophagic turnover of mitochondrial proteins
with and without protease degrons (as in panel C). Comparisons of means in
panels A through D are all nonsignificant by Student t test.
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also suggest that mitochondrial autophagy rate is substantially
lower in brain than in fat body.

While tissue differences in mitochondrial autophagy rate
contributed to the varying autophagy-dependent turnover
rates of mitochondrial proteins, they did not provide
a complete explanation for the wide range of rates.
Correlations between mitochondrial proteins’ autophagy-
dependent turnover rates and their expression in a given
tissue, even when statistically significant, accounted for
a minority of the total variance (R2 = 0.01 to 0.26).
Mitochondrial autophagy rate differences in tissues not docu-
mented in FlyAtlas might account for some of the remaining
variation; however, to explain the observed range of auto-
phagy-dependent turnover rates, such differences would
have to be vast (Figure S4).

Autophagy-dependent turnover rates of
mitochondrial proteins are diverse in a single cell
type

To test more definitively whether our findings were explained by
tissue differences in mitochondrial autophagy rate and protein
composition, we measured the contribution of autophagy to

mitochondrial protein turnover in a single cell type.We compared
mitochondrial protein turnover rates in ATG7−/− and ATG5−/−

engineered human fibroblasts (originally described by Zhang et al.
[55]) to the corresponding rates in WT cells, and
calculated percent autophagic turnover as described above
(Figure 5(a), Dataset S5). The mean percent autophagic turnover
was 21.8% ± 16.7% when calculated from ATG7−/− cells (n = 211
proteins), and 14.4% ± 10.3% when calculated from ATG5−/− cells
(196 proteins), consistent with our in vivo finding that most
mitochondrial protein turnover occurs through non-autophagic
mechanisms. Also, in both cell lines, the autophagy-dependent
turnover rates of mitochondrial proteins spanned ranges compar-
able to those seen in fly heads. In ATG7−/− fibroblasts, the full
range of rates was 1659-fold and the 5% trimmed range 11-fold; in
ATG5−/−, the full and trimmed ranges were 1079-fold and 28-fold,
respectively (Figure 5(b-c)). As in previous analyses, we compared
the mitochondrial protein findings to data from another target of
autophagy [56]. Because ribosomal turnover showed little depen-
dence on autophagy in the fibroblasts, we compared mitochon-
drial proteins from fibroblasts and fly heads to proteins of the
proteasome, which also undergoes autophagic degradation [57].
The range of autophagy-dependent turnover rates was much
larger for mitochondrial than for proteasomal proteins in both
ATG7−/− and ATG5−/− fibroblasts, and in Atg7 null fly heads as

Figure 4. Autophagy-dependent turnover rates of mitochondrial proteins correlate with their tissue expression. Normalised gene expression (tissue enrichment)
values for brain, fat body, and eye were obtained from FlyAtlas [102] and were log10 transformed to normalise skewed distributions. Autophagy-dependent turnover
rates (h−1) were calculated for all mitochondrial proteins with available FlyAtlas data (n = 177), and for proteins from other organelles degraded by autophagy
(ribosomes, ER, and peroxisomes). Autophagy-dependent turnover rates of mitochondrial proteins correlate negatively with brain expression (a) and positively with
fat body expression (b). There is no significant relationship with eye expression (c). Autophagy-dependent turnover rates of other organellar proteins (ribosomes, ER,
and peroxisomes) do not correlate significantly with expression in brain (d), fat body (e), or eye (f); n = 82 other organellar proteins with FlyAtlas data for brain, 79
for fat body, 80 for eye.
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well (Figure 5(c)). In addition, the percent autophagic turnover
values of individual mitochondrial proteins did not show an
inverse relationship with WT turnover rate (Figure 5(d-e)), again
contradicting the classical model of mitochondrial autophagy. In
fact, ATG7−/− fibroblasts, like fly heads, showed a significant posi-
tive correlation betweenWT turnover rate and percent autophagic
turnover (Figure 5(d)), andATG5−/− fibroblasts showed a trend in
the same direction (Figure 5(e)).

As before, we looked for evidence that our findings
could be explained by genetic compensation. Measurement
of protein abundance in the ATG5−/− fibroblasts revealed
modestly increased abundance of most proteasome subu-
nits, and proteasome activity was ~25% above WT [55].
While the increased proteasome activity might explain the
lower mean percent autophagic turnover values in fibro-
blasts compared to fly heads (Figures 1(b), 5(a)), it did not
appear to explain the range of autophagy-dependent turn-
over rates. We found no differences in percent autophagic
turnover or auto-phagy-dependent turnover rate in mito-
chondrial proteins identified as proteasome targets [48]
(proteins with ubiquitinated sites; Figure 6(a-b), Figure
S5A–B). Likewise, the abundance of Lon protease was
17% higher in ATG5−/− mutants compared to WT, but
there were no significant associations of percent autophagic
turnover or autophagy-dependent turnover rate with the

presence of mitochondrial protease degron sequences
(Figure 6(c-d), Figure S5C–D). The simplest explanation
for the observed diversity of autophagy-dependent turnover
rates in both fly heads and human cells is that some
mitochondrial proteins undergo more autophagic degrada-
tion than others.

Discussion

In this work, we addressed two fundamental questions about
mitochondrial autophagy. First, what proportion of mitochon-
drial protein degradation occurs through autophagy? Second, is
the process significantly protein selective? We found that
autophagy accounts for approximately one-third of mitochon-
drial protein turnover in vivo, and that individual mitochon-
drial proteins are degraded by autophagy at highly divergent
rates.

Our finding that autophagy was not the primary mechan-
ism of mitochondrial protein turnover is consistent with pre-
vious work suggesting large-scale mitochondrial protein
turnover by non-autophagic processes; for instance, protea-
some inhibition in mammalian cells causes dramatic accumu-
lation of mitochondrial proteins [12], and yeast mitochondrial
proteases can degrade up to ~5% of total mitochondrial pro-
tein per hour [58]. Studies of mitochondrial DNA turnover

Figure 5. Findings in autophagy-deficient cultured cells support the protein selectivity of mitochondrial autophagy. (a) Mean percent autophagic turnover calculated
from ATG7−/− (n = 211 proteins) and ATG5−/− (n = 196) vs. WT human fibroblasts. Error bars represent SD. (b) Autophagy-dependent turnover rates of individual
mitochondrial proteins calculated from ATG7−/− and ATG5−/− fibroblasts (ranges 1659-fold and 1079-fold, respectively). (c) The 5% trimmed ranges (95th/5th
percentile) of autophagy-dependent turnover rates for mitochondrial and proteasomal proteins in ATG7−/− fly heads, ATG7−/− fibroblasts, and ATG5−/− fibroblasts
(n = 16 proteasomal proteins in heads and 33 in both ATG7−/− and ATG5−/− fibroblasts). (d and e) Percent autophagic turnover correlates positively with WT
turnover rate (h−1) for mitochondrial proteins in ATG7−/− fibroblasts (d). ATG5−/− fibroblasts (e) show a trend-level positive correlation between percent autophagic
turnover and WT turnover rate as well.
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also suggest that autophagic degradation of mitochondria is
not a high-frequency event [59,60]. These findings corrobo-
rate the general accuracy of our measurement. It is entirely
possible, however, that autophagy makes larger contributions
to mitochondrial protein turnover during other life stages or
under different metabolic conditions. Our technique did have
the potential to underestimate autophagic turnover if alter-
native autophagy pathways [61,62] contributed significantly to
mitochondrial protein turnover. However, multiple reports
indicate that strong inhibition of the Atg7-dependent pathway
causes profound to total blockade of mitochondrial autophagy
[22,42,52,63–65].

Selective autophagic degradation of mitochondrial proteins
has been clearly demonstrated in yeast under stress conditions

[39,40], and cell culture studies have indicated that protein-
selective mitochondrial autophagy may also occur in verte-
brates [41,42]; we now demonstrate that basal autophagy
degrades mitochondrial proteins at widely differing rates in
an intact metazoan. Multiple factors could contribute to the
protein selectivity of mitochondrial autophagy. For instance,
among mitochondria within a single cell, the probability of
autophagic degradation may correspond with subcellular var-
iation in protein composition. Mitochondria in different
regions of a cell (e.g. perinuclear vs. peripheral) show differ-
ences on multiple measures, including protein content, mem-
brane potential, respiration rate, and reactive oxygen species
generation [66–69]. The probability of mitochondrial auto-
phagy could likewise differ between subcellular regions,

Figure 6. The protein-selective effects of autophagy in ATG7−/− and ATG5−/− cells are not explained by genetic compensation. (a) Autophagy-dependent turnover
rates (h−1) of mitochondrial proteins from ATG7−/− fibroblasts with and without evidence of proteasomal turnover (ubiquitinated [Ub] sites) [48]. Red lines indicate
means; n = 44 proteins with ubiquitinated sites, 167 without. (b) Autophagy-dependent turnover rates (h−1) of mitochondrial proteins from ATG5−/− fibroblasts with
(n = 45) and without (n = 151) ubiquitinated sites, as in panel A. (c) Autophagy-dependent turnover rates (h−1) of individual mitochondrial proteins from ATG7−/−

fibroblasts with (n = 31) and without (n = 180) degrons for mitochondrial proteases Lon and YME1L1. (d) Autophagy-dependent turnover rates (h−1) of individual
mitochondrial proteins from ATG5−/− fibroblasts with and without protease degrons (n = 30 proteins with degrons, 166 without). All comparisons of means in panels
A through D are nonsignificant by Student t test.
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whether because of environmental factors (local availability of
autophagic machinery [70]) or intrinsic characteristics (func-
tional specialisation leading to high reactive oxygen species
production [68]). Subcellular mitochondrial heterogeneity
could explain why the classical model of mitochondrial
auto-phagy underestimated percent autophagic turnover in
mitochondrial proteins with high WT turnover rates (short-
lived proteins; Figure 2(e)). These proteins included many
enzymes involved in fatty acid and amino acid metabolism
(Dataset S1), which may have been concentrated in
a functionally specialised mitochondrial population with
a high probability of autophagy.

Differences in mitochondrial protein composition within
a cell may also arise dynamically as part of quality control.
Mitochondrial fission has been shown to produce daughter
mitochondria with significant differences in membrane
potential and probability of autophagic degradation, and pos-
sibly even in physical structure [71,72]. These differences
could reflect active or passive damage-based sorting of
damaged proteins into areas of the mitochondrial network
that will ultimately be isolated and degraded [73–75]. While
the sorting process itself remains largely speculative, there is
clear evidence that cells can target concentrations of abnormal
mitochondrial protein; such damage-enriched areas recruit
quality control and fission factors to facilitate their own
removal [76,77]. The net result of these selective sorting and
degradation processes could be high autophagic turnover
rates for proteins prone to unfolding or damage.

Differences in autophagic turnover between mitochondrial
proteins could also reflect sorting based on a protein’s identity
or characteristics. This phenomenon has been demonstrated
in aging yeast, which generate mitochondria-derived com-
partments containing only highly defined subsets of proteins
[39]. If identity-based sorting occurs in other contexts, pro-
teins extremely prone to oxidative damage or unfolding might
be actively directed to autophagy-bound mitochondria at high
rates, a preventive approach that could produce more effective
quality control than damage sensing alone. Conversely, pro-
teins that are energetically costly to replace could be sorted
into areas of the mitochondrial network with low probabilities
of degradation. This type of sorting would explain our find-
ings on mitochondrial proteins with low WT turnover rates;
their combination of low total turnover rates and
modest percent autophagic turnover is consistent with active
exclusion from autophagy-bound mitochondria. Many ques-
tions remain, particularly as to the physical mechanisms of
protein redistribution, but the advantages of the process are
clear. Active redistribution of mitochondrial proteins would
lend additional flexibility and precision to quality control, and
would facilitate quick adjustments to changing conditions.

In summary, our findings suggest that autophagy’s role in
mitochondrial quality control is different, but no less vital,
than previously envisioned. First, while the contribution of
autophagy was less than that of all other degradation path-
ways combined, autophagy may still degrade more mitochon-
drial protein than any other single mechanism. Second, the
most important function of mitochondrial autophagy may not
be large-scale protein degradation, but swift removal of unsal-
vageable parts of the mitochondrial network. The relatively

large contribution of parkin-dependent mitophagy under-
scores the idea that autophagy degrades mitochondria primar-
ily when they have become severely dysfunctional. Autophagy
can thus be seen as a cell’s crucial last line of defence against
mitochondrial damage. Nevertheless, our findings raise new
questions about the widely proposed strategy of enhancing
autophagy to treat neurodegenerative disease [78]. Would
drug-stimulated mitochondrial autophagy retain its protein
selectivity? If not, would the change be detrimental? Our
work also suggests that enhancing non-autophagic mitochon-
drial protein turnover might be an even better therapeutic
approach. A deeper understanding of non-autophagic mito-
chondrial protein turnover mechanisms, and their individual
roles in mitochondrial health, is thus an important goal for
future research.

Materials and methods

Drosophila strains and culture

Fly stocks were maintained on standard cornmeal-molasses
food at 25°C. The Atg7d4, Atg7d77, park25, and Pink1rv alleles,
as well as the UAS-Pink1#2 strain, have been previously
described [43,79,80]. Other strains and alleles were originally
obtained from the Bloomington Stock Center. Atg7 null
mutants were Atg7d4/Atg7d77 transheterozygotes. The full gen-
otype of parkin mutants was If/CyO; park25/park

25. The WT
controls were four separate groups of healthy flies with inten-
tionally diverse genetic backgrounds (see protein turnover
rate calculations section).

In vivo stable isotope labelling of flies

[5,5,5 – 2H3] leucine (D3-leucine; 99 atom % deuterium) was
obtained from Isotec/Sigma-Aldrich (486825). Synthetic com-
plete medium without leucine (C-Leu) [81] was supplemented
with glucose and 60 mg/L D3-leucine. A strain of
Saccharomyces cerevisiae auxotrophic for leucine (BB14-3A,
Brewer Lab, University of Washington [82]) was grown to
saturation at 30°C, then spun down, flash-frozen in liquid
nitrogen, lyophilised, and stored at −80°C until needed.
Groups of 10 to 50 male flies were selected on the day of
eclosion and housed in perforated plastic flasks, where they
received plain yeast paste for 24 h. They were then provided
with D3-leucine–labelled yeast paste, which was replaced
every 2–3 days, and were maintained in humidified containers
at 25°C. After 120 h or 240 h of labeling (the shortest time
points that allowed adequate labeling of mitochondrial pro-
teins), flies were flash-frozen in liquid nitrogen. Three biolo-
gical replicates (50–115 heads each) were obtained for each
genotype and time point.

Sample preparation

Frozen flies were vortexed to remove heads, and the isolated
heads were homogenised in 0.1% RapiGest (Waters
Corporation, 186001861) solution in 50 mM ammonium
bicarbonate (Fisher Scientific, A643) using a 0.2-mL
Wheaton micro tissue grinder (Fisher Scientific, 08-414-
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15B). Homogenates were centrifuged at 4°C at 1600 × g for
10 min, and then at 6500 × g for 10 min, to remove debris and
nuclei. The supernatants were then boiled for 7 min and
incubated at 60°C for 30 min with dithiothreitol (Sigma-
Aldrich, Inc., D0632) at a final concentration of 5 mM.
Iodoacetamide (Sigma-Aldrich, Inc., I1149) was added to
a final concentration of 15 mM, and the samples were incu-
bated at room temperature in the dark for 30 min. Trypsin
(Fisher Scientific, PR-V5111) was added at a ratio of 1 μg
trypsin per 50 μg protein, and the samples were incubated for
1 h at 37°C with shaking. RapiGest was hydrolysed by adding
hydrochloric acid (Fisher Scientific, SA56-1) to a final con-
centration of 200 mM, followed by incubation at 37°C with
shaking for 45 min. The samples were then centrifuged for
10 min at 4°C at 20,000 × g, and the supernatant was
collected.

Mass spectrometry

Liquid chromatography and mass spectrometry were per-
formed as previously described [25]. High-resolution MS
data were processed with BullsEye to optimise precursor
mass information [83]. The MS/MS output was searched
using SEQUEST [84], with a differential modification of
3.0188325 Da for leucine and a static modification of
57.021461 Da for cysteine, against a FASTA database contain-
ing all protein sequences from FlyBase [85] plus contaminant
proteins. Peptide-spectrum match false discovery rates were
determined using Percolator [86] at a threshold of 0.01, and
peptides were assembled into protein identifications using an
in-house implementation of IDPicker [87].

Annotation of Drosophila proteins

Drosophila protein localisation was determined from a variety
of resources including gene and protein information databases
(FlyBase [88], MitoDrome [89], NCBI [90], UniProt [91]),
protein localisation prediction algorithms (WoLF PSORT
[92], MitoProt [93], Predotar [94], SignalP [95], NucPred
[96], and PTS1 Predictor [97,98]), BLAST [99] and primary
literature.

Protein turnover rate calculations

Turnover rates for fly head proteins were calculated using
Topograph software [100] as described in Vincow et al. [25].
A protein’s turnover rate was computed based on data from
all peptides detected, and data points from all biological
replicates were pooled for turnover calculations. All proteins
included in the dataset had at least 15 measurements per
genotype of percent turnover, derived from at least two pep-
tides. Peptides that could be the product of more than one
gene were excluded from analysis. For a small percentage of
genes (2–5%), Topograph grouped peptides corresponding to
a single gene into 2–3 non-overlapping ‘isoform groups’. For
example, isoform group 1 might include peptides mapping
only to the COX6B-PA isoform, while isoform group 2 pep-
tides could have come from COX6B-PA, -PB, or -PC. While
in most cases the isoform groups for a single protein had

essentially identical turnover rates, occasionally they displayed
significant differences. Each isoform group was therefore
analysed as a separate protein.

We excluded proteins with excessive inter-replicate varia-
bility of turnover rates. To do this, we calculated the turnover
rate separately for each biological replicate and determined
the coefficient of variation across replicates. Proteins with
coefficient of variation ≥ 0.25 were excluded from analysis.
Proteins were analysed only if they met inclusion criteria in
both mutants and WT controls. One ribosomal protein and
one ER protein had faster turnover in mutants than in con-
trols (negative autophagy-dependent turnover rates) and were
outliers by the Tukey method [101]; they were excluded from
analysis.

In previous work, we had compared Atg7 and parkin null
mutants to their respective heterozygotes. However, we later
found that both Atg7 and parkin heterozygotes had mild but
significant slowing of mitochondrial protein turnover com-
pared to WT flies. The previously reported effects of Atg7 and
parkin null mutations on turnover thus represent underesti-
mates, and we substituted the current WT dataset as a more
appropriate control for both mutants. The WT dataset is
a composite derived from four separate groups of healthy
flies (w1118, Pink1rv, CyOActGFP/+, and a mixture of CyO/
Hsp70-GAL4 and CyO/UAS-Pink1#2). This approach maxi-
mised the number of mitochondrial proteins identified and
minimised any influence of genetic background on turnover
rate. Turnover rates are the mean values for all genotypes in
which the protein was detected, and are highly consistent
across genotypes, as previously reported [25]. Five mitochon-
drial proteins showed excessive variability of turnover rates
across genotypes (inter-genotype coefficient of variation ≥
0.25) and were excluded from analysis.

Calculation of percent autophagic turnover and percent
parkin-dependent turnover

We calculated percent autophagic turnover as described in the
text, and we calculated parkin-dependent turnover by com-
paring turnover in parkin mutants with turnover in WT
controls. For the sake of comparability, we restricted analyses
to those proteins that also met quality standards in Atg7
mutants. All proteins in parkin-dependent turnover analyses
were thus detected in WT, parkin and Atg7 flies. Five proteins
had negative parkin-dependent turnover values and were
excluded from analysis (final n = 168 proteins). Percent
parkin-dependent turnover was calculated for each mitochon-
drial protein by adapting the equation used for Atg7 mutants:

percent park-dependent turnover ¼
ðturnover ratein WTÞ � ðturnover rate in parkÞ

turnover rate in WT
� 100

A more conservative estimate of parkin-dependent autophagic
turnover was also calculated by excluding proteins that
appeared to undergo non-autophagic forms of
parkin-dependent turnover (Table S1). As previously
described [25], proteins were designated potential selective
parkin targets if their individual percent parkin-dependent
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turnover was greater than their percent autophagic turnover
(n = 53).

Analysis of tissue-specific gene expression

Tissue expression of genes encoding mitochondrial and other
organellar proteins was determined using FlyAtlas microarray
data [54]. If more than one probeset matched a given gene, we
selected the best match based on signal level, exclusivity and/
or location within the gene. Expression was analysed in all
FlyAtlas tissues represented in the head: brain, fat body and
eye. We were primarily interested in the proportion of a given
mitochondrial protein that was expressed in each tissue (in
other words, how much of the protein’s total abundance was
found in that tissue). We therefore analysed the relative tissue
expression (enrichment) of genes encoding the proteins of
interest. To do this, we normalised each tissue RNA value to
the RNA value for whole fly, as described by Robinson
et al. [102].

Of 186 mitochondrial proteins, 4 were mitochondrially
encoded and 5 had no usable RNA data, leaving 177 proteins
with RNA measurements. For other organellar proteins (ER,
ribosome and peroxisome), the number of genes with usable
RNA values varied slightly by tissue because a few genes were
not reliably detected in fat body or eye. The final number of
genes was 82 for brain, 79 for fat body and 80 for eye.

Microarray analysis

Gene expression in Atg7 mutants was evaluated by reanalysis
of microarray data originally published by Erdi et al. [103].
Raw data were downloaded from the ArrayExpress website
(study E-MEXP-3352) using the Bioconductor ArrayExpress
package [104]. Microarray analysis was performed using
4 × 44 k format Drosophila Gene Expression Microarrays
(Agilent, G2519F-021791). Atg7 mutants (third instar larvae)
were compound heterozygous for null mutations (Atg7d14/
Atg7d77), and controls were heterozygotes (Atg7d14/
CG5335d30). CG5335 is an unrelated gene located within an
exon of Atg7. Only data from fed larvae were used.
Experimental design and procedures were otherwise as pre-
viously described [103].

The data had been collected using two-colour arrays, but
for this analysis we wished to compare samples that were
not hybridised on the same array, so we analysed the data
using a separate-channel analysis method implemented in
the Bioconductor limma package [105,106]. Briefly, we
background corrected the individual channel data using
the ‘normexp’ method, with an offset of 50. This estimates
an array-wide background value by modelling the data as
a convolution between a lognormal and an exponential
distribution. After subtracting the background estimate,
we normalised within each array using a locally weighted
(loess) fit, and then normalised between arrays using a so-
called ‘Aquantile’ normalisation, which performs a quantile
normalisation based on the average spot intensity, while
keeping the log-ratios of each spot unchanged.

The separate-channel analysis is based on the observation
that while the log-ratios for a given spot are correlated, the

log-ratio (M value) and the average log spot intensity (A
value) are not. We rescale the M and A values based on an
estimate of the intra-spot correlation, and then fit
a conventional linear model based on the rescaled M and
A values. Since the M and A values can be expressed as linear
combinations of the log expression values for each spot, it is
straightforward to fit the model and then compute any con-
trast of interest.

For this experiment, we were only interested in the comparison
between fed Atg7 nulls and fed controls. However, we fitted
a linear model using all the array data, and then computed an
empirical Bayes adjusted contrast between the two groups of
interest. Using all arrays and the empirical Bayes adjustment
allowed us to borrow information both across arrays and across
genes, increasing power to detect differences. The p values were
corrected for multiple testing using Benjamini and Hochberg’s
original procedure (false discovery rate = 0.1) [107]. After analysis
was complete, we mapped the probe sequences to Drosophila
transcripts using BLAST+ [99], FlyBase [88], and Entrez Gene
[90]. Of the 91 probes that showed significant difference in expres-
sion between genotypes, 69 matched known gene transcripts, and
we obtained Gene Ontology information for these using
FlyBase [88].

Measurement of protein abundance

Wemeasuredprotein abundance from the same rawmass spectro-
metry data used in the turnover study. Abundance comparisons
were made at the second time point (240 h), when differences
between genotypes were most marked. For this analysis we used
the original heterozygote control flies rather than WT flies (see
‘Protein turnover rate calculations’ above). While the composite
control group approach was appropriate for measurement of
turnover (more consistent and less noisy than abundance [25]),
measurement of relative protein abundance required mutant and
control samples that had been run at the same time.We calculated
fold change in protein abundance between mutant and control
using Skyline [108] and MSstats [109]. Prior to MSstats analysis,
we computed total abundance (labelled plus unlabelled) for each
peptide using an R script. The statistical significance of intergroup
differences was calculated using a linear mixed model, then
adjusted for multiple comparisons by the Benjamini–Hochberg
procedure with a false discovery rate of 0.05.

Analysis of human ATG7 and ATG5 null fibroblast data

We analysed previously published sets of protein turnover
rates from engineered human fibroblasts lacking either
ATG7 or ATG5 [55]. For each mutant vs. WT comparison,
we included proteins that met either of two criteria: the
protein was marked ‘selected’ in both genotypes, or its corre-
lation coefficient for kdeg was ≥ 0.7 in both genotypes.
‘Selected’ means that the protein was chosen for analysis in
the original publication on these datasets [55]. Approximately
12% of mitochondrial proteins in the ATG7−/− dataset and
15% in the ATG5−/− dataset had negative autophagy-
dependent turnover rates (faster turnover in the mutant),
and were excluded from analysis. We classified a protein as
mitochondrial if it met any of the following criteria:
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1) The protein was identified as mitochondrial in the human
version of MitoCarta 2.0 [110] based on evidence types known,
GFP [green fluorescent protein], proteomics, or strong computa-
tional. Proteins of the cytosolic ribosome were excluded.

2) The protein had ‘mitochondrion’ or ‘mitochondria[l]’ in
its UniProt protein name or NCBI gene name.

3) The protein had an amply documented mitochondrial
function (e.g. complex IV assembly).

Identification of proteasome and mitochondrial protease
substrates

We identified probable substrates of mitochondrial proteases in
both fly head and human fibroblast data based on the presence
of degron sequences for mitochondrial proteases Lon and
YME1L (YME1L in Drosophila, YME1L1 in Homo sapiens)
[49,50]. We obtained sequences for the fly proteome from
FlyBase and for the human proteome from NCBI, and searched
both proteomes for degrons using an algorithm written in
Python 2.7. Criteria for the YME1L degron were based on the
hidden Markov model described by Rampello et al. [50]. Lon
degron motifs were FhhF and FhhFP, where ‘h’ is a hydrophobic
amino acid on the Janin scale [111]. A protein was designated as
degron-bearing if any of its isoforms had at least one degron.

We identified proteins as proteasome substrates based on the
presence of ubiquitinated sites as reported by Wagner et al. [48].
These were sites that showed altered abundance of ubiquitinated
peptides after proteasome inhibitor treatment. For the human
ATG5−/− and ATG7−/− fibroblasts, we compared mitochondrial
proteins with one or more ubiquitinated sites to the remaining
mitochondrial proteins. For fly heads, we did the same using
Drosophila orthologues of the Wagner et al. data. We obtained
these orthologues with the DRSC Integrative Ortholog
Prediction Tool [112] (DIOPT) v6.0.3, minimum score 5.
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