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Abstract

With the rise of sequencing technologies, it is now feasible to assess the role rare variants play in 

the genetic contribution to complex trait variation. While some of the earlier targeted sequencing 

studies successfully identified rare variants of large effect, unbiased gene discovery using exome 

sequencing has experienced limited success for complex traits. Nevertheless, rare variant 

association studies (RVAS) have demonstrated that rare variants do contribute to phenotypic 

variability, but sample sizes will likely have to be even larger than those of common variant 

association studies (CVAS) to be powered for the detection of genes and loci. Large-scale 

sequencing efforts of tens of thousands of individuals, such as the UK10K Project and aggregation 

efforts such as the Exome Aggregation Consortium, have made great strides in advancing our 

knowledge of the landscape of rare variation, but there remain many considerations when studying 

rare variation in the context of complex traits. We discuss these considerations in this review, 

presenting a broad range of topics at a high-level as an introduction to rare variant analysis in 

complex traits including the issues of power, study design, sample ascertainment, de novo 
variation, and statistical testing approaches. Ultimately, as sequencing costs continue to decline, 

larger sequencing studies will yield clearer insights into the biological consequence of rare 

mutations and may reveal which genes play a role in the etiology of complex traits.

Introduction

GWAS, common variants and complex traits

Complex traits such as height, type II diabetes or schizophrenia are those for which both 

genetics and environment contribute to the variance in the population. For most complex 

traits, a large number of distinct genetic loci influence the phenotypic variability. Over the 

past decade, genome-wide association studies (GWAS) have become the standard approach 
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to assess the genetic contribution of complex traits. With the continued drop in genotyping 

costs, meta-analysis of GWAS have reached hundreds of thousands of samples enabling 

sufficient power to detect small effects at common single nucleotide variants (i.e., those with 

a minor allele frequency (MAF) ≥ 5%). These hypothesis-free genome-wide scans have 

delivered many novel discoveries, including some particularly unexpected results such as 

implicating the hippocampus and limbic system in BMI1, autophagy in Crohn’s Disease2, 

and the complement system in age-related macular degeneration3. To date, GWAS have been 

used to study over 1,500 traits such as post-traumatic stress disorder4, hoarding5, and type II 

diabetes6 and the catalogue of genome-wide significant associations contains over 23,000 

variants7.

Rare Variants

Current genotyping arrays commonly used in GWAS capture most common variants through 

imputation, but have limited capture of variants below MAF of 5%. With increasing sample 

sizes coupled with advancements in sequencing both the exome (~1% of the genome that 

covers protein coding genes; [WES]) and the entire genome (WGS), the definition of rare 

variation has tended to shift from 5% for the earliest GWAS to 0.5% or even 0.1%. Part of 

the initial motivation for looking at rare variants for complex traits, as opposed to Mendelian 

disorders, came from targeted candidate gene studies that discovered rare coding variants of 

large effects. For example, rare coding variants in NOD2 were linked to risk of Crohn’s 

Disease8, and rare variants in PCSK9 and ABCA1 were found to have large effects on low-

density lipoprotein (LDL)-cholesterol and high-density lipoprotein (HDL)-levels 

respectively9–11. Furthermore, successfully translating the discovery of PCSK9 to a 

therapeutic intervention has demonstrated the potential of taking rare variant association 

through to clinical application12,13. We expect that as querying rare variants becomes 

increasingly feasible, they will continue to help identify genes and regions that contribute to 

the etiology of complex traits. In this review, we discuss methods for the analysis of rare 

variants, study design considerations and various technologies that capture rare variation. It 

is intended to touch on a broad range of topics, rather than delve into specific detail; where 

possible we point the curious reader to additional reviews for further reading if desired.

Association testing of rare variants

Study designs

Here we delve into the specific considerations for rare variants association studies (RVAS), 

covering decisions made with regards to sample ascertainment, choice of variants and 

statistical tests, concerns regarding population stratification, and replication. RVAS typically 

have one of two designs – a case-control (or cohort studies), or a family-based approach. We 

start by describing the analytic considerations for case-control association studies and then 

extend these considerations to family-based rare variant studies. For the cohort studies, we 

will describe the methods for case-control studies, but these methods are largely applicable 

to studies of quantitative traits such as height or blood glucose levels.
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Why you have to group

For rare variants, not enough copies of the minor allele are present to achieve sufficient 

levels of evidence to be convincingly associated in single marker analysis14. To address this 

issue, grouping and burden tests have long been proposed in the analysis of rare 

variants11,15–19. These groupings aim to ensure that there are enough individuals carrying a 

rare variant to perform an association test. There are two main classes of group-wise tests: 

burden tests, where the rare variants in a region are assumed to have the same direction of 

effect and variance component tests which allow for effects in opposite directions.

Burden tests

Burden tests function by comparing the number or burden of variants in cases and controls, 

and are the most straightforward of the gene-based tests15,16,20–22. These tests collapse 

variants within a gene or a defined region of the genome into a single score and test for 

association between the score and the trait/disease of interest. One can simply consider all 

variants in a gene and apply either a threshold (0 or 1) or a weight based on their functional 

category and/or allele frequency in the model. However, burden tests are limited by the 

assumption that all variants act in the same direction (i.e., all risk or all protective). Burden 

tests lose power if there is a mixture of both protective and risk conferring variants in the 

same gene.

Variance components tests

Variance-component tests23,24, most notably the sequence based kernel association 

(SKAT)25 or C-alpha17 (which is a special case of SKAT), were designed to address this 

issue in which a gene may possess a mixture of risk and protective variants. They test for 

association by evaluating whether individuals that carry the same rare variant tend to be 

more similar phenotypically. By assessing the distribution of variants, rather than their 

combined additive effect, these tests are robust to instances where the rare variants affect 

phenotype in different directions26. Thus, variance-component tests are more powerful than 

burden tests if there is a mixture of both risk and protective variation. However, variance 

component tests lose power compared to burden tests when the majority of variant are in the 

same direction. For readers interested in a comprehensive examination of RVAS tests, see 

the extensive review by Lee and colleagues27.

Which region to test

One of the central questions in RVAS, especially for WGS, is what regional definitions 

should be used to group rare variants in an association-testing framework. The most 

common choice, and arguably the most intuitive, is to aggregate variants across a gene. This 

is particularly appealing in exome sequencing studies where genetic variation is being 

measured specifically at genes. This gene-based approach can be expanded to include 

particular functional classes (such DNase hypersensitivity sites, or all nonsense variants for 

example), all genes within a pathway, or all genes within a gene set. In the context of WGS 

however, the majority of rare variants will fall outside of genes and the decision of which 

regions to group them over for testing becomes less clear. In this case, one could group 

variants by class of regulatory element such as promoter, enhancer, or transcription factor 
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binding site. One challenge with grouping in this manner is that regulatory elements tend to 

be small (100–200bp) and thus require more samples to achieve the same power as when 

testing a whole gene28. Another way to consider aggregating rare variants, especially in the 

case of the noncoding region, is to use a sliding window of a specified genomic length29. 

However determining the optimal size for a sliding window is tricky, as there is a tradeoff 

between using a few large windows which incurs a smaller multiple hypothesis testing 

burden, but comes at the cost of including variants that might be functionally unimportant or 

have negligible effect sizes to using a lot of small windows with a higher multiple testing 

burden. The UK10K study applied this technique with a window size of 3kb to test 31 

different traits for noncoding associations, but this analysis did not return any significant 

associations30.

Which variants to include

Once a specified region is chosen, one must determine which variants within that region to 

include in the analysis. Each individual variant will either increase the probability of having 

the disease (risk-conferring), or decrease it (protective), or have no effect on risk (neutral). 

Ideally we would only include the risk-conferring variants, or alternatively the protective 

variants, since including neutral variants will reduce power. However, this information is 

typically not known, so the challenge is to balance the chance of including the risk-

conferring (or protective) variants and excluding neutral variants.

Gene level testing

When considering gene level analyses, one of the most natural approaches is to restrict to 

only variants predicted to truncate the protein31 or ablate it through nonsense-mediated 

decay32. Four different functional categories fit in this group: frameshift, splice donor, splice 

acceptor, and nonsense variants. Collectively, these variants are referred to by a variety of 

descriptions: loss-of-function (LoF), likely gene disrupting (LGD), or protein truncating 

variants (PTVs32); we will use the term PTV for the remainder of this paper. One of the 

most attractive features of PTVs is the expectation that all the variants will act in the same 

direction. However, most genes in the genome are strongly conserved, meaning that natural 

selection keeps PTVs rare, and thus large sample sizes are necessary to observe a sufficient 

number of rare alleles to test for association with the trait of interest.

One possible way to increase power without increasing sample size is to also include 

missense variants. However, the classification of missense variants into risk, neutral, and 

protective is challenging. A variety of different computational approaches for pathogenicity 

prediction of missense mutations have been proposed, such as SIFT33, PolyPhen234, 

MutationTaster35, among others36,37. Each of these tools leverages different indicators of 

deleteriousness for missense mutations; some measure conservation (e.g., GERP++38, 

SIFT33, phyloP39), while others evaluate the functional effect of alternate amino acids on 

protein structure (PolyPhen234). Given the differences in information source, the predictions 

of deleteriousness often differ. Additionally, the various datasets used for training and testing 

these tools differ in how they define pathogenic or neutral variants, which further contributes 

to the inconsistency across tools37. We direct the reader to reviews [37] and [39] for further 

details regarding the variety of computational predictors of deleterious missense variants and 
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the challenges in their utility. Regardless of the particular annotation method adopted, the 

resulting set of variants will likely contain a mixture of both risk and neutral variants.

Noncoding analysis

For WGS, regional definitions are considerably more challenging. Projects such as 

ENCODE (Encyclopedia of DNA Elements) Consortium40 and Epigenomics Roadmap have 

mapped not only genes but also other functional elements such as promoters, enhancers, 

repressors, transcription factor binding sites, and methylation sites41. However, many of 

these individual functional elements are small and unlikely to harbor sufficient numbers of 

rare variants for testing. Consequently, grouping together functional elements for a given 

gene might provide sufficient variation to perform association testing. Recently, some in 
silico prediction tools for assessing the deleteriousness of non-coding variants have been 

developed such as GWAVA42, CADD43, and Eigen44. These tools provide a means to 

prioritize non-coding variants based on their predicted deleteriousness, in a similar fashion 

to what PolyPhen234 provides for coding variation. Such predictions can be used to define 

both groups of variants and the weight each variant should receive in the analysis.

For WES and WGS, a key element for selecting which variants to include and what weights 

to assign is to leverage frequency information. Such information can be incorporated from 

the sample being analyzed, as proposed in Madsen and Browning16, or from a diverse 

population reference sample. Recently, the Exome Aggregation Consortium (ExAC)45 has 

made all variants from 60,706 exomes publically available, creating an unparalleled 

opportunity to interrogate rare coding variants. Not only is the sample size of ExAC almost 

an order of magnitude larger than what was previously the biggest reference database, the 

NHLBI Exome Sequencing Project (N = 6515)46, but the genetic diversity of ExAC provides 

a better representation of rare variants across a variety of ancestries. Leveraging external 

frequency information has the potential to restrict case control analysis to extremely rare 

variation.

Population stratification

For case-control and cohort association studies, population stratification is a major source of 

type I error47–49; principle components analysis (PCA) and linear mixed models (LMMs) 

have been applied with great success in correcting for these confounders50. PCA-based 

correction assumes a smooth distribution of MAF over ancestry or geographical space, 

which is appropriate in the space of common variation. However, this approach is not 

appropriate for rare variation as the MAFs may be sharply localized and geographically 

clustered due to the fact that they have recently arisen, thus violating this assumption51. One 

proposed method to correct for stratification in RVAS is Fast-LLM-Select52, which performs 

feature selection on the variants, retaining only those that are phenotypically informative to 

use in constructing the generalized relationship matrix (GRM). Nevertheless, Fast-LLM-

Select loses power when causal variants are geographically clustered52,53.

Family Studies

The tests described above focus mainly on case control sequencing studies. An alternate 

approach to these is to use family studies including trio and pedigree studies. Pedigree 
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studies may provide a cost-effective way to capture rare variation through familial 

imputation as well as providing opportunities to aid in the interpretation of rare variants. For 

family studies, two main analytic approaches are available: de novo (i.e., newly arising 

mutations) and within family tests, such as the transmission disequilibrium test. Here we 

describe the analytic considerations of these two components.

De novo tests

The scenario where studying de novo mutations are most effective is when the selective 

pressure against mutations is extremely strong and the effect size is quite large. Strong 

selective pressure means that when mutations arise they are removed from the population 

rapidly, keeping the frequency of those mutations in the population extremely low.

The key to analyzing de novo variation is to understand what the mutability of each potential 

mutation site is. Across the genome, the mutation rate has been show to vary as a function of 

a large number of factors including local base context54,55, replication timing56–58, and other 

large-scale phenomena59. While the chance of mutation at any one gene is extremely rare 

(typically 2 × 10−4), we are all expected to carry ~75–100 de novo variants on average60–62. 

In order to have sufficient power to test such variants for association without knowledge of 

whether the variant is de novo, very large sample sizes would be required. To illustrate, 

~100,000 samples are required to detect a gene in which de novo PTVs confer a 20-fold 

increase in risk28. Building a mutation rate model for de novo mutation analysis 

dramatically improves the power to detect genes.

Studying de novo variation for gene discovery has proved very successful for genes with 

large effect sizes for traits under heavy selection such as ASD55,63–68, intellectual 

disability69, developmental delay70. An early example of this was seen in a study of 

Achondroplasia, in which 153 out of 154 patients had the exact same de novo variant at a 

CpG site in FGFR371. De novo variants have also implicated more than 10 genes in 

ASD63,64 through the observation of multiple de novo PTVs in the same gene. For example, 

seven de novo PTVs in CHD8 have been observed in 3,871 cases, a highly significant 

enrichment (P = 5.51 × 10−13) compared to the 0.06 that would be expected based on the 

mutation rate for PTVs. Similar results were observed in ARID1B, SYNGAP1, DYRK1A, 

and other genes63.

TDT

In addition to de novo variation, standing rare variation can be analyzed for family study 

designs. The most commonly used association test in family designs72 is the transmission 

disequilibrium test (TDT)73. The TDT can be thought of as a family-based case-control 

association procedure, in which the control is not a random unaffected individual but the 

alleles the affected child could have inherited but did not (a pseudo-control). The TDT boils 

down to testing whether the frequency of transmitted alleles (case) is the same as alleles not 

transmitted to the affected child (control) from a heterozygous parent. Because a parent who 

is homozygous for the variant must transmit the allele, their transmission is guaranteed and 

thus uninformative to the test.
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Arguably the greatest advantage of the TDT is that it is free from population stratification as 

the control (i.e. the untransmitted allele) is sampled from within the same family as the case. 

The TDT assumes Mendelian inheritance (i.e. that each allele is equally likely to be 

transmitted), and that a variant more often transmitted than not to the affected offspring 

indicates a disease-associated locus that is linked with the marker. Thus, both linkage and 

association are required to reject the null hypothesis; this dual hypothesis shields the TDT 

from population stratification. A recent study by Elansary and colleagues found that the 

TDT can produce false positive associations with X-linked variants near the pseudo-
autosomal region for traits with sex-limited expression and when the allele frequencies of 

the locus differs between the X and Y chromosomes. These false positive associations arise 

because transmission is not equally likely in both sexes: fathers transmit the Y allele to their 

sons and the X allele to their daughters. These false positives can be fixed by considering 

only maternal transmissions and removing trios in which the father and mother are both 

heterozygous at these sites74.

TADA

Thus far, in focusing on only cases/control, inherited, or de novo variation, all of the 

association study designs discussed have utilized only partial information that can be gained 

from a sequencing study. This is especially true for trio-based studies, where both inherited 

and de novo variation can be catalogued. When multiple forms of data are available, 

combining them can increase power to detect association and allow for a more complete 

interrogation of potential disease loci. TADA (transmission and de novo association)75 was 

developed to address this issue and integrates de novo, transmitted, and case-control 

variation into a unified Bayesian statistic that maximizes power to detect risk associated 

genes. In terms of gene discovery, the advantage of TADA compared to using solely de novo 
variation scales exponentially with increasing sample size. At a sample size of 5000 trios, 

TADA has close to five times the power to identify associated genes compared to using only 

de novo variants75. TADA has accelerated the pace of gene discovery in ASD, identifying 33 

and 107 genes with a FDR < 0.1 and < 0.3, respectively63.

Additional design and analytic issues

Here we turn our attention to a range of additional issues inherent in conducting association 

analyses of complex traits. These issues include the relative benefits of exome versus 

genome sequencing, statistical considerations such as the asymptotic properties of the 

association tests (which relates to statistical power) as well as approaches to boosting power 

such as extreme phenotypic selection or the value of bottleneck populations.

Exome vs. genome

Briefly, NGS works by shearing the genome into billions of short sequence reads and 

aligning them to the human reference genome. Locations where the sequence differs from 

the reference genome are called variants. Consistent with previous reports, population based 

whole genome sequencing (WGS) studies such as the 1000 Genomes76 and UK10K 

Project30, have verified that most variants are in fact rare. What’s more, at current sample 

sizes the majority of variants are singletons, meaning that only one copy of the minor allele 
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is observed in the entire sample (Figure 1). Beyond capturing SNPs, NGS technologies also 

capture insertions/deletions (indels) of nucleotides, as well as more complicated structural 

variation such as copy-number variants (CNVs) and large-scale inversions or deletions. 

Current sequencing technologies capture almost all SNPs, but accurate detection of indels 

and structural variants still poses a challenge.

With the falling cost of WGS, rare variants are now being included in large association 

studies, allowing researchers to ask what role they play in complex phenotypes. While WGS 

is a powerful approach that enables the unbiased survey of genetic variants located genome-

wide, it has two main limitations. First, the costs of sequencing are still considerable, 

resulting in smaller samples for any one study. Second, as described above, interpreting the 

functional consequences of non-coding variants remains an ongoing challenge. Nevertheless, 

as costs continue to decline and technologies improve, WGS will likely be the standard 

approach for genetic investigation. However, the single most important factor in driving 

discovery in genetic studies is sample size, meaning that more cost effective approaches for 

large samples may successfully identify significant loci more rapidly.

In contrast to WGS, whole exome sequencing (WES) targets the capture of the protein 

coding regions (~1.5% of the genome). While WES is more expensive than genotyping 

arrays, it remains considerably less expensive than WGS. This cost-reduction enables larger 

sample sizes and therefore higher-powered studies. Furthermore, our ability to interpret the 

functional impact of coding variants far outstrips our understanding of noncoding variation, 

meaning that extracting biological insight is much more straightforward (although not 

without its challenges). All together, these properties of the coding region increase power to 

identify novel associations as well as provide a better interpretation of those associations. 

Nevertheless, WGS projects likely have a longer shelf life than WES projects.

Extreme Phenotyping

Regardless of the chosen study design, strategic choices in sample ascertainment can 

improve power to detect true genetic associations. This is especially important as one of the 

main challenges confronting RVAS is simply capturing enough rare variants to achieve 

sufficient observations for testing. Thus, in order to increase the probability that the sampled 

individuals will have the rare variants of interest, one popular approach is to study 

individuals with extreme presentations of the trait of interest28. The intuition behind this is 

that individuals at the tails of the distribution have a higher load of variants than someone in 

the middle. For quantitative traits, focusing on the tails of the phenotypic distribution can 

improve power to detect rare variants effects77,78. For example, if studying the genetic 

drivers of height, one might gather individuals who are either very tall or very short. One can 

apply the same methodology to binary traits by sampling individuals with early onset of the 

disease. For example, an exome sequencing study of early-onset cases of chronic P. 
aeruginosa infection and older individuals who had not suffered infection lead to the 

implication of the DCTN4 in infection risk in cystic fibrosis79.
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Isolated Populations and consanguineous families

Another sample ascertainment strategy is to study populations that have undergone 

population bottlenecks while remaining isolated for many generations80,81. These extreme 

bottlenecks and continued isolation (especially if followed by rapid population growth, such 

as in Finland) creates a unique population to focus on the effects of rare variants on health. 

Isolated populations often have elevated allele frequencies for rare variants compared to 

other populations that have not experienced such events due reduced genetic diversity from 

the bottlenecks and increased genetic drift from the isolation82. Furthermore, population 

isolation results in substantial cultural and environmental homogeneity, which further 

increases power to find genetic factors23,82. Restrictive and consanguineous marriage 

practices also produce a similar effect of elevated frequencies of variants that are rare in 

most other populations.

Study designs that target isolated populations have resulted in numerous successful findings. 

A recent study in Iceland discovered a low frequency, non-coding variant associated with 

prostate cancer that was considerably more common in Iceland than in the Spanish 

replication cohort (3% in cases and 1% in controls in Iceland versus 0.4% in cases and 0.1% 

in controls in Spain)83. Similar success, also using Icelandic individuals, has been seen for 

T2D84. One of the most famous examples of discovery in a consanguineous group was that 

of BRCA1 and BRCA2 in breast and ovarian cancer in individuals of Ashkenazi Jewish 

descent85.

Asymptotics and multiple hypothesis testing

Exome sequencing has enabled RVAS to progress from candidate gene studies, where a 

particular gene is of interest a priori, to an unbiased analysis that considers all genes in the 

genome. When testing all ~20,000 genes in the genome it is critical to account for multiple 

testing. Under the same logic of Lander and Kruglyak, given that we can test for all genes, 

we ought to correct for doing so86. A Bonferroni correction for all genes brings the p-value 

threshold required for statistical significance to 2.5 × 10−6 per gene. However, this assumes a 

single testing framework, which in practice is not realistic as tests of PTVs and missense 

mutations, either jointly or separately, are going to be conducted. Consequently, it is 

important to account for the diverse set of tests in such a framework, to ensure that identified 

associations are robust. Another possibility to correct for false discoveries in multiple tests is 

to use permutation. Permutations are less stringent than Bonferroni in controlling type I 

error rates, but can suffer from confounding when improperly done such as permuting case-

control labels when the cases and controls are not ethnically matched or permuting 

individual genotypes (rather than phenotypes), which would fail to control for linkage-

disequilibrium87. The use of permutation, however, can capture the total testing burden 

performed from the different analytic choices.

A related consideration is whether there is sufficient variation in each gene to achieve 

dimensionality (i.e., whether there are enough carriers of minor alleles to perform a 

statistical test). One way to evaluate this was proposed by Kiezun and colleagues where the 

data being analyzed is used to calculate what they term the i-stat, an estimate of the 
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minimum p-value achievable for a gene87. Applying a threshold on i-stat can aid in 

evaluating whether the gene tests are well distributed.

Factors influencing replication strategies for rare variant discovery

One of the lessons learned from GWAS was the standardization of statistical evidence 

required for association to avoid the failures of replication that plagued GWAS in the early 

years. Any GWAS now requires an initial association of P < 5×10−8 and independent 

replication for findings to be published88. Such standardization is necessary in the realm of 

RVAS as well. However, replication is far more difficult due to the fact that rare variants are 

by definition rare, and many times are specific to certain populations and groups. Despite 

these difficulties, there are proposed replication strategies for whether it is a single variant, 

or a gene, that is being implicated.

For the former, much as in a GWAS, a cohort independent of the one in which the variant 

was discovered is sampled for the replication stage of the study. There are then three 

strategies to get at the discovered locus: directly genotype the associated variant, genotype a 

SNP in LD with the variant, or impute the associated variant (this being the least ideal). If 

the association is significant in the replication cohort, then the replication is successful.

The latter, more common, design is to aggregate multiple rare variants across a gene and to 

test whether the gene is associated with the trait/disease of interest. Liu and Leal describe 

the different ways one can go about replication in this case. Briefly, one can either 

resequence the gene or genotype each of the variants initially discovered in the gene in an 

independent population. Under the assumption that everything is equal (e.g. cost & error 

rates), they demonstrate that resequencing is consistently more powerful than genotyping 

across a number of scenarios89. One of the advantages of resequencing the gene is that it 

allows for the discovery of additional rare variants that were not present in the initial cohort. 

Yet in reality, genotyping and resequencing are not equal in terms of cost or accuracy. As 

sample size is the most important determinant of power in replication, whatever method 

provides the most samples would be the ideal approach23.

As was the case with GWAS, we expect that continuing meta-analysis of rare variant 

association studies will eventually yield robust associations that continue to strengthen in 

significance as additional data are added. Tools such as MASS90,91, MetaSKAT92, 

RAREMETAL93,94, and seqMeta95 have been designed to facilitate meta-analyses of rare-

variant association studies using summary statistics. In general, rare variant meta-analyses 

go through two steps: 1) calculate study-specific summary statistics, and 2) combine the 

summary statistics in the specified gene-level association test. However, because rare 

variants tend to be population specific (i.e., present in only some populations), and the 

association analysis of these variants is conducted at the gene level, different populations 

and studies will contain different sets of rare variants within each gene. As a consequence, 

the per-study effect sizes for the gene will differ. This effect is compounded by any 

differences in the sequencing technology used across sites. For example, different exome 

capture technologies vary with respect to the efficiency of capture across different portions 

of the exome. Further complicating meta-analysis of rare variants is the observation that 

depending on the genetic architecture, a fixed-effects or random-effects model can be more 
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powerful96. Of course, this is less of an issue when one is testing true loss-of-function 

variants in aggregate, as they should theoretically have similar or the same effect size within 

the same gene.

Extensions

Pathway/gene set

A natural extension of grouping rare variants together is to extend from genes to gene sets or 

pathways. Such tests may boost power to detect association evidence, but necessitate 

accurate models of pathways and gene sets. Furthermore, the interpretation of gene set 

analyses can be challenging given that many gene sets tend to overlap. Nevertheless, a recent 

RVAS of schizophrenia97 reported three significant findings all with an odds ratio > 5 using 

pathways in a cohort of 2,536 cases and 2,543 controls: ARC complex genes, PSD-95 

complex, and voltage-gated calcium ion channel genes. Taken together, these results, along 

with their lack of signal at the level of single genes, suggest a polygenic architecture for 

schizophrenia, in which rare, disruptive variants contribute to risk97.

One of the complications with gene sets is that the background frequency of mutation is not 

the same across all genes55. Thus genes with a higher rate of mutation (because of length 

and/or mutability) will contribute more heavily to the test statistic. Furthermore, the choice 

of which genes to include in the gene set is another question. One possibility is to use genes 

that have been implicated from GWAS as it has been established that genes harbor both 

common and rare variants that both affect the disease (e.g., SLC30A8 in T2D98). However, 

rejecting the null hypothesis does not specify which gene or genes are driving the 

association, thus requiring additional follow-up.

Conclusion

RVAS of complex traits are beginning to identify risk genes and causal variants, building 

upon the findings of GWAS that pointed to broad regions of the genome contributing to risk 

but that did not have the resolution that can be obtained through rare variant studies. The 

successes of RVAS, such as those in ASD and Inflammatory Bowel Disorder, are just the 

beginning of exploring the role of rare variation in complex traits. With sequencing costs 

dropping, new analytical methods being developed, and with the creation of large reference 

databases of both exomes and genomes such as the Exome Aggregation Consortium45 and 

the UK10K project30, our ability to query rare variants accurately and reliably is 

dramatically improving. We expect to see larger and more powerful rare variant association 

studies continue to help hone in on underlying causal variants and inform our understanding 

of the genetic etiology of many common traits.
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Figure 1: 
Allele frequency spectrum from exome sequencing of 2883 individuals of Swedish ancestry

The allele frequency spectrum of a typical exome sequencing study (N = 2883). The vast 

majority of variants are rare (MAF < 0.1%) with 53% being seen only once. The inset figure 

expands out the fraction of variants seen at allele counts 1 – 10.
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