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Abstract

Background—Intention-to-treat comparisons of randomized trials provide asymptotically 

consistent estimators of the effect of treatment assignment, without regard to compliance. 

However, decision makers often wish to know the effect of a per-protocol comparison. Moreover, 

decision makers may also wish to know the effect of treatment assignment or treatment protocol in 

a user-specified target population other than the sample in which the trial was fielded. Here, we 

aimed to generalize results from the ACTG A5095 trial to the US recently HIV-diagnosed target 

population.

Methods—We first replicated the published conventional intention-to-treat estimate (2-year risk 

difference and hazard ratio) comparing a four-drug antiretroviral regimen to a three-drug regimen 

in the A5095 trial. We then estimated the intention-to-treat effect that accounted for informative 

dropout and the per-protocol effect that additionally accounted for protocol deviations by 

constructing inverse probability weights. Furthermore, we employed inverse odds of sampling 

weights to generalize both intention-to-treat and per-protocol effects to a target population 

comprising US individuals with HIV diagnosed during 2008–2014.

Results—Of 761 subjects in the analysis, 82 dropouts (36 in the three-drug arm and 46 in the 

four-drug arm) and 59 protocol deviations (25 in the three-drug arm and 34 in the four-drug arm) 

occurred during the first 2 years of follow-up. A total of 169 subjects incurred virologic failure or 

death. The 2-year risks were similar both in the trial and in the US HIV-diagnosed target 

population for estimates from the conventional intention-to-treat, dropout-weighted intention-to-

treat, and per-protocol analyses. In the US target population, the 2-year conventional intention-to-

treat risk difference (unit: %) for virologic failure or death comparing the four-drug arm to the 
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three-drug arm was −0.4 (95% confidence interval: −6.2, 5.1), while the hazard ratio was 0.97 

(95% confidence interval: 0.70, 1.34); the 2-year risk difference was −0.9 (95% confidence 

interval: −6.9, 5.3) for the dropout-weighted intention-to-treat comparison (hazard ratio = 0.95, 

95% confidence interval: 0.68, 1.32) and −0.7 (95% confidence interval: −6.7, 5.5) for the per-

protocol comparison (hazard ratio = 0.96, 95% confidence interval: 0.69, 1.34).

Conclusion—No benefit of four-drug antiretroviral regimen over three-drug regimen was found 

from the conventional intention-to-treat, dropout-weighted intention-to-treat or per-protocol 

estimates in the trial sample or target population.

Keywords
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Introduction

Randomized controlled trials are considered the gold standard for causal inference in 

medical interventions. This is primarily because randomization eliminates confounding by 

design and therefore helps to ensure internal validity by making treatment groups 

comparable (or exchangeable) in expectation. The standard approach to the analysis of 

randomized trials, the intention-to-treat (ITT) comparison, provides an asymptotically 

consistent effect estimate of the treatment assignment.1–3 Yet, those making treatment 

decisions often want to know the effect of the treatment assigned under adherence to the 

treatment protocol (i.e. the per-protocol comparison).4,5 Asymptotically consistent estimates 

of the per-protocol effect (accounting for protocol deviations (e.g. non-compliance)) can be 

obtained by censoring patients at protocol deviation and using inverse probability (IP) 

weights under the additional assumption that the common causes of the endpoint and 

protocol deviations are measured and the model correctly specified.6 For example, recently 

Murray and Hernán7 estimated a per-protocol effect on mortality in the placebo arm of the 

Coronary Drug Project by standardizing on pre- and post-randomization covariates using IP 

weighting.

In addition, lack of external validity is a major concern in medical research and randomized 

trials.8,9 External validity refers to the extent that results generalize to a specified target 

population. In a randomized trial, generalizability is often limited, and external validity is 

constrained due to restrictive inclusion and exclusion criteria. Recently, there have been 

several quantitative methods developed to enhance external validity.10–16 Asymptotically 

consistent estimates of the generalized treatment effect can be obtained also using IP of 

sampling weights under the additional assumption that the common causes of the endpoint 

and determinants of sampling into the trial are measured and the model correctly specified.
9,13,17

The AIDS Clinical Trials Group (ACTG), established in 1987, is a paragon of modern 

clinical trial research. ACTG studies have made major contributions to optimizing HIV 

treatment. One exemplar ACTG study is the A5095 trial, which compared the efficacy and 

safety of a standard three-drug antiretroviral therapy (ART) regimen (zidovudine, 

Lu et al. Page 2

Clin Trials. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lamivudine, efavirenz) versus adjuvant therapy regimen with abacavir (zidovudine, 

lamivudine, efavirenz, and abacavir) among HIV-infected adults with viral load of at least 

400 copies/mL at randomization.18 An ITT analysis found no significant difference in time 

to virologic failure between three-drug and four-drug regimens (hazard ratio = 0.95; 97.5% 

confidence interval (CI): 0.69, 1.33). However, like many randomized trials, the A5095 trial 

suffered from 20% dropout and 17% protocol deviations (i.e. non-compliance to the 

assigned treatment).18 In this setting, an ITT estimator may produce biased estimates of the 

per-protocol effect (i.e. the effect if everyone initiated and followed the protocol over the 

entire follow-up) and may be inadequate for the assessment of comparative effectiveness.
4,19,20 Therefore, a per-protocol analysis that accounts for protocol deviations would 

complement the published ITT results. In addition, the existing A5095 ITT results and 

perprotocol results may not generalize to the target population of US HIV-diagnosed 

persons. For example, the A5095 study sample included 35% African American patients and 

9% patients under 26 years of age compared with about 45% and 20%, respectively, in the 

annual HIV-diagnosed population in the United States as defined using national HIV 

surveillance data by the Centers for Disease Control and Prevention (CDC).21 If race and 

age are potential modifiers of the treatment effect on virologic failure, we may be concerned 

about such covariate imbalances, as they may pose a threat to the external validity of the trial 

results.

Here, we first replicate the ITT estimate for the effect of assigned treatment published with 

the A5095 results.18 Next, we estimate the per-protocol effect of the treatment plan. Then, 

we generalize both the ITT and per-protocol effect estimates to persons diagnosed with HIV 

in the United States during 2008–2014 as defined by CDC national surveillance data.

Methods

The ACTG A5095 study

The ACTG A5095 study was a three-arm randomized double-blind, placebo-controlled 

clinical trial designed to compare three antiretroviral regimens for treatment of HIV-1 

infection.18,22 Between March 2001 and November 2002, 1147 HIV-1-infected patients 

were enrolled and randomly assigned 1:1:1 to one of three antiretroviral regimens: a triple-

nucleoside regimen (i.e. zidovudine, lamivudine, and abacavir), a three-drug standard-of-

care-regimen (i.e. zidovudine, lamivudine, and efavirenz), or a novel four-drug regimen (i.e. 

zidovudine, lamivudine, efavirenz, and abacavir). Eligible patients had received no previous 

ART and had a plasma HIV-1 RNA level of at least 400 copies/mL. Excluded patients had 

received immunomodulatory or investigational therapy or vaccines within the previous 

month, weighed <40 kg, or were pregnant or breastfeeding. In 2003, the triple-nucleoside 

regimen was discontinued due to inferiority.22 As in the primary report,18 here we disregard 

the triple-nucleoside regimen and compare the novel four-drug regimen to the three-drug 

standard-of-care regimen. For the present analysis, we used the public A5095 data set 

available from the National Technical Information Service (NTIS) (http://www.ntis.gov/).

In the published study, the primary endpoint was time from randomization to virologic 

failure; here, we take the primary endpoint to be time to virologic failure or death from any 

cause. Virologic failure was defined as the time of the first of two successive HIV-1 RNA 
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levels of 200 or more copies/mL, at least 16 weeks after randomization. Follow-up visits 

occurred at weeks 2, 4, 8, 12, 16, 20, and 24 and then every 8 weeks until end of study in 

March 2005. While the longest recorded follow-up was 204 weeks, here we administratively 

censor patients at 2 years (730 days). Four patients were excluded from analysis because of 

inconsistencies in the public-use data. This work was judged not to be human subjects 

research by the University of North Carolina Institutional Review Board.

Intention-to-Treat Effect

Let uppercase letters represent random variables, and lowercase letters represent possible 

realizations of random variables or constants. Let i index the n study patients and t index the 

up to 2 years (730 days) from randomization. Let Ri = 1 denote that patient i was 

randomized to the four-drug regimen, and Ri = 0 denote randomization to the three-drug 

regimen. Let Δit = 1 indicate the primary endpoint for patient i by day t from randomization. 

Let Dit = 1 indicate dropout (i.e. defined as loss to follow-up before completing the study 

protocol) for patient i by day t from randomization. The conventional ITT hazard ratio 

assumes independent censoring (i.e. the censoring mechanism is independent of the survival 

time given treatment assignment). It was estimated from standard Cox proportional hazards 

model.23 The parameters of this Cox model were estimated by maximizing the partial 

likelihood.24 Assuming no tied survival times, the partial likelihood corresponding to patient 

i experiencing endpoint on day t is

exp βITT , SRi
∑ j ∈ J(t)exp βITT , SR j

where J(t) is the risk set on day t, exp(βITT , S) is the estimator of the conventional sample ITT 

hazard ratio of virologic failure or death comparing assignment to the four-drug regimen to 

assignment to the three-drug regimen in the A5095 trial. We used Efron’s method for tied 

survival times.25

Next, to account for potential dependent censoring due to dropout (i.e. informative dropout), 

we standardized the ITT hazard ratio to the study sample at randomization (i.e. before 

dropouts occurred) using IP of censoring weights.6,26 Let Wit be a vector of time-fixed (i.e. 

where t = 0) and time-varying covariates. Time-fixed covariates included sex, age at 

randomization, baseline hepatitis B virus/hepatitis C virus (HBV/HCV) infection status, and 

baseline viral load (copies/mL) and baseline CD4 cell count (cells/mm3). Time-varying 

covariates, used to account for informative dropout, included CD4 counts, viral load, first 

diagnosis of an HIV-related disease, and the presence of severe or life-threatening adverse 

events (i.e. National Institute of Allergy and Infectious Diseases Division of AIDS toxicity 

scale grade 3 or 427) during the follow-up visits. Restricted quadratic splines with four knots 

at 5th, 35th, 65th, and 95th percentiles were used to model CD4 cell count and viral load.
28,29

Let W it = W i0, W i1, …, W it  be the covariate history through day t. We estimated stabilized 

inverse probability-of-dropout weights as
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πit
D = ∏

k = 0

t P Dik = 0 Di(k − 1) = 0, Ri
P Dik = 0 Di(k − 1) = 0, Ri, Wi(k − 1)

where Di(−1) and Wi(−1) are defined to be Di0 and Wi0.30 Here, we did not include baseline 

covariates in the numerator of the weight and solely stabilized on the probability of 

treatment so as to allow presentation of marginal survival functions. The numerator and 

denominator of these stabilized weights were estimated by pooled logistic regression fit by 

maximum likelihood with models

logit P Dit = 0 Di(t − 1) = 0, Ri = α0t + α1Ri and

logit P Dit = 0 Di(t − 1) = 0, Ri, Wi(t − 1)
= α′0t + α′1Ri + α′2Wi(t − 1)

where α2′  is the transpose of column vector of log odds ratios for the covariate history 

W i(t − 1). Specifically, in a pooled logistic regression, each person-visit was considered as an 

observation, and the model was fit using person-visits.31 The denominator of each term in 

πit
D is the probability that a patient i remained uncensored at time t given his or her past 

exposure and covariate history and that he or she remained uncensored in the previous visits.

Then the ITT hazard ratio was estimated by partial likelihood, IP weighted to account for 

informative dropout.31 The weighted partial likelihood was maximized, where patient i who 

incurred virologic failure or death at day t from randomization contributed the term

exp βITT , SRi

∑ j ∈ J(t)π jt
Dexp βITT , SR j

πit
D

where exp(βITT , S) is the estimator of the ITT hazard ratio of virologic failure or death 

comparing assignment to the four-drug regimen to assignment to the three-drug regimen in 

the trial sample. This estimator accounts for potential informative dropout, under the 

assumption that the patients who dropped out on day t are exchangeable with those who 

remained in the study on day t conditional on prognostic factors Wit.30 Here and below, we 

also assume positivity, namely, there is a nonzero probability of being observed for every 

combination of values of treatment and covariate histories.32 Throughout, for identification 

of effects, we also assume that there is no interference between subjects,33,34 that any 

versions of treatment are irrelevant,35 negligible measurement error, and that models are 

correctly specified. The standard error for IP-weighted hazard ratio was estimated using 

robust sandwich variance.

In addition, for each study arm, conventional ITT risks and dropout-weighted ITT risks of 

the primary endpoint (i.e. virologic failure or death) were estimated using the Kaplan–Meier 

method36 and the inverse probability-weighted Kaplan–Meier method.37 The two arms were 
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also compared using a 2-year risk difference. The CIs for risks, weighted risks, and risk 

difference were obtained with the standard error estimated by the standard deviation of 200 

nonparametric bootstrap samples with replacement of the total study sample size n.38

Per-protocol effect

To estimate the per-protocol effect for continuous use of the four-drug regimen compared 

with the continuous use of the three-drug regimen, we account for protocol deviations as 

well as informative dropout.6,39 The estimation of the per-protocol effect was similar to that 

for the ITT effect accounting for informative dropout, except that Cit is used to denote 

censoring at the minimum of dropout or a protocol deviation by day t from randomization, 

rather than Dit denoting censoring at dropout alone previously. Then, we estimated stabilized 

IP weights for dropout and protocol deviations as

πit
C = ∏

k = 0

t P Cik = 0 Ci(k − 1) = 0, Ri
P Cik = 0 Ci(k − 1) = 0, Ri, Wi(k − 1)

where Ci(−1) and Wi(−1) are defined to be Ci0 and Wi0. The numerator and denominator of 

these stabilized weights were estimated by pooled logistic regression fit by maximum 

likelihood with models

logit P Cit = 0 Ci(t − 1) = 0, Ri = γ0t + γ1Ri and

logit P Cit = 0 Ci(t − 1) = 0, R, Wi(t − 1) = γ′0t + γ′1Ri + γ′2Wi(t − 1)

where γ2′  is the transpose of column vector of log odds ratios for the covariate history 

W i(t − 1).

The per-protocol hazard ratio was estimated by partial likelihood, IP weighted to account for 

potential informative dropout and protocol deviations.31 The weighted partial likelihood was 

maximized, where patient i who incurred virologic failure or death at day t from 

randomization contributed the term

exp βPP, SRi

∑ j ∈ J(t)π jt
Cexp βPP, SR j

π jt
C

where exp(βPP, S) is now the per-protocol hazard ratio of virologic failure or death comparing 

continually received four-drug regimen to continually received three-drug regimen in the 

trial sample. This estimator is consistent under the assumption that the patients who incurred 

protocol deviations on day t are exchangeable with those who complied with the study 

protocol on day t conditional on prognostic factors Wit.6,30 The perprotocol risks were also 

estimated using the IP-weighted Kaplan–Meier method and risk difference estimated at year 

2 from baseline.
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Generalizing effects to a US target population

The target population of size m was defined as the recently HIV-diagnosed population in the 

United States in 2008–2014 based on CDC data.40 To account for the potential differences 

between the trial sample and the specified target population, we employed inverse odds-of-

sampling weights.9 Let i now index the n + m subjects in the concatenated study sample and 

target population (of size m). Let Si = 1 denote selection into the trial sample of Σi Si 

patients, and Si = 0 denote those in the target population. Let Vi be an (n + m)-by-p matrix 

of discrete variables that describe the composition of the sample and target population, 

including age, sex, and injection drug use (ever versus never). Stabilized inverse odds-of-

sampling weights for patient i that was selected into the trial sample were defined as

πi
S =

P Si = 0 Vi
P Si = 1 Vi

×
P Si = 1

P Si = 0
Si = 1

0 Si = 0

as described by Westreich et al.16 The odds weights allow us to estimate the effect in the 

target population rather than in the combined population. Here, we use odds weights because 

we wish to estimate the effect in the target population uncorrupted by the trial sample.16 If 

standard IP of sampling weights10 were employed as opposed to the odds weights, the 

estimator would be standardized to the combination of the target population and the trial 

sample. The numerator and denominator of these stabilized weights were estimated by 

logistic regression fit by maximum likelihood with models

logit P Si = 1 = δ0 and
logit P Si = 1 Vi = δ0′ + δ1′ Vi

where δ1′  is the transpose of column vector of log odds ratios for the composition of the 

population Vi. Then, for each subject in the trial sample, we created the total IP weight

πit
D × S = πit

D × πi
S

that accounted for informative dropout and sampling bias for the dropout-weighted ITT 

hazard ratio estimation in the target US recently HIV-diagnosed population and total IP 

weight

πit
C × S = πit

C × πi
S

that accounted for informative dropout, protocol deviations, and sampling bias for the per-

protocol hazard ratio estimation in the target population (as well as the IP weight πi
S that 

only accounted for sampling bias for the conventional ITT hazard ratio estimation in the 

target population). Both dropout-weighted ITT and per-protocol hazard ratios were 

estimated by IP-weighted partial likelihood. The partial likelihood was maximized, where 
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patient i who incurred virologic failure or death at day t from randomization contributed the 

terms

exp βITTRi

∑ j ∈ J(t)πi
Sexp βITTR j

πi
S

where exp(βITT) is the conventional ITT hazard ratio of virologic failure or death in the 

target population

exp βITTRi

∑ j ∈ J(t)π jt
D × Sexp βITTR j

π jt
D × S

where exp(βITT) is the ITT hazard ratio of virologic failure or death accounting for 

informative dropout in the target population, and

exp βPPRi

∑ j ∈ J(t)π jt
C × Sexp βPPR j

πit
C × S

where exp(βPP) is the per-protocol hazard ratio of virologic failure or death in the target 

population under the additional assumption that the patients who were sampled in the trial 

are exchangeable with those who were not sampled conditional on pretreatment covariates 

Vi.9 We also assume a form of positivity, that is, within strata of Vi, all subjects in the 

population have a nonzero probability of being sampled into the trial.9

Results

Data for 761 of the 765 patients were available in the public-use data set (380 were 

randomized to the three-drug arm and 381 to the four-drug arm). The descriptive statistics of 

baseline characteristics are reported in Table 1 along with the characteristics of the US 

recently HIV-diagnosed population in 2008–2014 from CDC national surveillance data. 

ACTG A5095 included fewer aged <26 years compared with that of the recently HIV-

diagnosed persons in the United States. Of the 761 patients, 169 experienced virologic 

failure or death (161 virologic failures and 8 deaths) during the 2-year follow-up (88 in the 

three-drug arm and 81 in the four-drug arm). There were 82 dropouts during 2-year follow-

up. Of the 761 patients, 59 stopped their assigned therapy for reasons other than toxicity (25 

in the three-drug arm and 34 in the four-drug arm), and an additional 7 patients stopped their 

assigned therapy due to toxicity defined by protocol. It was inappropriate to treat these 

patients who stopped therapy due to toxicity as protocol deviations because these toxicities 

were considered to be unavoidable deviations. Thus, only those 59 patients who stopped 

therapy for reasons other than toxicity were considered as protocol deviations during follow-
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up. The risks for dropout and protocol deviations are depicted in Figure 1 separately. In 

addition, the distribution of estimated weights is described in Table 2.

The conventional ITT 2-year risk (unit: %) of virologic failure or death from any cause in 

the trial was 24.5 among those who were assigned to the three-drug arm and 23.1 among 

those assigned to the four-drug arm (shown in upper left panel of Figure 2). The 

conventional ITT 2-year risk difference (unit: %) comparing the four-drug arm to the three-

drug arm was −1.4 (95% CI: −8.0, 5.1), and the hazard ratio was 0.91 (95% CI: 0.68, 1.24), 

as shown in Table 3. The risk difference as a function of time from randomization is 

depicted in the upper left panel of Figure 3, with lower bound at −4.3. The IP-weighted ITT 

risk difference that accounted for informative dropout in the trial was −2.1 (95% CI: −8.8, 

4.6), and the hazard ratio was 0.89 (95% CI: 0.66, 1.20). That is, the 2-year risk of virologic 

failure or death if everyone in the trial were to initiate four-drug regimen was 2.1 percentage 

points lower than the risk if everyone were to initiate three-drug regimen.

After accounting for protocol deviations in addition to informative dropout, the IP-weighted 

per-protocol 2-year risk of virologic failure or death in the trial was 24.6 among the three-

drug arm and 23.0 among the four-drug arm. The per-protocol 2-year risk difference in the 

trial was −1.7 (95% CI: −8.2, 5.9), and the hazard ratio was 0.90 (95% CI: 0.67, 1.23), as 

shown in Table 3. That is, the 2-year risk of virologic failure or death if everyone in the trial 

were to initiate and stay on four-drug regimen was 1.7 percentage points lower than the risk 

if everyone were to initiate and stay on three-drug regimen.

When generalizing the ITT and per-protocol effects to the US recently HIV-diagnosed 

population, all the estimates were closer to the null. The conventional ITT 2-year risk 

difference in the target population was −0.4 (95% CI: −6.2, 5.1), and the hazard ratio was 

0.97 (95% CI: 0.70, 1.34); the IP-weighted ITT 2-year risk difference that accounted for 

informative dropout in the target population was −0.9 (95% CI: −6.9, 5.3), and the hazard 

ratio was 0.95 (95% CI: 0.68, 1.32). That is, the 2-year risk of virologic failure or death if 

everyone in the US target population were to initiate four-drug regimen was 0.9 percentage 

points lower than the risk if everyone were to initiate three-drug regimen. Accounting for 

protocol deviations in addition to informative dropout, the IP-weighted per-protocol 2-year 

risk of virologic failure or death in the target population was 24.4 in the three-drug arm and 

23.7 in the four-drug arm. The per-protocol 2-year risk difference in the target population 

was −0.7 (95% CI: −6.7, 5.5), and the hazard ratio was 0.96 (95% CI: 0.69, 1.34). That is, 

the 2-year risk of virologic failure or death if everyone in the US target population were to 

initiate and stay on four-drug regimen was 0.7 percentage points lower than the risk if 

everyone were to initiate and stay three-drug regimen.

Discussion

In this study, we reanalyzed the ACTG A5095 trial by (1) estimating the ITT effect 

accounting for potential informative dropout and (2) estimating the per-protocol effect that 

accounted for informative dropout and protocol deviations, and then (3) generalizing these 

estimates to the US recently HIV-diagnosed target population. We found that there was no 

significant benefit of the four-drug regimen (containing zidovudine, lamivudine, efavirenz, 
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and abacavir) over the three-drug regimen (containing zidovudine, lamivudine, and 

efavirenz) with regard to both effects in the trial and in the target population. Our results also 

suggest the adjusted ITT and per-protocol results were similar to the conventional ITT 

effect, which may be due to the relatively balanced dropout and protocol deviations in the 

two arms. To our knowledge, this is the first example of generalizing the per-protocol effect 

from a randomized trial to a specified target population.

For this study, as a first step, we employed inverse probability weighting6,39 (one of the g-

methods) to adjust for dependent censoring that may potentially arise from informative 

dropout when estimating ITT effect and additionally to adjust for protocol deviations for the 

per-protocol effect. The dropout-weighted ITT and per-protocol estimates are likely to differ 

from the conventional ITT estimates when dropout and protocol deviations differ by 

treatment arm. The mechanism of inverse probability weighting reweights the population 

over time based on the sequential weighting estimated from time-fixed as well as time-

varying prognostic factors. Such methods have been adopted in previous work such as to 

estimate the per-protocol effect in the Women’s Health Initiative estrogen-plus-progestin 

trial.41 Alternative methods can also be applied to per-protocol effect estimation. Lodi et al.
42 used g-computation (another g-method) to analyze the per-protocol effect of immediate 

ART initiation versus deferred initiation in the Strategic Timing of Antiretroviral Treatment 

(START) trial and found a potential underestimate of the benefit of immediate initiation by 

conventional ITT estimation. In addition, instrumental variable methods, which do not 

require measurement of all confounders (as do inverse-probability weighting and g-

computation) is an option for per-protocol effect estimation.43,44 In double-blind 

randomized trials, the randomization indicator is an instrumental variable where the 

exclusion restriction criteria is expected to be met (i.e. the effect of randomly assigned 

treatment on the outcome is entirely mediated through the received treatment). However, the 

instrumental variable approach requires another unverifiable assumption of no “defiers” in 

the trial (also as known as the monotonicity assumption).45 Furthermore, even when these 

assumptions are met, instrumental variable methods estimate the per-protocol effect among 

“compliers” which may not be representative of the total study population.

In the second step, we also adopted inverse odds weighting (a version of inverse probability 

weighting) to generalize the adjusted ITT and per-protocol effect to the US target 

population. Target population estimates are expected to differ from trial estimates when the 

distributions of effect modifiers differ in the trial and the target population. That is, the 

external validity of randomized trial results is influenced substantially by the extent to which 

the prevalence of effect modifiers differs in the trial and the target population. Similar work 

has been done in previous studies. Cole and Stuart10 used IP weighting to transport the 

ACTG 320 trial results to the US HIV-infected target population.

In our analyses, we used a composite endpoint of virologic failure and death rather than the 

sole virologic failure endpoint which was used in the original published study. We chose not 

to censor the deaths because they are a competing risk,46 and we chose to make a composite 

endpoint rather than model the competing risk because there were only eight deaths.
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Our results are subject to several limitations. First, in the per-protocol effect estimation, we 

only accounted for the observed protocol deviations from the publicly available A5095 trial 

data. However, there is no guarantee that all the protocol deviations were captured. To obtain 

a valid per-protocol effect, any protocol deviations from assigned treatment therapy, except 

for clinical reasons such as toxicity, should be accounted for.5 Second, it is not possible to 

verify the assumption that all prognostic factors are measured. We may not capture all the 

common causes of protocol deviations and outcomes, which can lead to residual 

confounding. However, the trial data are of high quality, and many important baseline and 

time-varying covariates were measured. This limitation suggests that to ensure the validity 

of per-protocol analyses, clinical trials should record detailed and high-quality data on 

prognostic factors. Third, race, an important factor that potentially modifies the effect of 

antiretroviral treatment, is unavailable in the public A5095 data, limiting our ability to 

address external validity. Fourth, we assume correct model specification, especially for the 

models used to construct weights. To enhance model robustness, further analyses that adopt 

double robust estimation can be conducted.47 Finally, we censored patients at the minimum 

of dropout or a protocol deviation for the per-protocol analysis. Creating weights based on a 

combination of dropout and protocol deviation assumes a common set of variables and 

association between dropout, protocol deviation, and outcome of interest.26 However, the 

results that the parameter estimates for predictors of the combined dropout and protocol 

deviation were similar to those for dropout alone make such assumption plausible.

In conclusion, our analyses of the ACTG A5095 trial serve as an example of using inverse 

probability weighting to generalize the per-protocol effect as well as the ITT effects to a 

specified target population. We recommend conducting generalized per-protocol analyses to 

complement conventional ITT comparisons, even though in this case study there was little 

difference between ITT and per-protocol effects, either in the sample or in the target 

population. There is some evidence that protocol deviations for this trial did not matter and 

that results were valid for recently HIV-diagnosed individuals. One may argue reasonably 

that if subgroup effects are strong enough to make a difference for generalizability, then we 

should report results by subgroups. However, covariates which individually do not yield 

notable subgroup effects may combine as detailed by Lesko et al.,9 and population-level 

planning may require population-level effect estimates summarized over subgroups. 

However, as long as positivity32 is met and key covariates are measured, one can generalize 

results.
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Figure 1. 
Risks of dropout and protocol deviations over 2 years by arm in the trial, respectively.

Solid line represents the three-drug arm, and dotted line represents the four-drug arm. The 

upper panel represents risks of dropout (hazard ratio = 1.27, 95% CI: 0.82, 1.96 (comparing 

four-drug arm to three-drug arm)). The lower panel represents risks of protocol deviations 

(hazard ratio = 1.35, 95% CI: 0.80, 2.26 (comparing four-drug arm to three-drug arm)).
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Figure 2. 
Risk of virologic failure or death by arms over 2 years (conventional ITT risks, dropout-

weighted ITT risks, per-protocol risks that accounted for informative dropout and protocol 

deviations in the A5095 trial and in the target population). ITT: intention-to-treat; target: 

target population.

Solid line represents the three-drug arm, and dotted line represents the four-drug arm. Upper 

panels represent risks in the trial with the left panel depicting the conventional ITT results 

under the independent censoring assumption, middle panel depicting the ITT results that 

accounted for informative dropout, and the right panel depicting per-protocol results that 

accounted for informative dropout and protocol deviation. Lower panels represent risks in 

the target US recently HIV-diagnosed population with the left panel depicting the 

conventional ITT results that only accounted for sampling bias, middle panel depicting the 

ITT results that accounted for informative dropout and sampling bias, and the right panel 

depicting per-protocol results that accounted for informative dropout, protocol deviation and 

sampling bias.
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Figure 3. 
Risk difference comparing four-drug arm to three-drug arm over 2 years (naïve ITT risks, 

dropout-weighted ITT risks, per-protocol risks that accounted for dropout and protocol 

deviations in the A5095 trial and in the target population). ITT: intention-to-treat; RD: risk 

difference; target: target population.

Upper panels represent risk differences over 2 years in the A5095 trial with the left panel 

depicting the conventional ITT risk difference under the independent censoring assumption, 

middle panel depicting the ITT risk difference that accounted for dropout, and the right 

panel depicting per-protocol risk difference that accounted for dropout and protocol 

deviation. Lower panels represent risk differences over 2 years in the target US recently 

HIV-diagnosed population with the left panel depicting the conventional ITT risk difference 

that only accounted for sampling bias, middle panel depicting the ITT risk difference that 

accounted for dropout and sampling bias, and the right panel depicting per-protocol risk 

difference that accounted for dropout, protocol deviation, and sampling bias.
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