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Abstract

Background: Epidemiologic studies suggest a strong link between poor habitual sleep

quality and increased cardiovascular disease risk. However, the underlying mechanisms

are not entirely clear. Metabolomic profiling may elucidate systemic differences associ-

ated with sleep quality that influence cardiometabolic health.

Methods: We explored cross-sectional associations between sleep quality and plasma

metabolites in a nested case–control study of coronary heart disease (CHD) in the

Women’s Health Initiative (WHI; n¼ 1956) and attempted to replicate the results in an in-

dependent sample from the Nurses’ Health Study II (NHSII; n¼ 209). A sleep-quality

score (SQS) was derived from self-reported sleep problems asked in both populations.

Plasma metabolomics were assayed using LC–MS with 347 known metabolites. General

linear regression was used to identify individual metabolites associated with continuous
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SQS (false-discovery rate <0.05). Using least absolute shrinkage and selection operator

(LASSO) algorithms, a metabolite score was created from replicated metabolites and

evaluated with CHD risk in the WHI.

Results: After adjusting for age, race/ethnicity, body mass index (BMI) and smoking,

we identified 69 metabolites associated with SQS in the WHI (59 were lipids). Of these,

16 were replicated in NHSII (15 were lipids), including 6 triglycerides (TAGs), 4 phosphatidy-

lethanolamines (PEs), 3 phosphatidylcholines (PCs), 1 diglyceride (DAG), 1 lysophosphati-

dylcholine and N6-acetyl-L-lysine (a product of histone acetylation). These metabolites

were consistently higher among women with poorer sleep quality. The LASSO selection

resulted in a nine-metabolite score (TAGs 45: 1, 48: 1, 50: 4; DAG 32: 1; PEs 36: 4, 38: 5; PCs

30: 1, 40: 6; N6-acetyl-L-lysine), which was positively associated with CHD risk (odds ratio

per SD increase in the score: 1.16; 95% confidence interval: 1.05, 1.28; p¼0.0003) in the

WHI after adjustment for matching factors and conventional CHD risk factors.

Conclusions: Differences in lipid metabolites may be an important pathogenic pathway

linking poor habitual sleep quality and CHD risk.

Key words: coronary heart disease, epidemiology, metabolomics, sleep, women

Introduction

Women have a substantially increased risk of developing

coronary heart disease (CHD) after menopause.1 In addi-

tion to a reduction in sex hormones that may be cardiopro-

tective,2 a growing body of evidence suggests that women,

compared with men, are particularly vulnerable to the con-

sequences of metabolic abnormalities that lead to cardio-

vascular morbidity and mortality.3,4 However, the

behavioural and biologic factors contributing to such sex

differences are not fully understood.

Interestingly, women are also more likely to report

poorer sleep quality and insomnia symptoms than men,

with even greater differences in older populations.5

Previous studies provide consistent evidence linking insom-

nia with increased risk of CHD,6,7 with women being

more likely to have unfavourable biologic responses to

sleep disturbances, such as increased inflammation and in-

sulin resistance.8,9 Given that sleep plays a central role in

energy homeostasis and metabolism, a comprehensive pro-

filing of the systemic metabolic differences associated with

variations in sleep quality may provide important insights

into the underlying pathways through which poor sleep

quality increases CHD risk.

Several small experimental studies, predominantly in

men, reported alterations in plasma metabolites after total

or partial sleep deprivation,10–12 including changes in dif-

ferent species of lipids and fatty acids (e.g. phosphatidyl-

choline and diacylglycerol), metabolites related to

neurotransmitter synthesis and metabolism (e.g. trypto-

phan and serotonin), glycolate metabolites (e.g. oxalic

acid) and gut microbial metabolites (e.g. trihydroxypyra-

zine). Yet, it remains unclear whether these findings can be

translated to the effects of habitual sleep patterns, which

have greater relevance towards chronic CHD development,

or applied to post-menopausal women, who are susceptible

to both insomnia and cardiovascular consequences of met-

abolic dysregulation. Therefore, we conducted the present

study to identify a metabolomic signature associated with

self-reported habitual sleep quality in two independent

samples of post-menopausal women. We further explored

Key Messages

• We identified and replicated differences in lipid profiles associated with sleep quality in two independent samples of

post-menopausal women.

• Sleep-related metabolomic signature was strongly predictive of future coronary heart disease (CHD) risk.

• Potential epigenetic changes associated with sleep, particularly histone acetylation and its relevance to CHD develop-

ment, warrant additional studies.

• More studies are needed to confirm our results in other populations.
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the relationships of sleep-related metabolomic profiles

with development of CHD.

Methods

Study population

The discovery sample was a nested case–control study of

metabolomics and incident CHD in the Women’s Health

Initiative (WHI), which has observational study and clini-

cal trial components.13 CHD was defined as acute myocar-

dial infarction (confirmed by medical record review) or

death due to CHD (ascertained by death certificate).

Briefly, 1153 participants who developed CHD after base-

line screening (cases) and 1153 participants who did not

develop CHD (controls) were frequency-matched on age

(5-year interval), race/ethnicity, hysterectomy status and 2-

year enrolment windows (Supplementary Figure 1, avail-

able as Supplementary data at IJE online).14 Of these, 472

cases and 472 controls were drawn from the Women’s

Health Initiative-Observational Study (WHI-OS), in which

93 676 post-menopausal women (age: 50–79) ineligible or

unwilling to participate in the randomized trials were

recruited from 40 clinical centres across the USA between

1994 and 1998. The remaining 681 case–control pairs

were sampled from the Women Health Initiative-Hormone

Therapy Trials (WHI-HT), in which 27 347 post-meno-

pausal women (age: 50–79) were randomized to an oestro-

gen plus progesterone vs placebo arm, or oestrogen only vs

placebo arm, according to hysterectomy status. At baseline

screening (prior to randomization), all 2306 women were

free of CHD, completed a clinic visit and provided a fast-

ing blood sample for an initial metabolomics assay and ex-

tensive questionnaire information. Of these, 1072 women

in the WHI-HT completed another metabolomics assay us-

ing blood samples collected at 1-year follow-up.

Replication was conducted among a subset of post-men-

opausal women from the Nurses’ Health Study II (NHSII).

NHSII is a large, ongoing, prospective cohort study of

116 429 US female registered nurses initiated in 1989. At

baseline, all participants completed a questionnaire regard-

ing their lifestyle and medical history and have been fol-

lowed by biennial questionnaires to update information on

exposure data and disease diagnoses. In 2013, 233 women

(age: 49–67) participated in a substudy that aimed to iden-

tify biologic predictors for psychosocial stress, providing

multiple biospecimens (including fasting blood) and com-

pleting a comprehensive psychosocial assessment online,

including habitual sleep quality (Supplementary Figure 1,

available as Supplementary data at IJE online).15

In both cohorts, the analysis included women who had

complete data on sleep assessment and excluded women

with prevalent diabetes or extreme BMI (women with

BMI> 50 kg/m2, all of whom were diabetic) to minimize

the complex influences of the resulting glucose dysregula-

tion on metabolomic profiles, leaving 1956 women in the

WHI (889 with repeated metabolomics assays) and 209 in

the NHSII.

Sleep assessment

Habitual sleep patterns were assessed from the baseline

10-item sleep questionnaire in the WHI16 and from the

Pittsburgh Sleep Quality Index (PSQI) in the NHSII sub-

study.17 To facilitate comparison, we derived a sleep-qual-

ity score (SQS) by harmonizing questions that have been

asked in both cohorts concerning four major areas related

to insomnia symptoms (Supplementary Table 1, available

as Supplementary data at IJE online), including (i) diffi-

culty in initiating sleep, (ii) difficulty in maintaining sleep

and early awakening, (iii) use of sleep medication and (iv)

subjective sleep quality. Each component was scored 0–3

according to frequency or severity of sleep problems. The

overall SQS ranged from 0 to 12, with higher scores sug-

gesting poorer habitual sleep quality. The internal consis-

tency for the SQS was acceptable (Cronbach’s

alpha¼ 0.65). In the WHI, the SQS had a correlation of

0.87 with the five-item WHI Insomnia Rating Scale, which

is based on a similar set of questions and has been vali-

dated in prior studies showing good reliability, internal

consistency and correlations with objective sleep measures

by actigraphy.18 In the NHSII, the SQS had a correlation

of 0.83 with the 19-item overall PSQI score, which has

been extensively validated across different populations.19

Further, among 200 NHSII participants who completed a

second sleep assessment 1 year after the baseline question-

naire, the SQS was highly reproducible [intra-class correla-

tion coefficient (ICC)¼ 0.68], suggesting that this score

captures long-term habitual sleep patterns.

Metabolomics analyses

Plasma samples from WHI and NHSII participants were ana-

lysed using three liquid chromatography–tandem mass spec-

trometry (LC–MS)-based metabolite profiling methods:

hydrophilic interaction liquid chromatography (HILIC) analy-

ses of water-soluble metabolites in the positive ionization

mode (HILIC-pos), C8 chromatography with positive ion

mode analyses of polar and non-polar plasma lipids (C8-pos)

and C18 chromatography with negative ion mode analyses of

free fatty acids and bile acids (C18-neg). Assays were per-

formed as described previously.20 Briefly, internal standard

peak areas were monitored for quality control and to ensure
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system performance throughout analyses. Pooled plasma refer-

ence samples were also inserted every 20 samples as an addi-

tional quality control. Raw LC–MS data were processed using

TraceFinder software (Thermo Fisher Scientific; Waltham,

MA) and Progenesis QI (Nonlinear Dynamics; Newcastle

upon Tyne, UK). After excluding 26 metabolites with a coeffi-

cient of variation (CV) � 20%, 347 shared known metabo-

lites were identified across the two cohorts (Supplementary

Table 2, available as Supplementary data at IJE online). In

our pilot testing of the metabolomics platform, 92% of

metabolites had acceptable assay reproducibility (CV< 20%)

and nearly 90% of metabolites were stable over 1–2 years

within women (Spearman correlation or ICC� 0.4).21

Statistical analysis

We calculated means (SD) for continuous variables and

percentages for categorical variables across quartiles of

SQS in WHI and NHSII separately. All metabolite values

were natural log-transformed to reduce right skewness;

within each cohort, the distribution for each log-

transformed metabolite was converted to a z-score with a

mean of 0 and a SD of 1. Multivariable linear-regression

models were used to assess the associations between habit-

ual sleep quality and individual plasma metabolites, with

the standardized z-score metabolite level as the outcome

and the continuous SQS as the predictor. We adjusted for

factors likely influencing metabolites including age (contin-

uous), race/ethnicity (White, non-White), BMI (continu-

ous) and current smoking status (yes, no) in the primary

model. To evaluate the robustness of the results, we addi-

tionally adjusted for known CHD risk factors and other

factors that may be consequences of poor habitual sleep

(Supplementary Figure 2, available as Supplementary data

at IJE online), including alcohol use, caffeine intake, die-

tary quality (measured by Health Eating Index), physical

activity (measured by MET-hours/week), sleep duration,

prevalent hypertension, depressive symptoms (measured by

short-form Center for Epidemiologic Studies—Depression

scale), current hormone therapy, aspirin use, statin use and

other lipid-lowering medications. We also repeated the

analysis restricting to controls or excluded women report-

ing sleep-medication use. To deal with multiple compari-

sons, a false-discovery rate (FDR) <0.05 was used as the

threshold to identify sleep-related metabolites.22

Metabolites identified in WHI were further replicated in

NHSII using the same FDR threshold. Effect estimates

from each cohort were pooled using random-effects meta-

analysis. Secondarily, similar analyses were conducted for

each component of the SQS.

For replicated plasma metabolites, we examined

whether baseline SQS was associated with changes in their

levels among 889 WHI women who had a second metabo-

lomic measurement at 1-year follow-up, as a way to assess

potential reverse causation due to the cross-sectional na-

ture of the primary analysis. In addition, we evaluated the

pairwise relationships among replicated metabolites using

the Spearman partial correlation coefficient (r). As metabo-

lites were expected to be correlated, we used LASSO (least

absolute shrinkage and selection operator) regression to se-

lect a parsimonious model that was most representative of

the metabolic correlates of habitual sleep quality.23

A sleep-related metabolite score (SMS) was created for

each participant using score ¼
Pn

k¼1 bk �metabolitek,

where bk is the corresponding regression coefficient for me-

tabolite k, metabolitek is the z-score for metabolite k and n

is the total number of LASSO-selected metabolites. The re-

lationship between SQS and SMS was visualized in a

histogram.

Next, we examined the associations between SMS and

several CHD risk biomarkers, including total cholesterol,

high-density lipoprotein (HDL) cholesterol, total triglycer-

ides, C-reactive protein (CRP) and fasting glucose. Log-

transformed biomarker concentrations were regressed on

SMS using the general linear model. With similar covariate

adjustment as described above, we calculated the adjusted

least-squares geometric biomarker means for each SMS

quintile and estimated the adjusted percentage difference

in biomarker levels for every SD increase in SMS.

Further, we evaluated the association between SMS and

CHD risk in the WHI. Unconditional logistic regression was

used, with the score evaluated both continuously and in quin-

tiles (based on controls). The first model adjusted for fre-

quency matching factors, including age, race/ethnicity,

hysterectomy status and enrolment window. The second

model accounted for additional CHD risk factors listed

above. The third model further adjusted for several known

CHD biomarkers. Secondarily, we evaluated the associations

between individual replicated metabolites and CHD risk.

Finally, to evaluate to what extent sleep-disrupted

metabolites (continuous SMS) may explain the association

between habitual sleep quality and CHD risk, we used the

approach nested in the counterfactual theory to decompose

the total effect into direct (i.e. independent of SMS) and in-

direct effects (i.e. mediated through SMS), allowing for an

exposure–mediator interaction and adjusted for demo-

graphic, lifestyle and health-related factors listed above.24

Habitual sleep quality was modelled as a binary exposure

(SQS� 6 vs <6). To further explore potential residual con-

founding, we performed a sensitivity analysis to estimate

the mediating effect of SMS with additional adjustment for

known CHD risk biomarkers. Analyses were conducted us-

ing SAS version 9.4 and R statistical packages version

3.2.5.
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Results

The mean age was 67 years (range: 50–79) in the WHI

sample and 61 years (range: 49–67) in the NHSII sample;

all women were post-menopausal. In both samples, com-

pared with women with good sleep quality (i.e. the bottom

quartile of SQS), those with poor sleep quality (i.e. the top

quartile of SQS) had higher BMI, shorter sleep duration,

higher depressive symptoms and were more likely to be a

habitual snorer, have hypertension, consume more caffeine

and use aspirin, statins, other lipid-lowering drugs or sleep

medications (Table 1).

After adjusting for age, race/ethnicity, BMI and smok-

ing, we identified 69 metabolites associated with continu-

ous SQS in WHI (FDR<0.05; nominal p< 0.01;

Figure 1). Of these, 59 were lipids-related species, includ-

ing 24 triglycerides (TAG), 9 diglycerides (DAG), 9 phos-

phatidylethanolamines (PE), 6 phosphatidylcholines (PC),

4 lysophosphatidylcholines (LPC), 3 lysophosphatidyletha-

nolamines (LPE) and 4 other lipid derivatives. All of these

lipid metabolites were higher with poorer sleep quality, ex-

cept for isovalerylcarnitine, which had an inverse associa-

tion. Most of these lipids (particularly TAG, DAG, PC,

LPC and LPE) were characterized by short- or medium-

chain fatty acids with a low number of double bonds. For

example, of the 24 TAGs, 18 had �52 acyl chain carbons

and 22 had 0–3 double bonds. Poor sleep quality was also

associated with 10 non-lipid metabolites, including lower

levels of tryptophan, betaine, serine, valine and biliverdin,

and higher levels of N6-acetyl-L-lysine, 4-acetamidobuta-

noic acid, N4-acetylcytidine, glycoursodeoxycholate and

glycochenodeoxycholate.

Of the 69 metabolites discovered in the WHI, 16 were

replicated in NHSII (FDR< 0.05; nominal p< 0.03;

Figure 1A); 15 were classed as lipids, including 6 TAGs

(45: 1, 45: 2, 48: 1, 48: 2, 48: 3, 50: 4), 4 PEs (36: 4, 38: 5,

38: 6, 40: 6), 3 PCs (30: 1, 38: 3, 40: 6), 1 DAG (32: 1)

and 1 LPC (14: 0) and 1 was a non-lipid metabolite

(N6-acetyl-L-lysine). Metabolite levels were consistently

elevated among women with poorer sleep quality. In meta-

analysis, the standardized z-score difference in metabolite

levels for every SD increase (SD: 3) in SQS ranged from

0.12 (nominal p¼ 0.0007) for TAG 50: 4 to 0.18 (nominal

p¼ 6.16E-6) for LPC 14: 0. Several sensitivity analyses

resulted in similar effect estimates for most associations,

including (i) adjusting for a number of potentially relevant

lifestyle factors (i.e. alcohol use, caffeine intake, dietary

quality, physical activity, sleep duration and depressive

symptoms) and medication use (i.e. aspirin, statin and

other lipid-lowering medications), (ii) restricting the analy-

sis to controls or (iii) excluding women reporting sleep-

medication use (Supplementary Table 3, available as

Supplementary data at IJE online). Notably, among 889

WHI women with a repeated 1-year post-baseline

metabolomic assessment, poor baseline sleep quality was

Table 1. Age-standardized characteristics of the study population by sleep-quality score

The Women’s Health Initiative (1994) The Nurses’ Health Study II (2013)

Quartiles of sleep-quality score

0 to 1 2 to 3 4 to 5 6 to 12 0 to 2 3 to 4 5 to 6 7 to 12

N 395 604 451 506 51 63 42 53

Age, years 67.2 (7.5) 67.4 (6.4) 67.5 (6.7) 66.2 (7.1) 60.8 (4.2) 60.4 (4.4) 61.2 (3.6) 60.2 (3.8)

Non-White, % 21 21 17 15 2 2 5 6

BMI, kg/m2 27.5 (5.9) 28.0 (5.8) 28.4 (5.7) 28.6 (5.9) 25.8 (7.0) 25.1 (4.6) 27.4 (6.4) 26.8 (5.4)

Current smokers, % 12 12 9 13 2 7 0 2

Physical activity, MET-hrs/week 11.9 (12.8) 12.0 (13.6) 10.4 (12.1) 10.0 (11.5) 26.7 (21.9) 32.6 (29.4) 33.6 (28.0) 21.1 (19.4)

Hypertension, % 37 40 42 48 28 32 31 38

Elevated depressive symptoms, % 3 9 16 29 0 9 25 47

Diet quality score 67.9 (10.6) 67.5 (11.0) 66.4 (11.7) 65.7 (10.8) 67.6 (10.7) 71.6 (12.8) 67.0 (14.1) 69.2 (13.2)

Caffeine intake, mg/day 174 (140) 166 (148) 161 (132) 178 (146) 179 (112) 165 (129) 166 (135) 200 (188)

Alcohol drinking, g/day 4.6 (10.2) 5.1 (11.3) 4.7 (9.6) 5.6 (13.9) 9.7 (14.5) 8.1 (10.6) 8.5 (14.1) 6.6 (8.2)

Current statin use, % 8 10 10 13 16 18 29 34

Other lipid-lowering drug use, % 1 1 2 3 0 4 0 9

Current aspirin use, % 23 24 26 31 26 33 29 41

Current hormone therapy, % 1 1 2 1 20 26 24 30

Sleep-medication use, % 1 8 29 67 9 33 47 84

Sleep duration, hours 7.1 (1.1) 7.0 (1.0) 6.7 (1.0) 6.2 (1.2) 7.1 (0.8) 7.1 (1.0) 6.9 (0.8) 6.3 (1.1)

Habitual snoring, % 33 37 41 51 20 17 33 41
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Figure 1. (A) Differences in metabolite z-score for every SD increase in the sleep-quality score. Metabolites presented in the figure were those discov-

ered in the WHI (FDR< 0.05; nominal p< 0.01) and replicated in the NHSII (FDR< 0.05; nominal p< 0.03). All estimates were adjusted for age, race/

ethnicity, BMI and current smoking status. (B) Differences in metabolite z-score for every SD increase in the sleep-quality score. Metabolites pre-

sented in the figure were those discovered in the WHI (FDR< 0.05; nominal p< 0.01) but not replicated in the NHSII (FDR> 0.05). All estimates were

adjusted for age, race/ethnicity, BMI and current smoking status. *Nominal p< 0.05/69¼ 0.0007 for pooled-effect estimates (i.e. after Bonferroni

correction).
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associated with an increase in 11 of 16 replicated metabo-

lites (Supplementary Table 4, available as Supplementary

data at IJE online). For the 53 metabolites that were not

replicated in the NHSII, 24 showed associations in the

same direction, resulting in strong estimates in meta-

analysis (nominal p< 0.05/69¼ 0.0007 by the more con-

servative Bonferroni correction for these metabolites;

Figure 1B). These metabolites included 7 TAGs, 6 DAGs, 4

PEs, 2 LPEs, 1 PC, 1 LPC, betaine, serine and biliverdin.

In the pooled sample, we further examined the 16 repli-

cated metabolites in relation to each SQS component

(Figure 2). Use of sleep medication and subjective sleep

quality were more strongly associated with the replicated

metabolites compared with sleep latency and sleep distur-

bances. Similar differences in the association patterns by

SQS components were also observed for the remaining 53

metabolites (Supplementary Figure 3, available as

Supplementary data at IJE online). Sleep-medication use

had the strongest positive associations with lipid metabo-

lites, whereas better reported sleep quality showed the

strongest inverse associations with several amino acids

(e.g. serine, tryptophan, valine).

In general, replicated lipid metabolites were positively

correlated, with stronger correlations observed for the

same lipid species with a similar number of carbon and

double bonds (Supplementary Figure 4, available as

Supplementary data at IJE online). Individual lipid metab-

olites were moderately correlated with conventional CHD

risk factors, particularly total triglycerides. N6-acetyl-L-

lysine was not correlated with lipid metabolites or CHD

risk factors except age. The LASSO algorithm selected a

parsimonious model of 9 metabolites (TAGs 45: 1 48:

1 50: 4, DAG 32: 1, PEs 36: 4 38: 5, PCs 30: 1 40: 6, N6-

acetyl-L-lysine) from the 16 replicated lipid metabolites.

A SMS comprising these nine metabolites was not only

strongly correlated with SQS (Supplementary Figure 5,

available as Supplementary data at IJE online), but also as-

sociated with several CHD risk biomarkers (Table 2). For

every SD increase in SMS, the adjusted percentage differ-

ence [95% confidence interval (CI)] in the biomarker levels

Figure 2. Differences in metabolite z-score for every 1-point increase in the sleep-quality score (SQS) component. Metabolites presented in the figure

include 16 metabolites replicated across WHI and NHSII. The colour indicates the magnitude of the beta coefficients for each SQS component from

linear-regression models adjusted for age, race/ethnicity, BMI and current smoking status.
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was 4.1 (3.2, 5.0) for total cholesterol, –7.3 (–8.3, –6.2)

for HDL cholesterol, 35.1 (32.4, 37.9) for total triglycer-

ides, 22.7 (17.2, 28.5) for CRP and 1.1 (0.1, 2.1) for fast-

ing glucose.

This SMS was positively associated with CHD risk

(Table 3). Compared with the bottom SMS quintile, the

multivariable-adjusted odds ratio (95% CI) for developing

CHD was 1.79 (1.31, 2.45) for the top quintile

(p-trend¼0.0003). When evaluating the score continu-

ously, every SD increase in SMS was associated with a

16% higher odds of developing CHD (95% CI: 1.05, 1.28)

after multivariable adjustment. Further adjustment for

CHD biomarkers only slightly attenuated the association.

When examining 16 replicated metabolites individually

Table 2. Associations of the sleep-associated plasma metabolite score with conventional coronary heart disease biomarkers

among post-menopausal women in the Women’s Health Initiative

Sleep-associated plasma metabolite scorea Percent difference (95% CI)

per SD increase in SQS

P-trend

Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5

Adjusted least-squares geometric means (95% CI) (mg/dL)

Total cholesterol

Model 1b 217 (214, 221) 224 (220, 228) 234 (230, 238) 238 (234, 242) 245 (241, 250) 3.9 (3.0, 4.7) 2.8E-20

Model 2c 217 (213, 221) 224 (220, 228) 234 (230, 238) 239 (234, 243) 247 (242, 251) 4.1 (3.2, 5.0) 6.5E-21

HDL cholesterol

Model 1 57 (56, 58) 52 (51, 53) 51 (50, 53) 48 (47, 49) 44 (43, 46) �8.4 (�9.4, �7.4) 1.9E-50

Model 2 56 (55, 57) 51 (50, 53) 51 (50, 52) 49 (48, 50) 45 (44, 46) �7.3 (�8.3, �6.2) 2.0E-38

Total triglycerides

Model 1 89 (85, 93) 111 (106, 116) 129 (124, 135) 162 (155, 169) 215 (206, 225) 35.8 (33.2, 38.6) 4.7E-155

Model 2 89 (86, 93) 111 (107, 116) 129 (123, 134) 161 (154, 168) 213 (204, 224) 35.1 (32.4, 37.9) 3.5E-142

C-reactive protein

Model 1 1.7 (1.5, 1.9) 2.3 (2.1, 2.6) 2.5 (2.3, 2.8) 3.2 (2.9, 3.6) 3.6 (3.2, 4.0) 31.3 (25.3, 37.7) 7.6E-29

Model 2 1.9 (1.7, 2.1) 2.4 (2.2, 2.6) 2.6 (2.3, 2.8) 3.0 (2.7, 3.3) 3.3 (3.0, 3.6) 22.7 (17.2, 28.5) 4.8E-18

Fasting glucose

Model 1 95 (93, 97) 95 (93, 97) 96 (94, 98) 98 (96, 100) 101 (99, 104) 2.0 (1.0, 3.0) 3.9E-5

Model 2 97 (95, 99) 95 (93, 97) 96 (94, 98) 97 (95, 99) 100 (98, 103) 1.1 (0.1, 2.1) 0.025

aThe metabolite score included nine sleep-related metabolites (TAGs 45: 1 48: 1 50: 4, DAG 32: 1, PEs 36: 4 38: 5, PCs 30: 1 40: 6, N6-acetyl-L-lysine).
bModel 1 adjusted for age.
cModel 2 adjusted for age, race/ethnicity, BMI, smoking, alcohol use, caffeine intake, dietary quality, physical activity, prevalent hypertension, depressive

symptoms, current hormone therapy, aspirin use, statin use and other lipid-lowering medications.

Table 3. Associations of the sleep-associated plasma metabolite score with risk of coronary heart disease among post-meno-

pausal women in the Women’s Health Initiative

Sleep-related metabolite score (SMS)a Per SD increase in SMS P-trend

Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5

Odds ratio (95% CI)

Cases/controls 109/207 162/212 186/209 220/210 231/210

Model 1b 1.00 (ref) 1.46 (1.08, 1.98) 1.70 (1.26, 2.29) 1.93 (1.44, 2.60) 2.08 (1.55, 2.80) 1.24 (1.13, 1.36) 4.411E-06

Model 2c 1.00 (ref) 1.48 (1.08, 2.03) 1.59 (1.17, 2.16) 1.67 (1.23, 2.28) 1.79 (1.31, 2.45) 1.16 (1.05, 1.28) 0.0003

BMI<25 kg/m2 1.00 (ref) 1.83 (1.11, 3.03) 1.67 (1.02, 2.75) 1.91 (1.13, 3.23) 1.83 (1.05, 3.17) 1.19 (1.01, 1.41) 0.04

BMI�25 kg/m2 1.00 (ref) 1.26 (0.83, 1.91) 1.48 (0.99, 2.22) 1.50 (1.00, 2.23) 1.67 (1.12, 2.50) 1.14 (1.01, 1.29) 0.03

Model 3d 1.00 (ref) 1.44 (0.97, 2.14) 1.65 (1.10, 2.46) 1.89 (1.23, 2.90) 1.48 (0.91, 2.41) 1.17 (0.99, 1.37) 0.06

aThe metabolite score included nine sleep-related metabolites (TAGs 45: 1 48: 1 50: 4, DAG 32: 1, PEs 36: 4 38: 5, PCs 30: 1 40: 6, N6-acetyl-L-lysine).
bModel 1: adjusted for matching factors, including age, race/ethnicity, hysterectomy status and enrolment window.
cModel 2: Model 1þ adjusted for BMI, smoking, alcohol use, caffeine intake, dietary quality, physical activity, prevalent hypertension, depressive symptoms,

current hormone therapy, aspirin use, statin use and other lipid-lowering medications.
dModel 3: Model 2þ adjusted for total cholesterol, HDL cholesterol, total triglycerides, fasting glucose and C-reactive protein. As total triglycerides and fasting

glucose were not measured on every participant, Model 3 was based on a subset of 1287 participants (629 cases and 658 controls).
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(Supplementary Table 5, available as Supplementary data

at IJE online), three metabolites (TAG 45: 1, DAG 32: 1,

N6-acetyl-L-lysine; all selected in SMS) showed a linear

positive association with CHD risk. However, these indi-

vidual associations were weaker compared with the associ-

ation with the composite SMS.

Compared with women with SQS< 6, those with

SQS� 6 (poorer sleep quality) had a 36% higher CHD risk

(95% CI: 1.02, 1.81; Table 4). About 20.2% of the associ-

ation was mediated by SMS (indirect effect OR: 1.06, 95%

CI: 0.97, 1.15). Although additional adjustment for known

CHD biomarkers attenuated the association between SQS

and CHD risk (OR: 1.18, 95% CI: 0.88, 1.58), SMS

explained a similar amount of the association (21.3%) in

the alternative model.

Discussion

In two independent samples of post-menopausal women,

we found systematic differences in plasma metabolite pro-

files with poor habitual sleep quality, particularly eleva-

tions in several lipid species (TAG, DAG, PE, PC, LPC)

and N6-acetyl-L-lysine, a product of histone acetylation. A

SMS based on nine representative metabolites (eight lipids

and N6-acetyl-L-lysine) was associated with CHD risk and

CHD-related risk biomarkers, and was estimated to par-

tially mediate the association between habitual sleep qual-

ity and CHD risk. These observational data provide

important mechanistic insights that poor sleep quality may

increase CHD risk through dysregulation of lipid

metabolism.

Several prior studies have evaluated the impact of acute

sleep deprivation on plasma metabolites under a con-

trolled, experimental setting. A cross-species investigation

in rat and human models revealed changes in the blood

metabolome after sleep restriction, mostly of lipid species

(18 of 28 in rats and 32 of 37 in humans).11 Similarly to

our findings, lipids with low carbon number and low

double-bond content across multiple sub-classes (e.g. TAG

46: 0, LPC 16: 1, PC 32: 1, PE 36: 1) were elevated after

sleep restriction in humans. Particularly, experimental

sleep restriction was related to decreases in two metabo-

lites (DAG 36: 3 and oxalic acid) and was quantitatively

replicated across species;11 these markers were not related

to habitual sleep patterns in our study. Another study of 12

healthy men reported elevations in 24 plasma metabolites

during total sleep deprivation (i.e. 24 hours of wakeful-

ness), 21 of which were related to lipids or fatty acids, in-

cluding acylcarnitines, glycerophospholipids and

sphingolipids.10 However, TAG, DAG, PE, PC and LPC

were not measured in that study. A similar study exclu-

sively focusing on lipidomics observed that more than

one-third of all measured lipid metabolites changed during

total sleep deprivation for 40 hours.12 Both TAGs and PCs

substantially increased with time awake, although the

TAGs observed in that study generally had longer poly-un-

saturated fatty acid chains compared with our findings. A

recent study in Chinese adults found that sleep timing, but

not sleep duration, was associated with multiple metabo-

lites involved in lipid and amino acid metabolism.25 In an-

other study that combined blood transcriptome and

metabolome, altered cholesterol and inflammatory path-

ways were observed in the context of both experimental

and habitual sleep restriction.26 Notably, our focus on a

clinically relevant sleep rating score (sleep satisfaction,

sleep latency, sleep awakenings and hypnotic use), as de-

scribed in a recent conceptual model of sleep health,27 dif-

fers from the sleep-duration and sleep-timing measures

studied in prior metabolomic studies. Further, the associa-

tions persisted after adjusting for sleep duration, possibly

reflecting the physiological impact of disrupted sleep on

metabolism—a mechanism supported by several studies

reporting stronger associations of cardiometabolic out-

comes with short sleep occurring with symptoms of

sleep disruption compared with short sleep without such

symptoms.28,29 We also showed that sleep-medication use

Table 4. Association of habitual sleep quality with risk of coronary heart disease overall (total), mediated by SMS (indirect) and

independent of SMS (direct)a

Total effect Direct effect Indirect effect % mediated

OR (95% CI) OR (95% CI) OR (95% CI)

Model 1b 1.36 (1.02, 1.81) 1.28 (0.95, 1.73) 1.06 (0.97, 1.15) 20.2

Model 2c 1.18 (0.88, 1.58) 1.14 (0.85, 1.52) 1.03 (0.95, 1.11) 21.3

aThe sleep-related metabolite score (SMS) included nine sleep-related metabolites (TAGs 45: 1 48: 1 50: 4, DAG 32: 1, PEs 36: 4 38: 5, PCs 30: 1 40: 6, N6-ace-

tyl-L-lysine). Habitual sleep quality was evaluated as a binary variable (sleep-quality score �6 vs <6).
bModel 1: adjusted for matching factors (age, race/ethnicity, hysterectomy status and enrolment window), BMI, smoking, dietary quality, physical activity,

prevalent hypertension, current hormone therapy, aspirin use, statin use and other lipid-lowering medications.
cModel 2: Model 1þ adjusted for total cholesterol, HDL cholesterol, total triglycerides, fasting glucose and C-reactive protein. As total triglycerides and fasting

glucose were not measured on every participant, Model 3 were based on a subset of 1287 participants (629 cases and 658 controls).
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and sleep satisfaction were more strongly associated with

lipid metabolites than other sleep-quality components.

This may be due to more severe, multifaceted sleep prob-

lems captured by these two components. Although exclu-

sion of women with sleep-medication use did not

appreciably alter our results, whether certain sleep medica-

tions directly influence lipid profiles requires further inves-

tigation. Collectively, our findings, coupled with these

experimental studies, strongly support the paradigm that

both acute and chronic disturbances in sleep contribute to

systemic dysregulation of lipid metabolism.

The lipid signature identified for poor habitual sleep

quality in this study, namely lipids of lower carbon number

and double-bond content, has previously been demon-

strated to strongly predict risk of cardiovascular disease

(CVD), diabetes and insulin resistance. In the Bruneck

Study,30 such lipids (e.g. TAG with 50–54 carbons and 1–3

double bonds) were positively associated with CVD risk.

The top three lipid species most predictive of CVD risk

were TAG 54: 2, PE 36: 5 and CE 16: 1. In the

Framingham Heart Study,31 lipids characterized by lower

carbon number and double-bond content, including TAG,

PC, LPE and LPC, were consistently associated with diabe-

tes risk. Consistently with these studies, our results show

that a SMS based on four lipid species (TAG, DAG, PE,

PC) most reflective of poor habitual sleep quality was asso-

ciated with CHD risk and established biomarkers of cardi-

ometabolic risk. The role of the sleep-related metabolomic

alterations in CHD development was further implicated by

the results of the mediation analysis, in which SMS

explained about 20% of the association between SQS and

CHD risk. Taken together, these data suggest that altera-

tions in lipid profiles represent a pathogenic pathway

through which habitual sleep quality may influence devel-

opment of cardiometabolic disease, including CHD.

N6-acetyl-L-lysine, an amino acid derivative that plays

an important role in post-translational modification and

epigenetic regulation,32–34 was the only non-lipid metabo-

lite associated with SQS in both studies. Whereas it is

known that acetylation of lysine residues on the N-termi-

nal of histone via histone acetyltransferases (HATs)

reduces the binding affinity of histone to DNA and could

activate/increase gene transcription and expression,32–34

whether circulating N6-acetyl-L-lysine is directly indicative

of histone acetylation levels or gene transcriptional activity

is less clear. Interestingly, the protein CLOCK, a key player

in circadian physiology, possesses HAT activity with spe-

cific histone acetylation essential for circadian regula-

tion.35 Further, histone acetylation/deacetylation exhibits

circadian rhythmicity in mouse liver and controls hepatic

lipid homeostasis; persistent histone acetylation up-

regulates genes involved in lipid metabolism, leading to

�10-fold increase in liver triglyceride and a fatty liver phe-

notype.36 Given the emerging evidence for the epigenetic

influence by sleep37 and the role of epigenetic mechanisms

in CVD development,38 further research is needed to deter-

mine whether histone acetylation may be a novel pathway

linking sleep, lipid dysregulation and CVD risk.

Our primary analysis in WHI also identified other non-

lipid metabolites associated with poor sleep quality, in-

cluding lower levels of betaine, serine and biliverdin, which

have previously been implicated in the pathogenesis of car-

diometabolic disease. Betaine and serine, both involved in

choline metabolism, are inversely associated with insulin

resistance and inflammation.39–41 In a randomized–con-

trolled trial evaluating lifestyle vs metformin intervention

in diabetes prevention,42 baseline betaine and serine were

significant predictors for diabetes risk. Particularly, life-

style intervention, which was most effective in preventing

diabetes, resulted in increased betaine levels and this in-

crease was also associated with lower incidence of diabe-

tes. Biliverdin and its reduction product, bilirubin, are bile

pigments with potent antioxidant properties that inhibit

lipid oxidation and atherosclerotic development.43,44 A

number of studies reported an inverse association between

bilirubin levels and risk of hypertension, diabetes and

CHD.45–47 These suggestive associations should be ex-

plored further in other independent studies and, if con-

firmed, could support the hypothesis that elevated

oxidative stress and inflammation are important mecha-

nisms through which sleep influences cardiometabolic

health.

The limitations of our study should be acknowledged.

First, as our study of habitual sleep and metabolites was

cross-sectional, we cannot establish the directionality of

the associations. Although the possibility that metabolic

dysregulation reciprocally precipitates sleep disturbances

cannot be excluded, we showed that poor baseline sleep

quality was associated with unfavourable changes of most

replicated metabolites, suggesting that the observed associ-

ations reflect the systemic effects of sleep on metabolism.

This argument is also supported by the consistency of our

findings with prior experimental studies. Similarly, given

emerging evidence suggesting bidirectional relationships of

sleep with lifestyle factors, mood and co-morbidities,48–50

our assumptions regarding the temporal relationships

of exposure, mediator and covariates (Supplementary

Figure 2, available as Supplementary data at IJE online)

may not be accurately reflected by the cross-sectional data.

Second, our assessment of habitual sleep quality was based

on self-reported symptoms using two slightly different

scales/questions, which may introduce differential

measurement errors influenced by certain participant

characteristics (e.g. depression). We did not have objective
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information on sleep architecture or sleep apnoea to ex-

plore the potential influence of these factors on our find-

ings.51–53 However, self-reported symptoms are routinely

assessed in clinical diagnostic interviews for sleep disorders

and reflect the subjective experience of sleep, an essential

aspect of sleep disorders. In future studies, elucidating the

associations of objective measures of sleep quality with

plasma metabolites will provide complementary evidence

to our results. Third, some notable differences between

the discovery and replication samples (e.g. age, socio-

demographics, medication use, etc.) may undermine our

ability to identify certain metabolites influenced by these

factors. The small size of the NHSII substudy limits the ca-

pacity for replication. Nevertheless, the consistent signals

we observed across the two divergent samples highlight

some common metabolic correlates of habitual sleep qual-

ity. Our composite SMS that integrated multiple risk

metabolites yielded stronger associations than individual

metabolites, suggesting that this approach may capture co-

altered metabolic dysregulation in disease development.

In addition, since our study focused on post-menopausal

women, whether differences by sex or menopausal status

exist requires further investigation. Finally, it is notewor-

thy that our metabolomics did not include carbohydrates

and the technical impact of long-term blood storage in

WHI on metabolomic profiles or specific metabolite cate-

gories should be identified in further studies.

Conclusions

Across two samples of post-menopausal women, poor ha-

bitual sleep quality is associated with unfavourable metab-

olomic profiles that may lead to higher risk of CHD.

Potential epigenetic changes associated with sleep, particu-

larly histone acetylation and its relevance to CHD develop-

ment, warrant additional studies. Further investigations

are also needed to determine whether interventions to im-

prove sleep can improve metabolic profiles and modify

pathways that reduce cardiometabolic disease risk.

Supplementary data

Supplementary data are available at IJE online.

Acknowledgements
We acknowledge the contributions of the WHI staff and participants

for enabling this research. Metabolomic analyses in the WHI were

funded by the National Heart, Lung, and Blood Institute, National

Institutes of Health, US Department of Health and Human Services

through contract HHSN268201300008C. The WHI programme is

funded by the National Heart, Lung, and Blood Institute, National

Institutes of Health, US Department of Health and Human Services

through contracts HHSN268201600018C, HHSN268201600

001C, HHSN268201600002C, HHSN268201600003C and HHSN

268201600004C. We thank the participants and the staff of the

Nurses’ Health Study II for their valuable contributions. This work

was supported by the National Institute of Health (R01 CA163451,

U54 CA155626, UM1 CA176726). T.H. is a recipient of the

American Heart Association post-doctoral fellowship (Founders

Affiliate) award (16POST27480007). S.R. is supported by NHLBI

R35HL135818. T.H. and K.M.R. assume full responsibility for

analyses and interpretation of these data.

Conflict of interest: None declared.

References

1. Gordon T, Kannel WB, Hjortland MC, McNamara PM.

Menopause and coronary heart disease. The Framingham Study.

Ann Intern Med 1978;89:157–61.

2. Vitale C, Mendelsohn ME, Rosano GM. Gender differences in

the cardiovascular effect of sex hormones. Nat Rev Cardiol

2009;6:532–42.

3. Regensteiner JG, Golden S, Huebschmann AG. Sex differences

in the cardiovascular consequences of diabetes mellitus: a scien-

tific statement from the American Heart Association.

Circulation 2015;132:2424–47.

4. Peters SA, Huxley RR, Woodward M. Diabetes as a risk factor

for stroke in women compared with men: a systematic review

and meta-analysis of 64 cohorts, including 775,385 individuals

and 12,539 strokes. Lancet 2014;383:1973–80.

5. Zhang B, Wing YK. Sex differences in insomnia: a meta-analysis.

Sleep 2006;29:85–93.

6. Sofi F, Cesari F, Casini A, Macchi C, Abbate R, Gensini GF.

Insomnia and risk of cardiovascular disease: a meta-analysis.

Eur J Prev Cardiol 2014;21:57–64.

7. Li M, Zhang XW, Hou WS, Tang ZY. Insomnia and risk of car-

diovascular disease: a meta-analysis of cohort studies. Int J

Cardiol 2014;176:1044–47.

8. Suarez EC. Self-reported symptoms of sleep disturbance and in-

flammation, coagulation, insulin resistance and psychosocial dis-

tress: evidence for gender disparity. Brain Behav Immun 2008;

22:960–68.

9. Miller MA, Kandala NB, Kivimaki M et al. Gender differences

in the cross-sectional relationships between sleep duration and

markers of inflammation: Whitehall II study. Sleep 2009;32:

857–64.

10. Davies SK, Ang JE, Revell VL et al. Effect of sleep deprivation on

the human metabolome. Proc Natl Acad Sci USA 2014;111:

10761–66.

11. Weljie AM, Meerlo P, Goel N et al. Oxalic acid and diacylgly-

cerol 36: 3 are cross-species markers of sleep debt. Proc Natl

Acad Sci USA 2015;112:2569–74.

12. Chua EC, Shui G, Cazenave-Gassiot A, Wenk MR, Gooley JJ.

Changes in plasma lipids during exposure to total sleep depriva-

tion. Sleep 2015;38:1683–91.

13. Anderson GL, Manson J, Wallace R et al. Implementation of the

Women’s Health Initiative study design. Ann Epidemiol 2003;

13:S5–17.

14. Paynter NP, Balasubramanian R, Giulianini F et al. Metabolic

predictors of incident coronary heart disease in women.

Circulation 2018;137:841–53.

1272 International Journal of Epidemiology, 2019, Vol. 48, No. 4

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy234#supplementary-data


15. Huang T, Poole EM, Vetter C et al. Habitual sleep quality and

diurnal rhythms of salivary cortisol and dehydroepiandrosterone

in postmenopausal women. Psychoneuroendocrinology 2017;

84:172–80.

16. Luo J, Sands M, Wactawski-Wende J, Song Y, Margolis KL.

Sleep disturbance and incidence of thyroid cancer in postmeno-

pausal women the Women’s Health Initiative. Am J Epidemiol

2013;177:42–49.

17. Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ.

The Pittsburgh Sleep Quality Index: a new instrument for psychi-

atric practice and research. Psychiatry Res 1989;28:193–213.

18. Levine DW, Kripke DF, Kaplan RM et al. Reliability and validity

of the Women’s Health Initiative insomnia rating scale. Psychol

Assess 2003;15:137–48.

19. Mollayeva T, Thurairajah P, Burton K, Mollayeva S, Shapiro

CM, Colantonio A. The Pittsburgh sleep quality index as a

screening tool for sleep dysfunction in clinical and non-clinical

samples: a systematic review and meta-analysis. Sleep Med Rev

2016;25:52–73.

20. Mascanfroni ID, Takenaka MC, Yeste A et al. Metabolic control

of type 1 regulatory T cell differentiation by AHR and HIF1-al-

pha. Nat Med 2015;21:638–46.

21. Townsend MK, Clish CB, Kraft P et al. Reproducibility of

metabolomic profiles among men and women in 2 large cohort

studies. Clin Chem 2013;59:1657–67.

22. Storey JD. A direct approach to false discovery rates. J R Stat Soc

B Stat Methodol 2002;64:479–98.

23. Efron B, Hastie T, Johnstone I, Tibshirani R. Least angle regres-

sion. Ann Stat 2004;32:407–99.

24. Valeri L, Vanderweele TJ. Mediation analysis allowing for

exposure-mediator interactions and causal interpretation: theo-

retical assumptions and implementation with SAS and SPSS mac-

ros. Psychol Methods 2013;18:137–50.

25. Xiao Q, Derkach A, Moore SC et al. Habitual sleep and human

plasma metabolomics. Metabolomics 2017;13:63.

26. Aho V, Ollila HM, Kronholm E et al. Prolonged sleep restriction

induces changes in pathways involved in cholesterol metabolism

and inflammatory responses. Sci Rep 2016;6:24828.

27. Buysse DJ. Sleep health: can we define it? Does it matter? Sleep

2014;37:9–17.

28. Bertisch SM, Pollock BD, Mittleman MA et al. Insomnia with

objective short sleep duration and risk of incident cardiovascular

disease and all-cause mortality: Sleep Heart Health Study. Sleep

2018;41. doi: 10.1093/sleep/zsy047.

29. Vgontzas AN, Liao D, Pejovic S, Calhoun S, Karataraki M,

Bixler EO. Insomnia with objective short sleep duration is associ-

ated with type 2 diabetes: a population-based study. Diabetes

Care 2009;32:1980–85.

30. Stegemann C, Pechlaner R, Willeit P et al. Lipidomics profiling

and risk of cardiovascular disease in the prospective population-

based Bruneck study. Circulation 2014;129:1821–31.

31. Rhee EP, Cheng S, Larson MG et al. Lipid profiling identifies a

triacylglycerol signature of insulin resistance and improves dia-

betes prediction in humans. J Clin Invest 2011;121:1402–11.

32. Grunstein M. Histone acetylation in chromatin structure and

transcription. Nature 1997;389:349–52.

33. Rice JC, Allis CD. Histone methylation versus histone acetyla-

tion: new insights into epigenetic regulation. Curr Opin Cell Biol

2001;13:263–73.

34. Hebbes TR, Thorne AW, Crane-Robinson C. A direct link be-

tween core histone acetylation and transcriptionally active chro-

matin. EMBO J 1988;7:1395–402.

35. Doi M, Hirayama J, Sassone-Corsi P. Circadian

regulator CLOCK is a histone acetyltransferase. Cell 2006;125:

497–508.

36. Feng D, Liu T, Sun Z et al. A circadian rhythm orchestrated by

histone deacetylase 3 controls hepatic lipid metabolism. Science

2011;331:1315–19.

37. Nilsson EK, Bostrom AE, Mwinyi J, Schioth HB. Epigenomics of

total acute sleep deprivation in relation to genome-wide DNA

methylation profiles and RNA expression. OMICS 2016;20:

334–42.

38. Ordovás JM, Smith CE. Epigenetics and cardiovascular disease.

Nat Rev Cardiol 2010;7:510–19.

39. Detopoulou P, Panagiotakos DB, Antonopoulou S, Pitsavos C,

Stefanadis C. Dietary choline and betaine intakes in relation to

concentrations of inflammatory markers in healthy adults: the

ATTICA study. Am J Clin Nutr 2008;87:424–30.

40. Konstantinova SV, Tell GS, Vollset SE, Nygård O, Bleie Ø,
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