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Abstract

As statisticians and scientists consider a world beyond p < 0.05, it is important to not lose sight of 

how we got to this point. Although significance testing and p-values are often presented as 

prescriptive procedures, they came about through a process of refinement and extension to other 

disciplines. Ronald A. Fisher and his contemporaries formalized these methods in the early 

twentieth century and Fisher’s 1925 Statistical Methods for Research Workers brought the 

techniques to experimentalists in a variety of disciplines. Understanding how these methods arose, 

spread, and were argued over since then illuminates how p < 0.05 came to be a standard for 

scientific inference, the advantage it offered at the time, and how it was interpreted. This historical 

perspective can inform the work of statisticians today by encouraging thoughtful consideration of 

how their work, including proposed alternatives to the p-value, will be perceived and used by 

scientists. And it can engage students more fully and encourage critical thinking rather than rote 

applications of formulae. Incorporating history enables students, practitioners, and statisticians to 

treat the discipline as an ongoing endeavor, crafted by fallible humans, and provides a deeper 

understanding of the subject and its consequences for science and society.
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1 Introduction

With new journal policies, conferences, and special issues, it is easy to view the debate 

around p-values and hypothesis testing as a modern invention. For many scientists whose 

primary connection to statistics is through these methods, the debate may seem like a 

challenge to the received wisdom of their profession, a rebuke to the way they have been 

using statistics for decades. For students learning the field, it can seem bewildering, and they 

might be tempted to replace one decontextualized methodology with another. Indeed, as 

Gerd Gigerenzer (2004, p. 589) writes, the anonymizing of the roots of the p-value and 

hypothesis testing has contributed to the idea that “they were given truths” and encouraged 

the “mindless” use of these procedures, to the point of misuse and abuse. But for those who 

have studied statistics, and, in particular, studied the progression of statistical theory, the 
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debates are not a sudden attack on a completely accepted paradigm, and the statistics 

themselves did not arise wholly formed to be prescriptively applied. Rather, the statistics 

arose through the ongoing process of scientific discovery, with contributions by many along 

the way.

In order to properly understand the challenges that face statistics and its applications in 

science, medicine, and policy today, and to meet those challenges in the future, we must 

consider the history of the discipline and its most prominent methods. It is a history that is 

too poorly known, even among statisticians, but it is rich in characters, personal grudges, and 

academic debates. Gigerenzer (2004, pp. 587–588) laments this lack of focus on the history 

and controversy when he relates the story of a psychological statistics textbook author who 

removed all mention of Thomas Bayes, Ronald A. Fisher, Jerzy Neyman, and Egon Pearson. 

In a similar vein, Stephen Ziliak and Deirdre McCloskey (2008, p. 232) argue that the 

conscious erasure of William S. Gosset from the history contributed to the dominance of 

Fisher’s paradigm and reduced the prominence of competing ideas.

In Section 2, I trace the use of statistical reasoning similar to the modern p-value before 

1900, demonstrating that the statistic and the use of thresholds did not arise from Karl 

Pearson and Fisher alone. In Section 3, I briefly describe the contributions of Pearson, 

Gosset, and Fisher, covering both the similarities among them and highlighting some of the 

debates that occurred as early as the 1920s when Fisher’s Statistical Methods for Research 
Workers began to put the p-value in the hands of experimenters. In Section 4, I point out 

some of the challenges that emerged in response to Fisher’s paradigm, focusing especially 

on those arising from Gosset, Neyman, and Egon Pearson, and from the Bayesian paradigm. 

These sections are far from comprehensive; rather, they seek to provide an overview of the 

history that can spur thought and encourage further research. In Section 5, I present 

resources that can be used for that research and as teaching tools. I also discuss how the 

historical debates relate to modern arguments surrounding the p-value and how that can 

encourage statisticians to craft a more useful and durable response to this controversy. I 

further describe the role this history can play in education in formal classroom settings and 

in research and collaboration settings.

Understanding how p-values and 0.05 came to occupy their prominent role in 20th century 

statistics reminds us that these “arbitrary” thresholds came about through work to make 

mathematical statistics more practical and useful for experimentalists. But these efforts were 

never without controversy. Learning this history will help statisticians better appreciate the 

translational challenges of their own work by improving understanding of the fact that, since 

its inception, the modern field of statistics has grappled with the balance between 

mathematical rigor and practical use to scientists. Those pushing the boundaries of 

knowledge in the discipline will surely face this balance in their own work. They will have 

to consider, like the statisticians of the early twentieth century did, how others will use their 

theories.

Learning this history will help practitioners understand that no method is sacred and that all 

methods are products of the era in which they were born and the functions to which they 

have been applied. As technology, mathematics, and science develop, new methods or 
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adjustments to old methods will be needed as the underlying assumptions no longer apply, 

whether in a world of early electronic computing devices or a world of big data.

Learning this history will help students access the discipline by learning of the faults, 

personal and professional, of those who came up with today’s commonly used statistics and 

help them understand statistics as a living discipline rich with ongoing debate and new 

understandings. Indeed, one can find many parallels between today’s debate and the 

controversies that arose with the development of p-values and significance testing, framing 

the ASA statement and subsequent discussion as another step in the ongoing evolution of the 

discipline of statistics.

2 A World Before Fisher

The p-value is generally credited to Karl Pearson’s 1900 article in his journal Biometrika; 

Ronald A. Fisher’s 1925 Statistical Methods for Research Workers then formalized the 

concept and expanded its reach to experimenters (Hubbard 2016, p. 14). But statistics 

similar to p-values and probabilistic reasoning akin to hypothesis tests existed well before 

then. Both Stigler (1986) and David and Edwards (2001) point to John Arbuthnott’s 1710 

“An Argument for Divine Providence” as perhaps the earliest use of probabilistic reasoning 

that matches that of a modern null hypothesis test. Using birth data from London, Arbuthnott 

(1710) notes that births of males exceeded births of females for 82 years in a row. Supposing 

that the probability of males exceeding females in a year is 50%, and implicitly assuming 

independence across the years, Arbuthnott calculates the miniscule probability of this 82-

year pattern. “From whence it follows,” Arbuthnott (1710, p. 189) confidently concludes, 

“that it is Art, not Chance, that governs.” Any modern student who has run a test of 

proportions would notice the reasoning, see Arbuthnott’s calculation of a p-value of 2.07 × 

10−25, and confirm his rejection of the null hypothesis that each year has an independent 

probability of 50%. The mathematically-inclined physician’s goal in this endeavor was to 

demonstrate the work of “Divine Providence” in the sex distribution (Arbuthnott 1710, p. 

186). Many statisticians would recognize the flaw in this reasoning: the lack of a clearly 

stated alternative hypothesis that would be logically implied by a rejection of the null 

hypothesis. Gigerenzer (2004, p. 588) decries this “null ritual” used by experimentalists who 

often fail to properly specify “alternative substantive hypotheses.”

In the nineteenth century, French mathematicians used similar methods to analyze a wide 

variety of data. In celestial mechanics, Pierre-Simon Laplace (1827, p. S.30) found a small 

value for a statistic closely related to the modern p-value and concluded that it indicated with 

a high likelihood that the discrepancy in the measurements was thus “not due solely to the 

anomalies of chance.” Stigler (1986, p. 151) notes that Laplace himself appealed to a 0.01 

significance level in his work. Stigler (1986, pp. 151–153) further highlights several errors 

implicit in Laplace’s analysis, errors that would be familiar to students and critics of modern 

hypothesis testing: improper assumptions of independence and improper estimation of 

variance.

Not long after, Siméon-Denis Poisson used a quantity equal to one minus a modern p-value 

in describing patterns in the outcomes of French jury trials. Two comparisons he makes are 
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particularly instructive. In one, he finds a p-value of 0.0897, a value not large enough for 

him to conclude that there has been a change in causes (Poisson 1837, p. 373). Shortly 

thereafter, a p-value of 0.00468 leads Poisson to believe that in that case there is a “real 

anomaly in the votes of juries” (Poisson 1837, pp. 376–77). Poisson’s conclusions in these 

two cases, nearly a century before Fisher’s work, would comport with a 0.05 (or 0.01) 

significance threshold, but do not specify a threshold he used. Poisson (1837, p. 375) also 

refused to make a causal statement from his identified associations, noting that “the 

calculation cannot teach us” this answer.

Antoine Augustin Cournot formulated the p-value in fairly explicit terms, noting that as a 

measure of the importance of some discrepancy it combines the size of the effect and the 

sample size (Cournot 1843, p. 196). Cournot (1843, pp. 196–197) also issues a warning 

about the narrow-minded use of probabilistic statements, noting that this p-value does not 

fully capture the importance of the effect size and “does not at all measure the chance of 

truth or of error pertaining to a given judgment.” With a little modernization of language, 

Cournot could have written principles 2, 5, and 6 of the ASA Statement (Wasserstein and 

Lazar 2016).

In 1885, Francis Ysidro Edgeworth provided a more formal mathematical underpinning for 

the significance test and gave a simple example of how to use the standard deviation (he 

used the “modulus”, equal to the standard deviation multiplied by the square root of two) to 

perform a significance test on a given parameter (Edgeworth 1885, pp. 184–185). Using a 

threshold of twice the “modulus,” Edgeworth (1885) constructed a test that would be 

equivalent to a modern two-sided α = 0.005. Stigler (1986, p. 311) notes that this “was a 

rather exacting test” and that Edgeworth also considered smaller differences as “worthy of 

notice, although he admitted the evidence was then weaker.”

The existence of these tests of significance and p-value-like quantities long before the 

twentieth century demonstrate that this method of inference had an alluring rationale for 

practitioners in a variety of fields. Their errors in interpretations and words of caution, 

however, presage the controversies that would follow. Throughout the twentieth century, 

many of the technical probability results needed for modern significance testing arose 

through the theory of errors, by which astronomers and other physical scientists combined 

measurements and discarded outliers (Gigerenzer et al. 1989, pp. 80–84). These 

developments allowed Pearson, Gosset, and Fisher to make key contributions that 

formalized, shaped, and popularized the modern form of significance tests.

3 R.A. Fisher: the Experimentalist Statistician

In the early twentieth century, the forerunners of modern statistics began to determine the 

properties of various useful distributions. Karl Pearson (1900) described the χ2 distribution 

and uses of the χ2 statistic, including its use in tests of independence for proportions. 

Pearson (1900, pp. 157–158) here denoted by P the “chances of a system of errors with as 

great or greater frequency than that denoted by χ.” In an example involving dice throws, 

Pearson (1900, pp. 167–168) finds P = 0.000016 on a null distribution of equal probability 

of each face appearing and claims that “it would be reasonable to conclude that dice exhibit 
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bias towards the higher points.” The combination of this type of probabilistic reasoning and 

a distribution with many practical uses made the p-value more approachable and brought it 

more or less to its modern formulation. W. Palin Elderton built on Pearson’s work and 

produced tables of values for this distribution that would enable investigators to test the 

goodness of fit. His article, published in Biometrika in 1902, devoted roughly half of its 

space to these tables (Elderton 1902). Ziliak and McCloskey (2008, pp. 199–202) note that 

Pearson was soon teaching his students, and enforcing as a rule for authors seeking 

publication in Biometrika, that three probable errors, or two standard errors, represented 

“certain significance.”

William Sealy Gosset, the head experimental brewer at Guinness publishing under the 

pseudonym “Student” (1908, p. 25), found a curve “representing the frequency distribution 

of values of the means of such samples,” i.e., samples from a normal or “not strictly normal” 

distribution, “when these values are measured from the mean of the population in terms of 

the standard deviation of the sample.” This so-called Student’s t distribution is now taught in 

introductory and applied statistics courses, as it forms the basis for a substantial number of 

inferential procedures. Gosset’s initial paper focused as much on illustrating examples of the 

utility of this curve as on the mathematical justification for its use, and he produced 

numerous tables to enable others to use it. He calculated statistics akin to the p-value and 

drew conclusions from extreme values of these. For one drug trial, he regarded a statistic 

equivalent to p = 0.0015 as “such a high probability,” it would be in practical matters 

“considered as a certainty” (Student 1908, p. 21). For Gosset, however, whether an effect 

existed or not was less important than its impact, and he saw the use of the tests more in 

determining the “pecuniary advantage” of one decision versus another (Ziliak and 

McCloskey 2008, pp. 18–19). That is, any conclusion must rest on effect size and the 

relative loss and gain of any potential decision; this will be a recurring theme in the debate 

between competing frameworks for testing discussed below.

Ronald A. Fisher, who had corresponded with Pearson and Gosset at various points, was 

well aware of these advances and thus of the use of significance tests. His work, especially a 

series of three monographs published in the 1920s and 1930s, would expand the reach of 

significance tests, promote their use (and the use of statistically rigorous experimental 

design and analysis more broadly) to researchers, and provide tables that enabled 

investigators to conduct such tests.

Fisher, employed at the time at Rothamsted Experimental Station, an agricultural research 

institution, “extended the range of tests of significance” using the theory of maximum 

likelihood commonly used today and conceived of tests for small sample problems (Box 

1978, p. 254). In 1922, he published three key manuscripts which covered the theoretical 

foundations of maximum likelihood estimation and the concept of the likelihood (Fisher 

1922c), the use of Pearson’s χ2 distribution to calculate p-values from contingency tables 

(Fisher 1922b), and the use of Student’s t distribution to conduct significance tests on 

regression coefficients (Fisher 1922a). In 1925, he published the first edition of Statistical 
Methods for Research Workers, which sought, in his words, “to put into the hands of 

research workers, and especially of biologists, the means of applying statistical tests 

accurately to numerical data” (Fisher 1925, p. 16). The book discusses in detail the meaning 
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and practical implications of “P”, the statistic now known as the p-value, and suggests 0.05 

as a useful cutoff:

The value for which P = .05, or 1 in 20, is 1.96 or nearly 2; it is convenient to take 

this point as a limit in judging whether a deviation is to be considered significant or 

not. Deviations exceeding twice the standard deviation are thus formally regarded 

as significant. Using this criterion we should be led to follow up a negative result 

only once in 22 trials, even if the statistics are the only guide available. Small 

effects would still escape notice if the data were insufficiently numerous to bring 

them out, but no lowering of the standard of significance would meet this difficulty 

(Fisher 1925, p. 47).

This simple paragraph demonstrates the probability-based definition of the p-value that is 

commonly misunderstood: that it is the probability of a result as or more extreme than the 

observed result given that the null hypothesis is true (Greenland et al. 2016). Additionally, it 

makes immediately apparent why 0.05 is convenient: it is roughly equivalent to the 

probability of being more than two standard deviations away from the mean of a normally 

distributed random variable. In this way, 0.05 can be seen not as a number Fisher plucked 

from the sky, but as a value that resulted from the need for ease of calculation at a time 

before computers rendered tables and approximations largely obsolete. This particular value 

had the added bonus of corresponding to three “probable errors,” a measure of spread of the 

normal distribution used commonly in early statistics but now largely forgotten (Stigler 

1986, p. 230). So a useful rule of thumb could be given to researchers on either of two scales 

of measuring the spread of the distribution. Later, in applying the statistic to the χ2 

distribution, Fisher (1925, p. 79) remarks that “[w]e shall not often be astray if we draw a 

conventional line at .05, and consider that higher values of χ2 indicate a real discrepancy.”

Statistical Methods was most valuable in the hands of experimentalists due to its 

explanations of tests and estimation procedures, illustrative examples, and a wealth of user-

friendly tables. The tables further entrenched the use of Fisher’s preferred p-value cutoffs by 

displaying the calculated figures so that an investigator looked up a desired probability level 

for the distribution and found the quantile of the statistic that corresponded to it. Among the 

levels presented one almost always found 0.05 and 0.01 (Fisher 1925). As Fisher’s 

biographer and daughter, Joan Fisher Box (1978, p. 246), states, “[b]y this means he 

produced concise and convenient tabulations of the desired quantities” and presented values 

“that were of immediate interest to the experimenter.” It is this accessibility that made the 

book popular among practicing experimentalists who “had not a hive of staff humming at 

their desk calculators,” but it did not endear him to more rigorous mathematicians (Box 

1978, pp. 242–246). And through these presentations, which Fisher (1935; Fisher and Yates 

1938) continued and expanded in The Design of Experiments and the 1938 compilation of 

tables with Francis Yates entitled Statistical Tables for Biological, Agricultural, and Medical 
Research, he set the standard for the use of p-values and statistical inference in a variety of 

forms of research. One may note, however, that Fisher’s tables show that he did not think 

0.05 was one size fits all; if 0.05 worked in every setting, there would have been only one 

column in each table.
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The history of the tables presented in Statistical Methods is interesting in itself and further 

demonstrates how these values came to be presented; it also foreshadows forthcoming 

schisms regarding these tests. Hubbard (2004, p. 311) notes that Pearson’s Biometrika 
denied Fisher permission to use Elderton’s table of χ2 probabilities in his monograph. When 

he created his own version, according to Egon Pearson (Pearson et al. 1990, p. 52), Fisher 

“gave the values of χ2 for selected values of P … and thus introduced the concept of 

nominal levels of significance.” Because of this change from Elderton’s table to Fisher’s, for 

users of the table in Statistical Methods and its successors in Statistical Tables, it would be 

easier to compare a calculated χ2 value to a set threshold of significance rather than find the 

precise p-value. For tables of the t statistic, as Ziliak and McCloskey (2008, p. 229) note, 

“Fisher himself copyrighted again Gosset’s tables in his own name” in Statistical Methods 
(emphasis in original). Through this action, which left Gosset’s name out of the book except 

in the phrase “Student’s t”, Fisher removed Gosset from the history of his own statistic, hid 

his contributions, and, more importantly, hid his competing philosophy on how the statistic 

should be used (Ziliak and McCloskey 2008, pp. 230–232). Reprinters of the table and those 

who used it in applied research would encounter only Fisher’s versions and his 

interpretations.

Following Fisher, the use of p-values grew among experimentalists. In the United States, 

they were particularly encouraged by Harold Hotelling of Stanford University, who called 

some of the tables in Statistical Methods “indispensable for the worker with moderate-sized 

samples” (quoted in Ziliak and McCloskey 2008, p. 234). George Snedecor of Iowa State 

University played a crucial role as well, continuing to develop the methods and promoting 

their use in scientific fields (Hubbard 2016, p. 21). Psychologists, sociologists, political 

scientists, and economists all found the innovations useful (Hubbard 2016, pp. 22–27). Thus 

the p-value spread not only across oceans but beyond the natural sciences to the social 

sciences, echoing its use by Poisson a century earlier.

The use of 0.05 as a cutoff became customary, though not all-encompassing. Fisher’s student 

L. H. C. Tippett (1931, p. 48), wrote in The Method of Statistics that the 0.05 threshold was 

“quite arbitrary” but “in common use.” Lancelot Hogben (1957, p. 495), two decades later, 

wrote that Fisher’s claim that the cutoff was in usual practice was “true only of those who 

rely on the many rule of thumb manuals expounding Fisher’s own test prescriptions.” For 

scientists and students today, perhaps the prominence of this admittedly arbitrary cutoff is 

difficult to comprehend. However, they need only consider a time before computers and 

compare the calculation of a p-value by hand from one of Fisher’s or Gosset’s or Pearson’s 

formulae to the ease by which one can determine whether a statistic meets a threshold by 

reference to one of Fisher’s tables. It will immediately become clear how Fisher’s standard 

became the gold standard. Fisher led other tables to adopt his format through his role as 

secretary of the Tables Committee of the British Association (Box 1978, p. 247), ensuring 

that future statisticians who sought to reach experimentalists would need to reconcile their 

methods to this framework. Thus “p < 0.05” could grow to the prominence it holds today.
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4 Challenges to Fisher’s View

The other piece of history often lost in the presentation of p-values is that statisticians 

brought many challenges to Fisher’s framework as soon as it was presented. As Fisher was 

writing his manuscripts, Jerzy Neyman and Egon Pearson (1933) were preparing their own 

framework for hypothesis testing. Rather than focusing on falsifying a null hypothesis, 

Neyman and Pearson presented two competing hypotheses, a null hypothesis and an 

alternative hypothesis, and framed testing as a means of choosing between them. The 

decision then must balance two types of error, one made by incorrectly rejecting the null 

hypothesis when it is true (Type I Error) and one made by incorrectly accepting the null 

hypothesis when it is false (Type II Error). More generally, one can consider the class of 

“admissible alternative hypotheses” of which the null hypothesis is a member (Neyman and 

Pearson 1933, p. 294); the goal is then to compare the null hypothesis to the alternative that 

imparts the highest likelihood on the observed data. They propose a class of tests that, for a 

given limit of Type I Error, minimize the risk of Type II Error, the so-called most powerful 

tests. The Type I Error risk, often called the significance level and denoted α, is commonly 

set at 0.05 (or 0.01), as the pair noted in their paper. The Type II Error risk, often denoted β, 

is equal to one minus what we now call the power of the test.

This procedure has many similarities to Fisher’s framework that uses the p-value as a 

continuous measure of evidence against the null hypothesis; indeed, in many cases, Fisher’s 

choice of test statistic corresponds to a reasonable choice of alternative hypothesis in a 

Neyman-Pearson most powerful test (Lehmann 1993, pp. 1243, 1246). In those cases, p < α 
if and only if the most powerful α-level test would reject the null hypothesis. Nonetheless, 

the two factions debated fiercely the merits of each version. In one sense, the controversy 

can be regarded as a debate over the role of the statistician and of the test itself: should the 

test be considered as a step along the way to deeper understanding, a piece of evidence 

among many to be considered in crafting and supporting a scientific theory? Or should it be 

considered as a guide to decision-making, a way to choose the next behavior, whether in a 

practical or experimental setting? Fisher’s writings generally support the former view, taking 

the test and the p-value as a piece of evidence in the scientific process, one that he wrote “is 

based on a fact communicable to, and verifiable by, other rational minds” (Fisher 1956, p. 

43). For Neyman and Pearson, on the other hand, to accept a hypothesis means “to act as if it 

were true” and thus the hypotheses and error probabilities should be chosen in light of the 

consequences of making either decision (Gigerenzer et al. 1989, p. 101).

In a practical way, the Neyman-Pearson view also meant considering the reasonability of 

alternative hypotheses. Berkson (1938, p. 531) provided an application of this question, 

discussing how someone familiar with the data would only truly reject the null hypothesis 

“on the willingness to embrace an alternative one.” The debate took on a variety of aspects, 

however, including being somewhat representative of a larger controversy over the role of 

mathematical rigor in statistics, with Fisher assailing Neyman and Pearson as 

mathematicians whose work failed to reflect the nuances of scientific inference (Gigerenzer 

et al. 1989, p. 98). It also covered differences in the role assigned to a statistical model of 

data and decision-making, which in turn relate to fundamental probability questions about 
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defining populations and samples (Lenhard 2006). All of these differences were heightened 

and perhaps even exaggerated by “the ferocity of the rhetoric” (Lehmann 1993, p. 1242).

While this debate raged in the halls of academic statisticians for decades (and, even today, 

attempts are made to clearly define the differences or reconcile the two theories), 

experimentalists began to follow a third way, an “anonymous hybrid consisting of the union 

of the ideas developed by” Fisher and Neyman-Pearson (Hubbard 2004, p. 296, emphasis in 

original). Often, reporting of results will include a comparison of the p-value to a threshold 

level (e.g., 0.05) to claim existence of an effect, reporting of the p-value itself, and relative 

measure of evidence terms such as “highly significant,” “marginally significant,” and 

“nearly significant.” This leads to what Hubbard (2004, p. 297) calls a “confusion between 

p’s and α’s” among applied researchers, as seen in textbooks, journal articles, and even 

publication manuals. This confusion undermines the rigorous Neyman-Pearson 

interpretation of limiting error to a pre-specified level α. And the role of the value of p as a 

quantitative piece of ongoing scientific investigation (including using null hypotheses that 

are not a hypothesis of zero effect) favored by Fisher is lost to the decision-making 

encouraged by a statement of significance or lack thereof. Neither Fisher nor Neyman and 

Pearson would approve of this hybrid, though it has been institutionalized by textbooks and 

curricula, especially in applied settings. Its popularity owes a great deal to its simplicity and 

the ability of applied researchers to perform this “ritual” of testing in a more mechanized 

fashion (Gigerenzer 2004).

While this debate was ongoing, a revival of another paradigm of probability gained steam. 

Based on a crucial theorem by Thomas Bayes that was published in 1763, the “inverse 

probability” or Bayesian viewpoint embraced the subjectivity of statistical analysis 

(Weisberg 2014, §10.2). With regard to testing, the Bayesian approach allows a researcher to 

calculate the probability of a specific hypothesis given the observed data, rather than the 

converse, which is what the Fisher and Neyman-Pearson approaches do. These views gained 

considerable traction after Leonard J. (Jimmie) Savage’s 1954 publication of The 
Foundations of Statistics, which also replied to anticipated objections to the paradigm. His 

work builds on that of Bruno de Finetti (1937) and Harold Jeffreys (1939).

Bayesian ideas were present before then, however, as Fisher (1922c, pp. 325–330) included 

in his article on maximum likelihood a rejection of Bayesian approaches. Fisher (1922c, p. 

326) even notes that the works of Laplace and Poisson, discussed above, “introduced into 

their discussions of this subject ideas of a similar character” to inverse probability. While 

this article is far too short to cover the debate between the various Bayesian approaches and 

the frequentist approaches of Fisher, Gosset, and Neyman-Pearson, Savage’s book is a useful 

starting point, and a higher-level summary can be found in Weisberg (2014). Sharon 

McGrayne (2011) provides a very accessible overview of the Bayesian approach, its history, 

and the common use of Bayesian methods in practical research even while it was 

philosophically rejected by statisticians. These debates, too, are ongoing, with Bayesians or 

frequentists holding more sway in different scientific fields (Gigerenzer et al. 1989, pp. 91, 

105), and Bayesian approaches are often suggested as alternatives to p-values, as discussed 

below.
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In addition to these broad philosophical challenges, statisticians and scientists objected to 

Fisher’s p-value on practical grounds. Gosset wrote to Fisher and to Karl Pearson of the 

importance of considering effect sizes and, indeed, arranging experiments “so that the 

correlation should be as high as possible” (quoted in Ziliak and McCloskey 2008, p. 224). 

Fisher’s own co-author, Francis Yates, wrote in 1951 (p. 33) of his concern that 

experimenters were regarding “the execution of a test of significance as the ultimate 

objective.” Fisher (1956, p. 42) himself later wrote that “no scientific worker has a fixed 

level of significance at which from year to year, and in all circumstances, he rejects 

hypotheses.” His book even included a chapter entitled “Some misapprehensions about tests 

of significance” (Fisher 1956, p. 75). His writings on the matter, however, are sometimes 

contradictory and admit several interpretations (Gigerenzer et al. 1989, p. 97). Medical 

statistician Joseph Berkson (1942, p. 326) feared a disconnect between significance testing 

and “ordinary rational discourse,” especially in applying a rule to these tests without regard 

to “the circumstances in which it is applied” (p. 329). The International Biometric Society’s 

British Regional President warned in 1969 that significance tests might “exercise their own 

unintentional brand of tyranny over other ways of thinking” (Skellam 1969, p. 474). 

Psychologist William Rozeboom (1960) wrote of the failings of p-values and significance 

testing, including the uncritical appeals to 0.05, in 1960. Other psychologists and social 

scientists soon followed (Bakan 1966; Meehl 1967; Skipper et al. 1967).

These arguments, which began as soon as the paradigm-defining works were published, 

would all be familiar to those following the modern debates and resonate in the ASA 

statement (Wasserstein and Lazar 2016). Discussing and teaching the modern debate without 

acknowledging its historical roots does a disservice not only to those thinkers who engaged 

in the debate, but to the statistics profession as a whole.

5 History as Context to Inform the Present Debate

In this article, I have endeavored to recount only a small part of the history of p-values and 

significance testing, which itself forms only a small part of the history of probability and 

statistics. Much more can be found on these subjects. David Salsburg’s 2001 The Lady 
Tasting Tea provides a highly accessible treatment. Stephen Stigler’s 1986 The History of 
Statistics: The Measurement of Uncertainty Before 1900 covers the early history of the p-

value and how it fit into notions of reasoning about uncertainty; Theodore Porter’s book The 
Rise of Statistical Thinking, 1820-1900, also published in 1986, covers the latter end of this 

pre-Pearson history. H. A. David and A. W. F. Edwards’s 2001 Annotated Readings in the 
History of Statistics highlights primary source material relevant to this history. In books 

published twenty-five years apart, Gerd Gigerenzer et al. (1989) and Herbert Weisberg 

(2014) describe the rise of the dominant modern mathematical conception of probability and 

how that influenced and was influenced by the rise of these statistics and of data-driven 

sciences. Stephen Ziliak and Deirdre McCloskey (2008) describe the rise of these statistics 

in the early twentieth century in great detail, focusing on reviving the forgotten role of 

Gosset through presentation and interpretation of his archival materials; they also describe 

the spread of the Fisherian paradigm in economics, psychology, and law, and the 

consequences of that spread. Finally, Donald MacKenzie’s 1981 Statistics in Britain, 1865–
1930 discusses Fisher and his immediate predecessors in detail, focusing especially on the 
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effects of the British social context on the work of Francis Galton, Karl Pearson, and Fisher 

and on how eugenics shaped the statistical work of the three men and the rise of statistics in 

Britain.

Articles and books exploring the use of statistical inference, especially hypothesis testing, in 

specific fields can be informative of this history as well: Morrison and Henkel (1970) write 

of the controversies in the social sciences; Hubbard (2016) discusses the use of statistics in 

the management sciences as well as the social sciences; Hubbard (2004) and Chambers 

(2017) describe the controversies in psychology; Kadane, Fienberg, and DeGroot (1986) 

discuss the use of statistics in the field of law with several case studies; I (Kennedy-Shaffer 

2017) cover some of this history with a focus on significance testing at the United States 

Food and Drug Administration. These various detailed accounts, among others, clarify the 

lessons that statisticians and practitioners can take from this history and provide ample 

material for statistics educators to incorporate this history into their formal and informal 

teaching.

5.1 Lessons for Statisticians and Practitioners

The history of the p-value and significance testing is useful for statisticians and scientists 

who use statistical methods today for a variety of reasons. The history helps clarify today’s 

debates, adding a long-term dimension to modern discussions. In this way, it illuminates the 

factors that drive the creation of statistical theory and methods and what enables them to 

catch on in the broader community. Understanding these factors will help statisticians 

respond to today’s debates and consider how proposed solutions to problems that have arisen 

will play out in the scientific community today and in the future.

First of all, the history clarifies the debates that are occuring today; in particular, many of the 

objections raised to p-values by modern scientists (and in Wasserstein and Lazar (2016) and 

the accompanying Online Discussion) were raised by contemporaries of Fisher. One 

particular aspect, the importance of considering effect size rather than simply statistical 

significance, was the crux of the difference between Fisher’s framework and Gosset’s 

(Ziliak and McCloskey 2008). Ziliak (2016) reiterates this connection in an article in the 

Online Discussion, demonstrating the relevance of historical debates to today’s discussion. 

A thread of argument from Fisher’s earliest critics (and indeed Cournot and Edgeworth 

before him) to Rothman (2016) indicates that the de-emphasizing of effect size in favor of 

the p-value is an easy mistake to make and one that needs to be addressed. Similarly, debates 

have continued over the conflating of Fisher’s paradigm with the Neyman-Pearson approach, 

as discussed above. Lew (2016) describes how these different inferential questions have 

become hybridized. Discussions of power and the role of statisticians in the design of 

experiments arise in the commentaries by Berry (2016) and Gelman (2016). While their 

approaches are quite different, Fisher certainly understood that argument, writing an entire 

book on how to properly design experiments (Fisher 1935); Gosset, too, participated in this 

discussion, disagreeing with Fisher on key aspects (Ziliak and McCloskey 2008, p. 218). 

And the Bayesian-frequentist debate continues today, unresolved after decades of discussion. 

Among others, Benjamin and Berger (2016) and Chambers (2017, pp. 68–73) promote the 
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potential use of Bayesian hypothesis testing as an alternative to p-values and significance 

testing.

It would be easy to be disheartened by this history. If we have been debating these ideas, 

raising similar arguments for a century, what hope do we have of solving them now? And, as 

Goodman (2016) puts it, “what will prevent us from dusting this same statement off 100 

years hence, to remind the community yet again of how to do things right?” The history may 

provide the answer here. In particular, a closer look at how Fisher’s ideas spread and how 

the hybridization of the Fisher and Neyman-Pearson paradigms occurred, processes 

discussed here only briefly, can inform us of what makes statistical methods catch hold in 

the broader scientific, policymaking, and public communities. Berry (2016) notes that 

statisticians should not seek to “excuse ourselves by blaming non-statisticians for their 

failure to understand or heed what we tell them.” But we can understand why they fail to 

heed us. Benjamini (2016) notes that the p-value was so successful in science because it 

“offers a first-line defense against being fooled by randomness.” That is, it was useful to 

non-mathematicians in giving them a quantitative basis for addressing uncertainty. 

Additionally, it has some intuitive meaning, as can be seen by the fact that methods similar 

to the p-value arose repeatedly in various fields even before Fisher. And it had passionate 

advocates who put the tools into the hands of scientists in a way that was easy to use, like 

through Fisher and Yates’s Statistical Tables. Finally, it was responsive to conditions of the 

time. These approaches addressed questions about variance and experimental design that 

were frequently raised at the time (Gigerenzer et al. 1989, pp. 73–74). Considering these 

virtues, Abelson (1997) suggests in a tongue-in-cheek piece that significance tests would be 

re-invented if they were banned and forgotten.

A response that gains traction outside of academic statisticians and that is durable, I argue, 

must meet these same criteria, summarized in Table 1. And moreover, to remain valuable, it 

must be able to adjust to changing conditions. For example, as many authors, including 

Weisberg (2014, §12.3), have discussed, our computational and data-gathering capabilities 

have changed enormously over the last several years, to say nothing of changes since 1925. 

We have seen how the lack of computing power at the time rendered Fisher’s tables so 

valuable and thus so influential to practitioners. And the limited computer capabilities of the 

1950s may have limited the ability of Bayesian methods to catch on with a wider audience 

(Weisberg 2014, §8.4). The ease of computation is one cause of the multiplicity issues that 

are commonly discussed (Ionnaidis 2005; Benjamini 2016). However, there is no reason to 

believe that computing capabilities have plateaued, and so an appropriate response would 

take into account not only today’s conditions, but also those likely to occur in the future. 

Moreover, as we have seen, statistical methods are not always used with fidelity to the 

original intents and assumptions, especially decades after their initial formulation. Several of 

the responses to p-values, as Benjamini (2016) notes, would be susceptible to misuse as 

well.

Certainly, these are high demands to make of any statistical method, or indeed of any 

scientific methodology at all. And the sheer variety of alternatives proposed indicate that 

even the statistical community has not coalesced around one. To take one example, consider 

the proposal to lower the significance threshold to 0.005 (Benjamin et al. 2018). Table 1 
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summarizes whether and how p < 0.005 addresses the criteria for a lasting framework, not to 

argue for or against it, but to suggest the utility of this framework in assessing responses 

beyond p < 0.05. This proposal has several advantages: it maintains the ease of use and 

familiarity that scientists prize and can be viewed as in line with the approaches of Fisher 

(who often wrote of different thresholds in different settings) or of Neyman and Pearson (if 

it represents some true cost of a Type I Error and is paired with Type II Error control). It also 

addresses some of the multiplicity issues that have arisen from changing conditions and the 

reduced computational burden. This is not even the first time it has been proposed; as 

discussed, Edgeworth implicitly used this threshold at times, and threshold proposals varied 

greatly before and even after Fisher. However, it is, as Benjamin et al. (2018) acknowledge, 

just as arbitrary as current thresholds and just as susceptible to misinterpretation. And the 

benefits in addressing multiplicity may fade as data sets get bigger and tests are run even 

more frequently. Little (2016) also notes that lowering the threshold fails to address the 

longstanding debate between statistical significance and substantive significance. But 

differing thresholds have worked in other fields and this proposal may have a great deal of 

value in certain settings. And with tables of significance thresholds no longer necessary 

thanks to modern computing power, it is quite easy for researchers to use different 

thresholds at different times. This suggests that no one method and no one response to the 

controversy will be sufficient.

A multitude of responses, tailored to scientific purposes and fields of study, will be much 

more likely to be able to address all of these needs. Indeed, one can see this as an extension 

of arguments made at various points by both Fisher and Neyman-Pearson that different 

experimenters, working in different contexts, will use different thresholds of significance or 

set different α and β parameters. As Fisher’s work focused on agriculture and biology, 

perhaps his advice still holds sway there, while other fields face different needs. Beyond just 

significance thresholds, different scientific questions can be approached with the variety of 

tools available, from Bayesian approaches to confidence intervals to machine learning, to 

suit their context. Such an approach, however, relies on a great deal of statistical 

sophistication among those who use statistical methods. Fortunately, this history can help 

improve statistics education and guide changes that would enhance that sophistication.

5.2 The Role of History in Statistics Education

The rise in popularity of statistics books aimed at general audiences, including some listed 

above, demonstrates the desires of many people to learn both the practical uses of the 

discipline and the way in which it came to be. Statistics educators broadly defined, whether 

course instructors, statistical collaborators, or writers of articles aimed at non-statisticians, 

can benefit from this interest and use history as a teaching tool within this moment of debate 

in the discipline. The British mathematician John Fauvel (1991, pp. 4–5) presented a variety 

of reasons for incorporating history into mathematics education, including to “increase 

motivation for learning,” “explain the role of mathematics in society”, and “contextualise 

mathematical studies.” A decade later, the Taiwanese educator Po-Hong Liu expounded 

these ideas. He noted specifically that “[h]istory reveals the humanistic facets of 

mathematical knowledge” and can challenge students’ perceptions “that mathematics is 

fixed, rather than flexible, relative, and humanistic” (Liu 2003, p. 418).
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These reasons all hold for statistics, especially as the discipline faces great change, not just 

in the use of conventional inferential methods but also with the rise of computing power and 

big data. As Goodman (2016, p. 1) notes: “that statisticians do not all accept at face value 

what most scientists are routinely taught as uncontroversial truisms will be a shock to 

many.” To meet Millar’s (2016) and Stangl’s (2016) challenge of improving statistical 

education, teachers and collaborators should consider the introduction of this history into 

their discussions of significance testing. Presenting these controversies requires educators to 

present other approaches and thus also serves to, as Millar (2016) suggests, “make our 

students aware that p-values are not the ‘only way.’”

The topics covered here can be introduced alongside the presentation of the tables of values 

of the normal, Student’s t, and χ2 distributions, which still hold a place as early as the 

Advanced Placement Statistics curriculum (AP 2010). Inviting students to consider how the 

lack of computers affected the development of statistics may further appreciation for these 

tables (or, more likely, further appreciation for the computer software that has rendered them 

obsolete). This in turn will help students appreciate what has changed since 1925 and how 

methods may need to change to reflect that.

Presenting the debate between Fisher, Gosset, Neyman-Pearson, and the Bayesians, and how 

that debate has evolved into the current discussion, highlights the human aspect of 

statisticians and the constantly changing, challenging nature of the field. As discussed above, 

many of the specific points made in that debate are ongoing points of contention today. In-

depth analysis of Fisher’s rationale for using the 0.05 standard can highlight how, though 

arbitrary, it is not without context, and how it responded to the needs of experimentalists at a 

certain point of history. This understanding will allow students and practitioners to form 

their own assessment of, for example, the proposal to lower the standard to 0.005. In this 

way it becomes harder to dismiss the p-value without providing a substitute that is similarly 

usable by those who perform statistical analyses today. This teaching will also give students 

and practitioners the ability to critique the next statistical method that comes along, and to 

consider alternatives to the p-value in the context of statistical history and the role of 

statistics in modern science and society.

6 Conclusion

As we consider a world “beyond p < 0.05,” I invite statisticians and scientists alike to 

consider the world before p < 0.05, a world where statistical analysis was less common and 

far more difficult an undertaking. It is then easier to see how p-values came to such 

prominence throughout science, despite the immediate disagreements among statisticians. 

Statistics is an evolving discipline, but it is in the difficult position of needing to evolve 

alongside the various disciplines that make use of its tools. In Fisher’s teaching and 

manuscripts, writes Box (1978, p. 242), “he aimed to give workers a chance to familiarize 

themselves with tools of statistical craft as he had become familiar with them, and to evolve 

better ways of using them.” This approach helped make statistics a fundamental tool in 

many disciplines, but has led to the challenges discussed in the ASA statement and 

elsewhere. Presenting this history as context for these discussions provides appropriate 

recognition of the rich debates that define statistics. It encourages statisticians to consider 
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how their work will be used by practitioners and encourages practitioners to consider 

whether they are using statistical methodologies as they were intended. Through ongoing 

discussions and by encouraging this critical thinking, statistics can continue to be a field that 

helps push forward the boundaries of knowledge.
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Table 1:

Criteria for a Lasting Framework for Inference Beyond p < 0.05

Criterion p < 0.05 Meeting Criterion Does p < 0.005 Meet Criterion?

Provides quantitative basis to 
address uncertainty

p-value varies with precision of estimator Same as p < 0.05

Rewards increased precision Significance achieved more easily with higher sample 
size

Same as p < 0.05

Matches intuitive understanding Statistic akin to p-value developed several times Stricter threshold easily understood, but 
requires departure from current intuition

Advocated by statisticians and 
non-statisticians

Promoted by Fisher, his students, and scientists in a 
variety of fields

Supported by some statisticians and 
practitioners, but value still disputed

Computationally feasible for 
non-statisticians

Fisher and Yates made tables user-friendly and 
accessible to scientists and practitioners

Any threshold feasible with modern software

Responsive to changing 
conditions

p < 0.05 met needs of a time when few tests were 
conducted while varying thresholds allowed responses 
to multiple testing

Addresses current preponderance of tests, but 
viewed by advocates as a stopgap measure
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