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Abstract

Background—The cells that form the arterial wall contribute to multiple vascular diseases. The 

extent of cellular heterogeneity within these populations has not been fully characterized. Recent 

advances in single cell RNA-sequencing makes it possible to identify and characterize cellular 

subpopulations.

Methods—We validate a method for generating a droplet-based single cell atlas of gene 

expression in a normal blood vessel. Enzymatic dissociation of four whole mouse aortas was 

followed by single cell sequencing of over 10,000 cells.

Results—Clustering analysis of gene expression from aortic cells identified 10 populations of 

cells representing each of the main arterial cell types—fibroblasts, vascular smooth muscle cells 

(VSMCs), endothelial cells (ECs), and immune cells including monocytes, macrophages, and 

lymphocytes. The most significant cellular heterogeneity was seen in the 3 distinct EC 

populations. Gene set enrichment analysis of these EC subpopulations identified a lymphatic EC 

cluster and two other populations more specialized in lipoprotein handling, angiogenesis, and 

extracellular matrix production. These subpopulations persist and exhibit similar changes in gene 

expression in response to a Western diet. Immunofluorescence for Vcam1 and Cd36 demonstrates 

regional heterogeneity in EC populations throughout the aorta.
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Conclusions—We present a comprehensive single cell atlas of all cells in the aorta. By 

integrating expression from over 1,900 genes per cell we are better able to characterize cellular 

heterogeneity compared with conventional approaches. Gene expression signatures identify cell 

subpopulations with vascular disease-relevant functions.

Keywords

Vascular biology; endothelial cell; transcriptome; endothelial shear stress; aortic disease; single 
cell RNA-sequencing

Introduction

Blood vessels and the cells of the arterial wall contribute to risk for multiple diseases1,2. 

Vascular tissue is present in all organs of the body and is involved in the full spectrum of 

physiologic activities – from tissue development and remodeling to metabolism and 

inflammation3. Though the major arterial cell types are known, the molecular profile and 

heterogeneity of individual cells is poorly understood. Current characterization of cell types 

using a small number of marker genes does not capture the spectrum of functional states and 

gene expression programs in the vasculature.

Single cell RNA-sequencing technology now allows for the analysis of large numbers of 

individual cells from vascular tissue. Here we report the transcriptional profiling of 

individual cells from the mouse aorta. A cellular atlas of the entire aorta is possible with 

recent advances in droplet-based, massively-parallel single cell sequencing and 

computational analysis4,5. We identify 10 distinct clusters of cells, their gene signatures, and 

the relationship of vessel wall cell types to vascular disease-causing genes. This unbiased 

approach allows us to characterize multiple cells in a complex arterial tissue without the 

need for a priori sorting based on predefined markers.

Recent studies have used single-cell RNA-seq methods to survey leukocyte populations 

within the aorta6,7. These approaches separated CD45+ cells by flow cytometry, and using 

droplet-based single cell analysis identified the transcriptional profile for inflammatory cells 

in murine atherosclerosis. Non-flow sorting-based methods can improve single cell RNA-

seq analysis of cellular heterogeneity by including all the cells of the blood vessel wall such 

as endothelial cells, vascular smooth muscle cells, or arterial fibroblasts. Recently, a single 

cell atlas of cell types in multiple mouse organs was published using unbiased, droplet-based 

RNA-sequencing8. However, a more specific profile of heterogeneity within vascular cell 

types and the implications of cellular subpopulations for vascular function has yet to be 

reported.

By surveying all the cells in the aorta we identify markers of cellular heterogeneity and 

distinct cellular subpopulations with disease relevant functions. We also examine the 

changes in these cellular subpopulations in response to a Western Diet. The recent advances 

in single cell RNA-sequencing allow for this type of large-scale analysis to comprehensively 

profile all arterial cell types.
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Methods

Mice

Whole mouse aortas were harvested from 12-week old female C57/BL6 mice on either chow 

diet or 8 weeks of Western Diet (Research Diets). Four mice were included in each group, 

with 2 dissociated aortas from each condition sequenced at low-depth (17,000 reads/cell) 

and 2 samples sequenced at high-depth (145,000 reads/cell). The high-depth samples from 

the chow diet (n=2) and Western diet (n=2) were used for subsequent analyses. All mouse 

protocols were approved by the Broad Institute IACUC and all protocols were in accordance 

with institutional guidelines. The aorta was dissected from the root (distal to the aortic valve) 

to the femoral artery bifurcation. The isolated aorta included aortic arch, ascending, 

descending, thoracic, and abdominal portions. Perivascular fat was dissected from the 

vascular tissue prior to dissociation and single cell analysis.

Aortic dissociation

Preparation of a single cell suspension of aortic cells was performed using a previously 

described enzymatic digestion protocol9. Briefly, the isolated whole aorta was finely cut and 

incubated in 1X Aortic Dissociation Enzyme Solution (125 U/mL collagenase type XI, 60 

U/mL hyaluronidase type 1-s, 60 U/mL DNase I, and 450 U/mL collagenase type I) for 1 

hour at 37°C. The cell suspension was strained through a 30 μm filter, treated with ACK 

lysis buffer for 5 minutes at room temperature, and washed twice with PBS. The cells were 

resuspended in 0.4% BSA-PBS at a final concentration of 8×105 cells/mL. To determine if 

the dissociation protocol resulted in under-representation of certain cell types, a second 

aortic dissociation protocol10 using elastase (0.5mg/mL) and collagenase A (2mg/mL) for 30 

minutes at 37ºC was analyzed by flow cytometry and droplet-based single cell RNA-seq. 

Both dissociation protocols had a similar yield of endothelial cells and identified the six 

major vascular cell types (Supplemental Figure 1).

Droplet-based scRNA-sequencing

Single cells were processed through the GemCode Single Cell Platform using GemCode Gel 

Bead, Chip and Library Kits (10X Genomics) as per the manufacturer’s protocol. In brief, 

single cells were sorted into 0.4% BSA–PBS solution. 9,000 cells were added to each 

channel. The cells were then partitioned into Gel Beads in emulsion in the GemCode 

instrument, where cell lysis and barcoded reverse transcription of RNA occurred, followed 

by amplification, shearing and 5′ adaptor and sample index attachment. Libraries were 

sequenced on an Illumina NextSeq 500.

Single-cell data analysis

Dimensional reduction, clustering, and analysis of single-cell RNA sequencing data were 

performed using the R package Seurat (Version 2.3.1)11. Cells with expression of fewer than 

200 or more than 4000 genes and cells with greater than 25% expression of mitochondrial 

genes were filtered out of the analysis. Normalized expression values Ei,j for gene i in cell j 

were calculated by dividing unique molecular identifier (UMI) counts for gene i by the sum 

of the UMI counts in cell j, to normalize for differences in coverage, multiplying by 10,000 
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to create transcript per million (TPM)-like values, and finally computing log2(TPM + 1). 

Variable genes were identified using the Seurat FindVariableGenes method with the 

LogVMR dispersion function parameter; genes with log-normalized expression values 

between 0.125 and 4 and with a dispersion of at least 0.5 were considered variable. The 

Seurat ScaleData function was used to scale and center expression values in the dataset for 

dimensional reduction.

Principal component analysis (PCA) for dimensional reduction was performed using Seurat 

functions based on the variable genes previously identified. PCs 1–12 were selected for 

further study based on manual examination of the contribution of each PC to overall 

variability and based on the genes contributing to each PC. t-SNE was performed using 

Seurat functions based on PCs 1–12, and clustering to define cell identity was performed 

using the Seurat FindClusters function with resolution=0.5. Marker genes for each cluster 

were determined using the Wilcoxon rank-sum test via the FindAllMarkers function in 

Seurat.

Data Sharing

The raw counts table and the normalized expression table for the high-depth normal mouse 

aorta transcriptional profile are publicly available via the Broad Institute Single Cell Portal: 

https://portals.broadinstitute.org/single_cell/study/SCP289/single-cell-analysis-of-the-

normal-mouse-aorta-reveals-functionally-distinct-endothelial-cell-populations.

Endothelial cluster gene set signatures

Gene Ontology (GO) biological process-associated genes were identified using the R 

package biomaRt12,13 and gene set scores for each set were defined as described previously. 

The FindAllMarkers Seurat function was utilized to find positive markers of each EC 

subpopulation using the Wilcoxon rank-sum test. Pathway enrichment analysis was 

performed using ReactomePA14 to identify gene sets from the Reactome database15 with 

false discovery rate (FDR)<0.05 enrichment in marker sets. Functional gene signatures for 

each endothelial cell subpopulation were defined as the intersection between the enriched 

Reactome pathway and the subpopulation markers. The Seurat function AddModuleScore 

was used to define a score for each of the gene signatures defined this way as previously 

described.

Partitioning cell type contribution to aortopathy-related gene expression

A list of all genes linked to Mendelian forms of inherited aortic dissection syndromes was 

compiled from the Online Mendelian Inheritance in Man (OMIM) database. The average 

expression of each aortopathy gene in each stromal cell type (EC, Fibroblast, and VSMC) 

was computed using the AverageExpression function in Seurat. Average expression values 

for each gene were normalized to determine proportion of stromal expression in each cell 

type for ternary plotting using the R package ggtern16.

Statistical analysis

Marker genes for transcriptional subpopulations in scRNA-seq profiles were identified using 

the FindAllMarkers Seurat function with a minimum log-fold change threshold of 0.25 and 
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with p-values computed using a Wilcoxon rank-sum test. Pathway enrichment analysis was 

implemented using the enrichPathway ReactomePA function; p-values were computed using 

a hypergeometric test and adjusted for multiple hypothesis correction with a Benjamini–

Hochberg procedure. Gene set scores and imaging characteristics were compared between 

cell populations using the Mann-Whitney U test.

Additional methods included in Supplemental Methods

Results

Single cell profile of the normal aorta

We transcriptionally profiled four wild-type C57/BL6 mouse aortas using droplet-based 

massively parallel scRNA-sequencing. Two aortas were sequenced at low-sequencing depth 

(17,000 reads/cell), and two aortas were sequenced at high-sequencing depth (145,000 

reads/cell). There was no difference in the number of clustered cell populations based on 

sequencing depth. The high-sequencing depth data was used for all subsequent analyses, and 

yielded approximately 6,200 cells and 1,900 genes/ cell (Figure 1). Cells were enzymatically 

dissociated over 1 hour using either collagenase/hyaluronidase or collagenase/elastase 

protocols, with no difference in the number of isolated cell types (Supplemental Figure 1). 

Single cells were then individually bar-coded and sequenced using massively parallel 

droplet-based sequencing (Figure 1A). The individual samples were independently analyzed 

to confirm correlation between replicates, and then normalized and aggregated for joint 

analysis. The samples yielded a mean of 145,000 post-normalization reads per cell, which 

corresponds to a median of 1,900 genes per cell. We eliminated cells that expressed gene 

counts greater than 4,000 or less than 200 prior to analysis. The reproducibility between 

samples was validated by ensuring that all biological replicates were represented in all cell 

clusters. (Supplemental Figure 2).

Unsupervised graph clustering partitioned the cells into groups, which we visualized using t-

distributed stochastic neighbor embedding (t-SNE, Figure 1B). Individual clusters were 

labelled for cell type using known marker genes (Supplemental Table 1). The full set of 

transcriptional data was used to generate the clusters. Here we present clustering analysis 

using 1,100 variable genes per cell to identify cells with similar profiles. Vascular cell types 

represented in the distinct clusters included ECs, VSMCs, arterial fibroblasts, and immune 

cells, as well as a small neuronal cluster likely arising from adjacent tissue. A small 

population of red blood cells (RBCs) was also present following whole-aorta preparation; 

these cells were excluded from further analysis.

scRNA-sequencing identifies novel cell type-specific gene expression markers

The full set of differentially expressed markers for each cell population were identified from 

the RNA-sequencing data. Cell type specific markers for a cluster were defined as the five 

genes with the highest differential expression relative to all other cells (Figure 1C). For 

example, the top 5 VSMC specific markers are Myh11, Tpm2, Myl9, Tagln and Acta2. 

These genes include canonical VSMC genes, and therefore confirm the assignment of the 

cell clusters as VSMCs. We also identified all genes with log fold enrichment greater than 2 
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for each cell type relative to all other cells (Figure 1D). The heatmap of the gene expression 

shows the number of genes with significantly different expression (p-value<0.01 by 

Wilcoxon rank-sum test and log fold enrichment > 2) for each cell type. Monocytes have the 

largest number of unique transcripts as defined by this specificity standard compared with 

other cell clusters.

With expression data for ~1,900 genes per cell, we were able to identify different categories 

of cell type-specific markers. The first set of markers are widely expressed in all cells of that 

type, and not expressed in other clusters. In Figure 1C the size of each dot corresponds to the 

percentage of cells within a cluster expressing the gene, and the color represents the level of 

expression. Several markers are expressed in over 75% of the cells and with an average 

normalized expression of >0.75. Examples of these markers are Myh11 (VSMCs), C1qa 

(Monocytes), and Pecam1 (ECs). These markers represent the most specific and sensitive 

markers for the entire population of the given cell type. This is in contrast to markers that are 

highly expressed in a subset of a cell type. These genes remain specific markers, as they are 

not expressed in other cell types, but are not sensitive to capture all the cells of a pre-

specified group. Examples include Gpihbp1 (ECs) and Cd52/Rac2 (monocytes). A third 

marker type we identified were genes with high expression in one cell type, but also 

significant expression in other cell clusters. While these genes are not classically considered 

cell type specific markers, they did contribute to identification of cell identity in our 

clustering algorithm. Using all genes to cluster the cells allows for higher resolution 

detection of cell subpopulations and cellular heterogeneity compared with using only a small 

number of canonical cell-type specific markers.

Whole transcriptomic data identifies cellular subpopulations within aortic cell types

Following the analysis of cell types, we examined the 10 individual groups defined by 

clustering to define subpopulations within each aortic cell type (Figure 2A). Fibroblasts, 

monocytes/macrophages, and ECs all clustered into multiple subpopulations which were 

more similar to each other than to other aortic cell types as described by a cluster 

dendrogram (Figure 2B).

VSMCs comprise the largest population of cells in our analysis, accounting for 39% of all 

cells. VSMCs clustered into one subpopulation which expresses the canonical VSMC 

markers Myh11 and Cnn1.

The second largest population of cells were fibroblasts, which account for 33% of all cells. 

These cells are defined by higher expression of Pdgfra and collagens/collagen-binding 

proteins (Col1a1, Col1a2, Dcn, Lum) along with reduced expression of VSMC-associated 

contractile proteins (Myh11, Cnn1) and were split into 2 subgroups by clustering. One 

canonical marker of VSMC identity, alpha smooth muscle actin (Acta2), was highly 

expressed in VSMCs, but also present in a large proportion of fibroblasts, though at lower 

levels (Supplemental Figure 3).

Endothelial cells cluster into three distinct groups, defined by their common expression of 

canonical marker Cdh5. Certain canonical EC-specific genes such as Von Willebrand Factor 
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(Vwf) and VEGF-receptors (Flt1, Kdr) showed heterogeneous expression by cluster, and 

therefore do not serve as effective markers for identifying all ECs in the aorta.

Immune cells clustered into 3 broadly defined groups – macrophages (H2-Ab1) and two 

subpopulations of monocytes (both expressing Lyz2). There is overlap in gene expression in 

the monocyte and macrophage/DC clusters, and multiple markers were necessary to 

discriminate the two clusters (Supplemental Table 2). Finally, a small population of cells 

expressed markers of neuronal or nerve-associated identity including Mbp and Cnp. These 

likely represent a small amount of contamination from neighboring neuronal tissue during 

dissection of the aorta.

In order to determine whether separate clusters identified within each cell type represent 

discrete subpopulations or a continuous phenotypic gradient, the markers for each of the 10 

cellular subpopulations were plotted via heatmap (Figure 2C). Each of the three EC clusters 

express distinct and non-overlapping markers, suggesting the presence of discrete 

subpopulations. Conversely, the two fibroblast clusters expressed overlapping markers, 

suggesting the presence of a continuous phenotypic gradient rather than true subpopulations.

Previous work on small vessels in the brain17 has suggested that immediate early genes 

(IEG) including Fos, Fosb, Jun, and Junb may be enriched in cells isolated from solid organs 

or vascular tissue for single-cell profiling. This IEG signature likely represents an artifact of 

single cell dissociation, as there is no evidence these genes are expressed in situ. The IEG 

score for each of the cellular subpopulations shows similar levels of expression in each 

cluster (Supplemental Figure 4), which suggests that IEG activation is not an explanation for 

the cellular heterogeneity in ECs and fibroblasts.

In order to explore the minimum number of sequencing reads per cell to achieve effective 

partitioning of aortic cell types using single-cell RNA-sequencing, we also performed 

clustering and identification of cell types in a single cell RNA-seq library of much lower 

depth (~17,000 reads/cell). The clustering of cells was essentially identical to data obtained 

from higher depth RNA sequencing. The same major vascular wall cell types and immune 

populations were identified with lower depth RNA sequencing (Supplemental Figure 5). The 

clustering of ECs into three discrete subpopulations is present at low sequencing depth 

(~17,000 reads/cell) and high sequencing depth (~145,000 reads/cell).

Three endothelial cell subpopulations have distinct gene expression profiles

Clustering analysis of all cells in the wild-type mouse aorta identified three distinct 

subpopulations of ECs as determined using the canonical marker Cdh5, which has 

previously been identified as one of the few markers constitutively expressed throughout the 

vascular tree3 (Figure 3A–B). Analysis of these clusters relative to other vascular cell 

populations using a Wilcoxon rank sum test reveals novel transcriptional markers of all 

aortic ECs (Figure 3C). These include known endothelial-specific participants in 

angiogenesis and blood vessel formation including Sdpr18, Egfl7 19, Ptprb 20, and Ecscr21 as 

well as several adhesion and transport molecules that have previously been reported in ECs 

and other cell types including Cldn522, Icam2 23, and Slc9a3r224.

Kalluri et al. Page 7

Circulation. Author manuscript; available in PMC 2020 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In order to characterize these subpopulations, we identified the transcriptional markers that 

differentiate each cluster. Unique markers were defined by highest differential expression 

using the Wilcoxon rank sum test with Bonferroni correction (Figure 4A). The largest 

population (EC 1) is defined by higher expression of many “canonical” EC markers 

(Vcam1) as well as other genes with known functions in ECs such as Clu, Gkn3, and Eln. 

The second EC population (EC 2) expresses genes involved in lipid transport (Cd36, Fabp4, 

Lpl, and Gpihbp1) and angiogenesis markers (Flt1). The EC 3 population expresses markers 

characteristic of lymphatic endothelium, including Lyve125. In order to elucidate the 

distinction between the two distinct subpopulations of blood endothelial cells, the lymphatic 

ECs in EC 3 were filtered out from downstream analysis.

Each of the subpopulations is characterized by a unique transcription factor profile (Figure 

4B). In order to characterize the contribution of these transcription factor-based signaling 

networks to subpopulation identity, the known targets activated by each transcription factor 

were identified using the TRRUST database26. These targets were used to define a 

transcription factor network signature that was computed for all endothelial cells and 

compared between the two major subpopulations EC 1 and EC 2. EC 2 showed significantly 

greater expression of Pparg-activated genes (Figure 4C, p-value < 2.2 × 10−16 by Mann-

Whitney U test), consistent with the greater expression of Pparg and other lipid-handling 

genes in that subpopulation. The differential expression of multiple transcription factors and 

their targets in EC subpopulations suggests that they have broadly different functional 

properties.

Gene set enrichment profiles identify distinct functions for the EC subpopulations

To systematically identify cellular functions that differ between EC subpopulations, we 

investigated the expression profiles enriched for each cell subpopulation. In order to confirm 

the functional identity of identified EC populations, two endothelial cell-relevant biological 

process gene sets for EC development and EC differentiation were located in the Gene 

Ontology (GO) database. These annotated gene sets were used to create EC gene set scores 

(Supplemental Table 3). Generating expression scores for all cells in the dataset 

demonstrated that these well-characterized EC signatures did differentiate all the endothelial 

subpopulations from other aortic cells, but were not sufficient to resolve the differences 

between the subpopulations (Figure 5A).

In order to identify the EC functions that showed the greatest heterogeneity between the 

major subpopulations EC 1 and EC 2, pathway enrichment was performed on the top 50 

markers of each subpopulation against the Reactome pathway database15 using the R 

package ReactomePA14 (Supplemental Figure 6). Extracellular matrix organization and 

integrin cell surface interaction pathways showed selective enrichment in the markers of EC 

1, while the plasma lipoprotein assembly, remodeling, and clearance pathway demonstrated 

selective enrichment in EC 2. Functional pathway scores based on these signatures 

(Supplemental Table 4) were significantly different (p-value < 2.2 × 10−16 by Mann-

Whitney U test) between the two EC subpopulations and provided a functional biological 

hypothesis for the observed separation in transcriptional space (Figure 5B).
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Because the subpopulation markers specific to EC 2 included multiple angiogenic factors, 

we also investigated the ability of angiogenic gene sets to differentiate the two 

subpopulations. Angiogenic heterogeneity in ECs is often summarized in the distinction 

between “tip” and “stalk” cells27. We used a previously identified gene signature for tip 

cells28 (Supplemental Table 5) to generate a tip cell score for all observed endothelial cells 

in our data set. This score significantly differentiated EC 1 and EC 2, with increased 

expression in EC 2 (Figure 5C, p-value < 2.2 × 10−16 by Mann-Whitney U test).

Single-cell RNA-seq in aortas from Western diet-fed mice reveal conserved and diet-
dependent markers of endothelial subpopulations

In order to determine the effect of diet on the endothelial subpopulation markers, we 

analyzed aortic scRNA-seq profiles from mice fed normal and Western diet. Differentiating 

conserved subpopulation markers from markers altered by diet requires two distinct methods 

for dataset alignment, as previously described5. PCA-based alignment (Figure 6A) 

highlights variation between the datasets. CCA-based alignment (Figure 6B) accentuates the 

similarities between the two datasets. A clustering algorithm applied to the datasets aligned 

for similarity (Figure 6C) showed three major subpopulations as previously identified in 

normal aortic data. These subpopulations are distinguished by the same marker profiles as 

previously determined. EC 1 specifically expresses Cytl1, Clu, and Gkn3; EC 2 specifically 

expresses lipid-handling genes including Fabp4, Gpihbp1, and Lpl; and EC 3 expresses 

markers of lymphatic identity including Lyve1. All EC subpopulations expressed the EC-

specific markers differentiating them from other aortic cell types under both dietary 

conditions. Two minor populations identified via clustering consisted of far fewer cells than 

the major populations and expressed markers from multiple major clusters, possibly 

signifying the presence of cell doublets.

This analysis also identified markers of the response to Western diet which are common to 

all EC subpopulations (Figure 6D). Markers of contractile function including myosin light-

chain 9 (Myl9), transgelin (Tagln), and alpha smooth muscle actin (Acta2) were increased in 

all subgroups with exposure to high-fat diet. Comparison of the two scRNA-seq datasets 

using CCA-based alignment demonstrates that the presence of distinct EC subpopulations 

persists after exposure to Western Diet, and they share a common response feature of 

upregulation in contractile gene expression.

Identification of EC heterogeneity in situ with subpopulation-derived markers

Representative markers for EC 1 and EC 2 were chosen to identify the spatial location of the 

EC subpopulations in situ. From the scRNA-seq data, Vcam1 and Cd36 are markers of EC 1 

and EC 2, respectively (Figure 7A). These single markers exhibit heterogeneity within the 

subpopulations which were defined using the combined expression of 1,100 variable genes.

The presence of Vcam1+/Cd36− and Vcam1−/Cd36+ EC populations in situ was confirmed 

by flow cytometry (Figure 7B, Supplemental Figure 7). Immunofluorescence of the aortic 

root and descending thoracic aorta (Supplemental Figure 8) shows distinct regions of Vcam1 

and Cd36 expression. The average of the log-transformed Vcam1/Cd36 ratio in three aortic 

root specimens was significantly higher in the lesser curvature compared with the greater 
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curvature (Figure 7C, p <2.2 × 10−16 by Mann-Whitney U test). The ECs in the greater 

curvature of the aortic root demonstrate low Vcam1 expression and high Cd36 expression 

with an elongated morphology from flow alignment (Figure 7D–E, Supplemental Figure 

9A). The ECs in lesser curvature of the aortic root show a cuboidal morphology along with 

high Vcam1 expression and lower Cd36 expression (Figure 7D–E, Supplemental Figure 9B). 

The proximal portion of the descending thoracic aorta also has a region of high Vcam1 and 

low Cd36 corresponding to the lesser curvature (Figure 7F–G). A defined boundary exists 

between high Cd36 and high Vcam1 regions in the transition zone between the lesser 

curvature and greater curvature in the aortic root (Supplemental Figure 10).

Expression of Mendelian aortopathy genes identifies relevant cells and biologic pathways

We next applied this aortic single cell gene expression data to determine the role different 

cell types play in the pathogenesis of aortic diseases. We determined the cell-specific 

expression of 30 genes with known coding mutations associated with disease29. The 

plurality of the genes show highest expression in VSMCs, though several display significant 

expression in other cell types (Figure 8A). As expected, genes known to affect muscle 

contraction (e.g. Myhlk, Myh11) are predominantly expressed in VSMCs. Genes with 

extracellular matrix functions are expressed most highly in fibroblasts (e.g. Col5a2, Col5a1, 

Col3a1). Several genes associated with thoracic aortic aneurysm and dissection (TAAD) 

syndromes are expressed in multiple cell types, though the major cell types are VSMCs, 

fibroblasts, and ECs. When cell type specific expression is limited to these 3 relevant cell 

types, the TAAD-causing mutations separate into distinct patterns of cellular expression 

(Figure 8B). First, four VSMC-specific genes—Myhlk, Myh11, Acta2, and Flna. Several 

ECM-related genes lie along the VSMC-Fibroblast axis, and have minimal EC expression. 

These genes include Col4a5, Col5a1, Col5a2, Fbn1, Mfap5, and Col3a1. Only Notch1 has 

exclusive expression in ECs. There are, however, several genes with significant expression in 

all three cell types. These include the TGFb pathway genes (Tgfb2, Smad2, Smad3, Smad4, 

Tgfbr1) and two ECM-related genes (Lox, Eln).

Discussion

Vascular tissue is composed of many multifunctional cell populations, each of which 

contributes to cardiovascular disease. Heterogeneity in gene expression differentiates major 

cell types and defines multiple subpopulations with distinct functions. Advances in single 

cell RNA-sequencing provide the resolution to identify these heterogeneous subpopulations 

and to profile the pan-cellular landscape of the vasculature. Here we use the latest droplet-

based single cell RNA-sequencing methods to characterize the genes and functional 

pathways expressed in 6,200 cells from the whole murine aorta. We identify 10 clusters of 

cells, which form the main cell types in this large artery—fibroblasts, VSMCs, ECs, and 

immune cell populations. Our approach also identified three distinct subpopulations of ECs 

within the murine aorta. The gene expression profiles for these EC subpopulations reveals 

their distinct functional capabilities. Immunofluorescence confirms the presence of these 

subpopulations, with different relative abundance of the two major EC populations in the 

greater and lesser curvatures of the aortic root. To demonstrate a clinical application of these 
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cell-type specific transcriptional profiles, we partition the contribution of different cell types 

to the genes associated with Mendelian aortopathy syndromes.

Our approach to transcriptional profiling of the mouse aorta is unique for its incorporation of 

all vascular cell types into a single gene expression dataset. Recent papers have identified 

markers of cellular heterogeneity in subsets of vascular cells, such as CD45+ leukocytes6,7 

and neurovascular cells17. In these studies, subsets of cells were presorted using flow 

cytometry prior to single cell RNA-sequencing. In contrast, our study generated droplet-

based single cell RNA-seq profiles for all aortic cells without presorting. Our approach is 

unbiased and utilizes the full transcriptome to cluster similar cells, allowing for analysis of 

populations previously lost to sorting and for computational identification of cluster markers 

without reliance on prior knowledge. The fact that many previously described “pan-EC” 

markers, such as Vwf, are only expressed in a subpopulation of ECs demonstrates the 

importance of this unbiased approach. The presence of EC heterogeneity in the form of 3 

discrete subpopulations may have been missed if we had used a marker gene to sort for ECs 

before single cell RNA-sequencing. By sequencing all cells from the dissociated aorta we 

were able to determine the new pan-EC markers and transcripts specific to EC 

subpopulations.

To ensure that our methods provide an accurate representation of all aortic cell types, we 

compare two different dissociation protocols and sequence cells at high and low read 

number per cell. Comparison of the collagenase- and elastase-based enzymatic dissociation 

methods demonstrates that the overall cell population clustering achieved by these methods 

is similar with both approaches. Certain methods, however, may be better suited to particular 

cell types—such as elastase to improve VSMC yield. Comparison between high-depth and 

low-depth sequencing-based profiles demonstrates that identification of cell populations in 

vascular tissue may be achieved with relatively shallow sequencing—as low as 17,000 reads/

cell in the case of our data.

The identification of three distinct EC subpopulations in the aorta contributes to the growing 

importance of EC heterogeneity in vascular function. EC heterogeneity is recognized in 

different organs, at different levels of the vascular tree, and more recently within a single 

vessel30–32. Previous work in defining EC heterogeneity has focused on variation in 

individual markers, such as vWF32. We demonstrate that single cell RNA-sequencing in the 

aorta can identify the full set of transcriptional profiles that are dynamically regulated in 

ECs. We identify 3 distinct profiles of ECs in the aorta, which share some markers, but differ 

in expression of multiple genes. These differences suggest functional specialization of EC 

subpopulations in either ECM production, lipid handling and angiogenesis, or lymphatic 

function.

The spatial distribution of the two major EC populations further demonstrates that 

transcriptional heterogeneity can identify functionally distinct subpopulations of cells. We 

observed unique distribution patterns for EC 1 (Vcam1) and EC 2 (Cd36) in the lesser and 

greater curvatures of the aorta. This pattern may be the result of differences in blood flow 

and shear stress in these regions of the aorta. Shear stress is a known driver of arterial EC 

heterogeneity, and has previously been shown to induce Vcam1 expression and reduce p65 
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expression in atherosclerosis-prone ECs33–35. With single cell RNA-sequencing we now 

identify the full transcriptional profile of these ECs. The high-dimensional transcriptional 

signatures we have generated enable identification of EC subpopulations in a way that 

cannot be accomplished with any individual histological marker. Using transcriptomics 

alone, we cannot say whether these subpopulations arise solely from environmental 

exposures such as shear stress, or are the result of developmentally distinct precursors. The 

phenotypic drift of cultured ECs suggests that the microenvironment is responsible for 

heterogeneous gene expression36. However, other studies suggest the epigenetic signature of 

EC subpopulations are fixed, and gene expression remains site-specific after multiple ex 
vivo passages37,38. Further studies are needed to determine the developmental origin and 

functional consequences of EC heterogeneity, and our comprehensive gene expression 

signatures of each subpopulation in the normal aorta will serve as a starting point for this 

analysis.

Additionally, our analysis suggests next steps for examining how these EC subpopulations 

respond to pathological stressors. The upregulation of contractile gene expression in ECs 

after exposure to Western diet is particularly interesting given that endothelial-mesenchymal 

transition (EndMT) is a known “final common pathway” In EC dysfunction. EndMT in 

atherosclerosis has previously been linked to an increase in smooth muscle cell markers39, 

including Acta2. Our data suggest that in the setting of a Western diet, this alteration is part 

of a set of increased contractile transcripts that can be detected in all three EC 

subpopulations.

Profiling the complete vascular milieu using single-cell RNA-seq also provides key insights 

for disease pathogenesis. By simultaneously analyzing the transcriptional signature of all 

vascular cell types, we partition the relative contribution of the three major vascular wall cell 

types to Mendelian aortopathies. Our analysis reveals that aortopathies derived from 

contraction-related genes may be mediated by VSMCs, while those arising from alterations 

in extracellular matrix metabolism are likely the consequence of VSMC and fibroblast 

biology with a minimal contribution from ECs. Aortopathies arising from alterations in 

TGF-beta signaling may have pathology arising from all three cell types. These findings can 

guide future efforts to understand genotype-phenotype correlations in genetic aortopathies 

and develop targeted therapies for these diseases.

Our demonstration that it is feasible to sequence and analyze whole transcriptome data on a 

single cell level for 6,200 cells representing all cell types in the aorta will be a resource for 

the extension of this method to other experiments in vascular biology. As the technology 

continues to improve, greater sequencing depth will enable a more refined pathway for 

genes with lower expression (i.e. enzymes, transcription factors). This will allow 

augmentation of our aortic transcriptional profile to better appreciate the transcriptional 

networks characterizing major cell types and cellular subpopulations.

Transcriptional profiling with droplet-based single cell RNA-sequencing is proving to be the 

standard by which to define cellular identity. We use this method to show that the integration 

of data from the 1,900 profiled genes per cell identifies novel cell subpopulations 

unidentified by previous antibody-based detection methods. Several recent papers have also 
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demonstrated the higher resolution of transcriptional profiling in gut epithelium40, dendritic 

cells41, retina42, and the kidney43. With the international efforts of the Human Cell Atlas 

consortium, the methods for single cell transcriptomics are rapidly improving44. Our data 

from the murine aorta contributes to these efforts and will serve as a reference for full 

characterization of vascular cells in healthy and diseased tissue.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Clinical Perspective

What is new?

• A single-cell transcriptional profile of the aorta identifies 3 distinct 

endothelial cell subpopulations with differences driven by major functional 

gene programs including adhesion and lipid handling.

• Comparison of aortic single-cell RNA-seq datasets from normal and Western 

diet-fed mice suggests that these subpopulations exist under both dietary 

conditions and have some unified responses to diet alteration.

• Immunofluorescence using single marker genes to identify endothelial cell 

subpopulations shows that the Vcam1+ population is spatially located in 

regions of disturbed blood flow like the lesser curvature of the aorta.

What are the clinical implications?

• Characterizing functional subpopulations may serve as a novel method for 

understanding endothelial health in patients with vascular disease.

• Although aortic endothelial cell subpopulations demonstrate some unified 

responses to vascular disease-relevant stimuli like a Western diet, functionally 

different subpopulations may contribute differentially to vascular diseases 

enabling subpopulation-targeted therapies.

• Single-cell RNA-sequencing can help determine the relative contribution of 

different vascular cells (i.e. ECs, VSMCs, and fibroblasts) in the pathogenesis 

of Mendelian aortopathies.
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Figure 1: 
Single cell RNA-sequencing atlas of aortic cells types. a) Schematic overview of 

experimental approach. Four mouse aortas were dissected from aortic root to femoral take-

off, enzymatically dissociated for 1 hour at 37ºC, and then the single cell suspension was 

sequenced at a depth of 1,900 median genes per cell using droplet-based RNA-sequencing 

methods. b) t-SNE representation of single cell gene expression shows the 7 identified major 

aortic cell types. c) Dotplot demonstrates the top markers of each aortic cell type. Dot size 

corresponds to proportion of cells within the group expressing each transcript and dot color 

corresponds to expression level. d) Heatmap identifying all genes with log fold change>2 for 

each aortic cell type relative to all other cells. EC indicates endothelial cells; Fibro, 

fibroblasts; Macro, macrophages; Mono, monocytes; VSMC, vascular smooth muscle cells.
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Figure 2: 
Subpopulations within cell types identified from single cell RNA-sequencing. a) t-SNE 

demonstrating 12 clusters identified as comprising the aorta. b) Dendrogram summarizing 

similarity between aortic cell subpopulations. c) Heatmap identifying markers of each 

cellular subpopulation. EC indicates endothelial cells; Fibro, fibroblasts; Macro, 

macrophages; Mono, monocytes; VSMC, vascular smooth muscle cells.
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Figure 3: 
Endothelial cells cluster into 3 distinct populations. a) t-SNE plot of EC subpopulations 

highlighted relative to other aortic cell types. The three EC subpopulations have distinct 

transcriptional profiles compared with each other and with all other aortic cells. b) t-SNE 

plot of all VE-Cadherin positive cells in mouse aorta. EC subpopulations were extracted 

from whole aorta data, and separately analyzed. In this t-SNE plot the 3 subpopulations are 

re-identified along with a small (5%) population of doublet cells which are an artifact of 

droplet-based single cell RNA-sequencing. c) Multiple genes show EC-specific expression 

and are expressed in all 3 EC subpopulations. Genetic markers expressed in all EC clusters 

compared with all other cells are divided into angiogenic EC marker genes and adhesion/

transport EC marker genes. Violin plot y-axis demonstrates normalized transcript expression 

values.
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Figure 4: 
Gene expression signatures of EC subpopulations. a) Top 20 genes with specific expression 

for each EC subpopulation. Dot plot shows the percentage of cells expressing each gene (dot 
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size) and the expression level (dot color). b) Differential expression of transcription factors 

by EC subpopulation. c) Expression of PPAR-G targets in EC 1 and EC 2 subpopulations. 

*** indicates Mann-Whitney U-test p-value < 0.001.
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Figure 5: 
Pathway analysis of EC subpopulations. a) GO-annotated EC development and 

differentiation gene set scores in endothelial subpopulations and non-endothelial aortic cells 

(Other). b) Functional gene sets identified from Reactome pathway enrichment and 

subpopulation markers differentiate the two major EC populations EC 1 and EC 2. *** 

indicates Mann-Whitney U-test p-value < 0.001. c) Angiogenic tip cell gene set score 

differentiates EC 1 and EC 2. *** indicates Mann-Whitney U-test p-value < 0.001.
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Figure 6: 
Conserved and diet-dependent markers of EC subpopulations. a) Unaligned normal- and 

Western diet EC scRNAseq profiles represented in a PCA-based space with t-SNE. b) 

Aligned normal- and Western diet scRNAseq profiles represented with CCA and t-SNE. c) 

Conserved subpopulations of ECs identified in both datasets. d) Conserved diet-independent 

markers of EC subpopulation and pan-subpopulation markers of diet-induced change. Diet-

independent subpopulation markers are the same as those identified previously while 

Western diet induces contractile proteins Myl9, Tagln, and Acta2 in all EC subpopulations.
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Figure 7: 
Histological correlates of identified EC subpopulations. a) Violin plot comparison of 

Vcam1, an EC 1-associated marker, and Cd36, an EC 2-associated marker. b) Flow 

cytometry of mouse aortic endothelial cells demonstrating heterogeneity corresponding to 

subpopulation markers, with both Vcam1+/Cd36− and Vcam1−/Cd36+ populations. Numbers 

indicate fraction of cells in each quadrant. c) Quantification of log-transformed Vcam1/Cd36 

ratio in greater (GC) and lesser (LC) curvatures of aortic root. *** indicates Mann-Whitney 

U-test p-value < 0.001. d) Representative immunofluorescence microscopy images for 

Vcam1 and Cd36 in the aortic root. e) Quantification of Vcam1 fluorescence intensity and 

Cd36 fluorescence intensity in the aortic root. f) Representative immunofluorescence 

microscopy images for Vcam1 and Cd36 in the descending aorta. g) Quantification of 

Vcam1 fluorescence intensity and Cd36 fluorescence intensity in the descending aorta.
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Figure 8: 
Expression of aortopathy genes by cell identity. a) Expression of thirty genes associated with 

Mendelian aortopathy by cell type. The majority of these genes have highest expression in 

VSMCs. Several show highest expression in fibroblasts. Two genes (Mat2a and Notch1) 

have highest expression in ECs. b) Ternary plot to show expression of aortopathy genes in 

ECs, VSMCs, and fibroblasts. Several genes are exclusively expressed in VSMCs, while the 

majority show expression predominantly in VSMCs and fibroblasts. Genes with contractile 

function are in green, TFGb response genes are in red, ECM-related genes are in blue, and 

unassigned genes are in black. EC indicates endothelial cells; Fibro, fibroblasts; VSMC, 

vascular smooth muscle cells.
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