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SOCIAL SCIENCES

Cultural selection shapes network structure

Marco Smolla* and Erol Akcay

Cultural evolution relies on the social transmission of cultural traits along a population’s social network. Re-
search indicates that network structure affects information spread and thus the capacity for cumulative culture.
However, how network structure itself is driven by population-culture co-evolution remains largely unclear. We
use a simple model to investigate how populations negotiate the trade-off between acquiring new skills and
getting better at existing skills and how this trade-off shapes social networks. We find unexpected eco-evolutionary
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feedbacks from culture onto social networks and vice versa. We show that selecting for skill generalists results in
sparse networks with diverse skill sets, whereas selecting for skill specialists results in dense networks and a pop-
ulation that specializes on the same few skills on which everyone is an expert. Our model advances our understand-
ing of the complex feedbacks in cultural evolution and demonstrates how individual-level behavior can lead to the

emergence of population-level structure.

INTRODUCTION

Our species’ success in spreading through all biomes of the planet and
transforming environments is a direct result of our ability to accumu-
late cultural traits, i.e., socially learned skills, technologies, beliefs, and
ideas that build on existing traits. Transmission and accumulation
of culture is an inherently social process. The amount and nature of
culture that populations accumulate are expected to depend on the
structure of social groups in which it evolves. The most studied as-
pect of population structure is its size. Theoretical and empirical studies
suggest that the size of a population may affect how much culture it
can accumulate, but the exact nature of the relationship remains
strongly debated. Some models suggest that cumulative culture will in-
crease with population size (1, 2), while others find that the relationship
might be mediated through population density (3) or be contingent on
environmental conditions (4). Previous laboratory experiments report
that larger groups maintained higher cultural complexity than smaller
groups (5), and when faced with a complex task, groups accumulated
beneficial solutions more readily than single individuals (6, 7). How-
ever, there is also evidence for the opposite effect (8), and historical
studies do not always detect a consistent relationship between mea-
sures of population size and cultural complexity (4, 9). Parts of these
contradictory findings might be explained through covariation in
other aspects of social structure such as connectivity and migration
between different populations (10). However, there is little theoretical
work on how aspects of social structure other than population size and
migration rates might affect cumulative culture.

Cultural information is transmitted where individuals interact with
each other. Hence, this information flows along the edges of social
networks, which are, in general, nonrandom and mediated by diverse
factors and processes such as spatial heterogeneity (11), homophily
(e.g., behavior matching) (12), or social inheritance (13). All of these
lead to nonrandom opportunities for information to spread. There-
fore, we expect the processes that structure social networks to also
affect how culture is transmitted and accumulated in populations and
thus the adaptive properties of cumulative culture. Here, we focus on
the interplay between the fine-scale social structure of a population
and its cumulative culture.

The connectedness of a population can be characterized by the
average degree centrality of individuals (i.e., number of individuals

Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
*Corresponding author. Email: smolla@sas.upenn.edu

Smolla and Akgay, Sci. Adv. 2019;5:eaaw0609 14 August 2019

they are connected to) and the average path length between pairs of
individuals (i.e., the smallest number of links one has to cross to go
from one individual to the other). In well-connected populations, in-
dividuals share links with many other individuals (high degree cen-
trality) and are connected to all individuals by a small number of
links (short path length). Here, information can spread faster and
farther (3, 14, 15), a prediction that is borne out in humans (7, 16) and
nonhuman species (17-20). These networks might be optimal
where group activity requires coordination, e.g., in regards to social
norms (21) and rituals (22). Faster information transmission, how-
ever, is not universally adaptive for groups. Fast convergence on a
single solution can short-circuit a thorough exploration of the solution
space and cause a group to settle for suboptimal solutions (23, 24).
On the other hand, networks with less efficient information diffusion
can increase the chance to collectively discover a global maximum
(23, 25), innovate a wider variety of solutions to a given problem
(23, 26), or retain more information in a collective memory-retrieval
situation (27). The desirable network structure (from the group’s per-
spective) thus depends on the collective problem to be solved or the
required diversity of solutions—a trade-off between cultural conver-
gence and cultural diversity, swift coordination versus broad explora-
tion (24, 26, 28).

The above discussion implies that populations facing ecological
pressures that require different types of cultural adaptations might
be expected to evolve different network structures. In particular, if
the processes that affect how and with whom individuals form con-
nections are heritable (genetically or culturally), then network struc-
ture can evolve under natural or cultural selection. The evolving
network structure, in turn, will determine the nature of cumulative
culture in the population, which can further affect the future evolution
of network structure. While the effect of network structure on the dy-
namics of cultural traits is well studied, the reverse effect of cultural
dynamics on network structure remains unexplored and, to the best
of our knowledge, there is no prior work on the on-going feedback
between the two. We show here that the continued “eco-evolutionary”
feedback between cumulative culture and network structure can have
unexpected consequences.

Our approach is based on a simple, yet generally applicable and
realistic model of dynamic social networks (13), where individuals
make connections either by inheriting them from their parents (or
other role models) or randomly. The probabilities of making these two
types of connections determine the average degree and whether the
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network is well-connected and has short path lengths or is highly
clustered with long path lengths. Previous work has shown that co-
evolution of these linking traits with social behaviors can lead to
unexpected dynamics such as the collapse of cooperation due to
its effect on network evolution (29). Here, we model the co-evolution
of network structure with culture in a population where individuals
socially acquire traits to cope with their environment. As social
learning only occurs between connected individuals, an individual’s
neighborhood affects what it can learn and so how it will cope with
the environment, intrinsically linking network and cultural dynam-
ics. Given that network topology affects information flow, and thus
what individuals can learn, we expect that different network topolo-
gies emerge in response to different requirements on cultural knowl-
edge. To test this, we compare two different worlds: A generalist world
that favors individuals with a broad selection of skills [e.g., societies
where each individual contributes in similar ways to the subsistence
of the group (22)], and a specialist world that favors individuals with
high proficiency in at least one skill [e.g., societies with high division of
labor that allows specialization, which requires a lot of time engaging
with only one trait (30-32)].

RESULTS

Model overview

We model a death-birth process on a binary, undirected network
where, at each time step, a random individual is selected to die and
another individual is selected to reproduce to replace them. In the first
model, we use a static network where the newborn acquires the posi-
tion of the dead individual in the network. Subsequently, we model
dynamic networks using the social inheritance model by Ilany and
Akgay (13). In this model, the newborn individual is integrated into
the existing social network by forming a connection to its parent
with certainty, to each individual that is connected to its parent with
probability p,, and to each individual that is not connected to its par-
ent with probability p,. Last, we add selection on p, and p, based on
individually and socially acquired traits.

In all iterations of the model, the newborn acquires traits either
through individual learning (trial-and-error) or through social learn-
ing (copying) from those individuals it shares a connection with. In-
dividual learning happens with a probability relative to how many
traits exist in the world (Eq. 1). Social learning happens with a prob-
ability relative to the squared frequency of the trait occurrence in the
neighborhood (Eq. 2). The rationale for the quadratic function is that
a trait needs to be sufficiently common in the neighborhood to be
observed and/or sufficiently often performed so that the individual re-
ceives enough exposure and opportunities to learn the trait. The qua-
dratic function, thus, lowers chances to acquire traits that are (locally)
rare (see the Supplementary Materials for a version with linear scaling
that yields qualitatively similar results). Thus, our learning model is
akin to complex contagion dynamics (14). Successful learning of a trait
adds the trait to the individual’s repertoire. Successful repeated learn-
ing of the same trait increases the individual’s proficiency for the trait.
We add selection that is based on either the total trait repertoire size
(generalist environment) or the highest trait proficiency achieved in a
single trait (specialist environment). We also considered an alternative
learning model where individuals make single observations at each pe-
riod and have a finite memory for their more recent observations,
which gives qualitatively the same results (see Materials and Methods
and section S2).

Smolla and Akgay, Sci. Adv. 2019;5:eaaw0609 14 August 2019

Details of the model, including simulation conditions and param-
eters, are given in Materials and Methods. Below, we first consider
fixed simple graphs and complex dynamic graphs where linking prob-
abilities p, and p, are fixed and the same for every individual. Then,
we let linking probabilities p,, and p, be heritable and vary between in-
dividuals so that they evolve in response to their fitness consequences.

Network effects on cultural diversity

When we let culture evolve but keep the underlying social network
fixed, we find that average degree affects repertoire size and trait pro-
ficiency at the individual level (Fig. 1, Band C) and trait diversity at the
population level (Fig. 1, D to F). Individuals in denser networks have
higher trait proficiency and smaller repertoires, whereas those in more
sparsely connected groups have larger trait repertoires but lower pro-
ficiency. Repertoire size and trait proficiency are negatively related be-
cause of the trade-off between spending learning turns on acquiring or
improving traits. In addition, because of finite population sampling
effects, observing traits from more individuals is more likely to rein-
force an existing skew in the trait distribution among neighbors. Con-
sider a population where each individual has 1 of 100 possible traits.
The probability that two random neighbors have the same trait is 0.01.
For six neighbors, the probability that at least one trait appears
multiple times grows to 0.14 and to 0.87 for 20 neighbors. As a result,
we observe that dense networks have more skewed trait distributions
and lower trait diversity than populations with sparse networks. In
more connected groups, proficiency is higher because the lower trait
diversity increases the chance to engage repeatedly with the same trait,
which increases proficiency (see Eq. 2). In dense networks, each learn-
ing phase acts as a filtering process where rare traits will be learned less
frequently, which further skews the distribution of traits on a popula-
tion level leading to the loss of traits (Fig. 1F) and subsequently a steady
accumulation of trait proficiency (Fig. 1B). In contrast, trait distribution
is less skewed in sparsely connected networks. Individuals with low-
degree centrality are more likely to have neighbors with a variety of
traits, which lets the observer build up a larger repertoire. However,
because individuals rarely engage repeatedly with the same trait, pro-
ficiency remains low. At the population level, this keeps average trait
diversity high but prohibits proficiency increase.

While average repertoire size plateaus very quickly, average highest
proficiency increases more slowly over the course of many generations
(Fig. 1C). Because an observer’s trait proficiency cannot exceed the pro-
ficiency of the observed individuals through social learning alone, and
given that innovations are rare, only populations with low trait diversity
accumulate trait proficiency over time. Therefore, proficiency is higher
in more connected populations.

Dense networks have lower trait diversity and higher
proficiency than sparse networks

We observe the same patterns when we apply the cultural dynamics to
complex networks with dynamic rewiring but with fixed probabilities of
linking p,, and p, (Fig. 2). For high p,, and p, (high degree and clustering,
short average path length; see section S3), individuals have high profi-
ciency and small repertoire sizes, whereas for small p, and p, (low de-
gree and clustering, long average path length), individuals have larger
repertoires but lower proficiency (Fig. 2C).

Repertoire size and trait proficiency are more affected by the rate
of random linking (p,) as compared to the rate of inheriting connec-
tions (p,) because average path length is most strongly affected by p,.
Longer average path length creates isolation by distance, which
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Fig. 1. Increased connectivity leads to smaller trait diversity but higher trait proficiency. (A) Depending on the neighborhood size, n; a focal individual (red), is
connected to 2, 6, or 20 neighbors (blue). (B and C) Average repertoire size and average highest trait proficiency in populations with varying n;. Populations with larger
n; (higher degree and shorter path length) have, on average, smaller repertoires and higher trait proficiency. (D to F) Example record of average proficiency of all traits
in populations with varying n;. Highly connected populations (F) collectively have fewer traits but are more proficient at them than sparsely connected ones (D).

prevents the spread of a single set of traits throughout the entire
network and so avoids population-wide coordination on a few traits.
As with fixed networks, we observe strong differences in trait diver-
sity between tightly and sparsely connected networks, with a few very
common traits in highly connected populations contrasting a wide-
spread and distributed knowledge of traits in sparsely connected popu-
lations (Fig. 2, D and E).

Specialists form efficient networks, whereas generalists
form inefficient networks

Next, we let linking probabilities p, and p, evolve in response to selec-
tion for specialist (favoring high trait proficiency) or generalist (favoring
large repertoire size) knowledge. When selection favors specialist
knowledge, populations evolve to form dense networks with high aver-
age degree and short average path length (Fig. 3A). Conversely, selecting
for generalist knowledge yields sparse networks with low-average de-
gree and long average path length.

While, in environments favoring specialization, both linking prob-
abilities appear to be under relatively weak selection, we find that there is
strong selection against random connections when generalists are
favored (Fig. 3B). This may at first appear counterintuitive, as random
connections in a population with high trait diversity would allow in-
dividuals to be exposed to a completely different set of traits and, as a
consequence, learn more different traits. However, we assume that
successful social learning requires sufficient exposure to a trait (Eq. 2).
Therefore, generalists have to form neighborhoods that trade off trait
homogeneity to increase trait exposure with trait diversity to increase
chances to observe different traits.

Selecting for generalists or specialists has a marked effect on the
culture in each environment (Fig. 3C). Selecting for generalists results
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in populations with larger trait repertoire but low proficiency, and se-
lecting for specialists results in populations with fewer traits but higher
proficiency. Although there is a four- to fivefold gap in proficiency
between specialists and generalists, the difference in average individual
repertoire size is relatively small, less than two traits on average. This
reflects a reduction in overall learning in the high-diversity environment
of generalists where they do not get sufficient exposure to any single
trait to attain high proficiency. In return, generalist populations as a
whole carry many more traits at appreciable frequency (see inset in
Fig. 3C), whereas specialists all learn the same few traits, resulting in
a highly skewed trait distribution. This skewed trait distribution pro-
hibits specialists from increasing their repertoire size, as all their
neighbors converge to a small set of traits, whereas the broad trait
distribution prohibits generalists from increasing their proficiency.

Connectivity affects whether populations are generalists

or specialists

The previous results show that generalists have a lower degree centrality
than specialists. However, when degree centrality is externally dictated
(high, intermediate, or low), individuals have to choose how many of
their connections should be random links and how many should be
socially inherited.

When degree centrality is small (k = 2), specialists are more likely
to inherit connections than is the case for generalists (Fig. 4A). This
is because specialists require a neighborhood with low trait diversity,
and given that they always connect to their parents, they are more likely
to find similar traits among their parent’s neighbors. For generalists, the
opposite is the case. They are less likely to inherit connections and so
increase the likelihood of learning from individuals with different trait
sets. Therefore, average path length is longer in generalists than in
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Fig. 2. Effect of network topology onto cultural complexity. (A and C) Sparsely connected populations (low p, and p,, low degree) have the largest individual
repertoires, whereas well-connected populations (high p,, and p,, high degree) show the highest trait proficiency (B and C). (D) As average degree increases, the total
number of traits known to the population decreases. (E) Moreover, the trait distribution for highly connected populations is skewed such that a few traits are known to
almost the entire population, whereas in sparsely connected populations, traits are more evenly distributed such that almost all available traits are known to different
subsets of the population [compare bottom left and top right corner in (A) and (B)]. All values represent population averages.

specialists (Fig. 4B). In both cases, we find populations that are made
of small clusters. However, generalists have a wider variety of traits
present in those clusters than is the case for specialists (fig. S4, A and
D), leading to slightly higher proficiency for specialists (Fig. 4C and
fig. S5, A and D).

When degree centrality is intermediate (k = 6), we observe the
reversed pattern. Here, generalists are more likely to inherit connec-
tions than is the case for specialists. At this level of connectedness,
specialists benefit from trait convergence, which allows an increased
trait proficiency (Fig. 4C). Generalists avoid trait convergence in their
neighborhoods by increasing p, and formation of loosely connected
clusters, which increases average path length (Fig. 4B).

At an even higher degree centrality (k = 10), generalists cannot
avoid some convergence of traits (fig. S4C), which leads to an overall
increase in proficiency (Fig. 4C).

This shows that, depending on the average degree, a population will
mostly be made up of either generalists (k = 2) or specialists (k = 10),
while for intermediate degrees (k = 6), both states are possible and are
mediated by average path length and clustering (Fig. 4C).

When selection regimes change, specialists take longer to
adapt than generalists

Switching between generalist and specialist environments reveals that
the transition from sparsely connected populations with a broad
distribution of traits occurs more readily than the transition from dense-
ly connected populations with highly specialized knowledge (Fig. 5).
Subsequent to the switch to the specialist environment, average con-
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nectivity increases as p,, and p, rise. This is followed by a decrease in
average repertoire size and an increase in proficiency. Again, p, starts
to drift as populations specialize on a few traits (Fig. 5B), leading to in-
creasingly dense networks. When the environment changes again and
favors generalists, not all populations return to a less connected state,
but instead p, remains high (red lines in Fig. 5) and thus populations
remain in a state of specialization. This is due to an echo chamber like
effect where all individuals have an almost identical set of traits and so a
newborn will learn those common traits and improve its proficiency,
leaving little to no learning attempts to acquire more traits. Novel traits
are still innovated, but they are rarely copied by others. A change can
only happen in small, isolated clusters. Here, individuals with new in-
novations can escape the conformity pressure from the rest of the pop-
ulation. Eventually, given sufficient time, populations will return to a
more sparsely connected structure with higher trait diversity.

DISCUSSION

In this study, we combine cultural dynamics with evolving dynamic
social networks to study how culturally mediated natural selection
affects network structure. Our model highlights how selective effects of
cumulative culture acquired from social connections determine both
network structure and the diversity of cumulative culture at the indi-
vidual and population level. We show that selection for generalist or
specialist knowledge causes different network structures to emerge,
with unexpected feedback onto population-level social and cultural
dynamics. One might intuitively expect that selection for specialization
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Fig. 3. Specialist and generalist environments select for different network topologies. (A) Selecting for trait proficiency increases degree and decreases average
path length, leading to dense networks (example in the top inset), whereas selecting for large repertoires decreases degree and increases path length, resulting in
sparse networks (example in the bottom inset). (B) While generalist environments strongly select against random connections (p,), there is little selection against either
linking parameter in specialist environments. (C) Selecting for generalists increases repertoire size while keeping proficiency at a minimum. Selecting for specialists
reduces repertoire size only slightly but strongly increased individual proficiency. In addition, in simulations selecting for specialists, results are distributed in two
clusters. Here, populations differ in the number of traits they converged on. Populations with higher proficiency converged on three traits, whereas populations with
lower proficiency converged on four traits (note that average repertoire sizes are one trait larger due to trait innovation). Under specialist selection, trait distribution is
highly skewed compared to generalist selection (inset).
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might create internally clustered communities with sparse connections  quadratic in its frequency in the social neighborhood. It corresponds to

between them, whereas selection for generalists would favor more pro-
miscuous connections to encounter a greater diversity of traits. We
found the opposite effects: Selection for generalists produces sparsely
connected networks with few random links, whereas specialists in-
crease their random linking to generate densely connected networks.

Cultural-evolutionary feedbacks between network structure
and cumulative culture

Our counterintuitive results are driven by two factors, one at the individ-
ual level and the other at the network level. At the individual level, we
assume that successful social learning requires repeated engagement
with the same trait during the same learning episode. This assump-
tion is encapsulated in Eq. 2, where the probability of learning a trait is
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the fact that learning in nature takes time and does not happen at the
first contact with a novel trait (33-36). Our learning model is therefore
akin to complex contagion transmission of behavior (14) and differs
from previous cultural learning models that relied largely on simple
infection contagion (37, 38). A corollary of this learning model is
that connecting with individuals who do not share many traits with
each other depresses the overall rate of learning, since no single trait
is likely to be repeatedly observed. Therefore, overall learning rates
are highest when the traits of an individual’s connections overlap
more. In ecological terms, this means that more learning happens
when the beta diversity between connections, measuring the distinc-
tiveness of individual repertoires, is low. The second factor is the
cultural-evolutionary feedback (similar to eco-evolutionary feedbacks)

5of 10



SCIENCE ADVANCES | RESEARCH ARTICLE

A B

0.8 1

0.75 1
0.6 1

_ 0.50- .
N O.Z-A
000 T T T T OO T T T T
0 500 1000 1500 0 500 1000 1500
Generations Generations

C D
6 64
>
N 2
® o
o S
= s
[e] = 4
5 51 =
o [%2]
(0] ()
= £
o} =2
g € 21
° 3
< 4 =
T T T T 0 T T T T
0 500 1000 1500 0 500 1000 1500
Generations Generations
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Note that the red lines remain on equilibria for repertoire size (C) and proficiency (D) that are identical to those shown in Fig. 3C and reflect the fact that for these

parameters, populations may converge on three or four widely shared traits.

from network structure to the population-level cultural trait diversity.
This feedback means that densely connected populations converge to
the same few traits, whereas sparsely connected ones display more
network-level diversity through isolation by distance. This strong
trade-off between population trait diversity and trait proficiency is
mostly an emergent property. Although we also have (by necessity)
a similar trade-off at the individual level, it is rather weak: Special-
ization reduces individual repertoire sizes only slightly.

When selection favors specialists, we initially observe the evolution
of high social inheritance and networks with partially connected clus-
ters that specialize on specific traits, but the high internal connectivity
in these clusters leads to a loss of local trait diversity. Because of their
success in specialization, these clusters grow, creating a skewed trait
distribution at the population level where most individuals acquire
the same few traits. As a result, even randomly formed links become
likely to connect to an individual with similar traits to those connected
through social inheritance. In turn, this reduces selection against ran-
dom links, which increases average connectivity and further decreases
trait diversity and skews trait distribution. The eventual outcome of
this process is that almost all individuals will converge to an almost
identical set of traits, and therefore the number and type of links be-
come essentially neutral. Consistent with this finding, a recent study
found increased shared knowledge among friends in hunter-gatherer
societies (39). These nonkin friendship connections are formed early
on in life and markedly increase network efficiency. Hence, they are
equivalent to random connections (p,) in our model.

Conversely, selecting for generalists favors the ability to learn rare
traits (perhaps individually innovated by a given connection). How-
ever, this is only possible when rare traits are relatively common
within the local neighborhood of a focal individual, which favors
low connectivity (as it decreases the total number of traits among
the connections of a focal individual). This puts pressure on overall
connectivity to decrease and, through isolation by distance, increases
the overall cultural diversity of the population. One might think that
the increased cultural diversity might “tempt” individuals to make
more random connections to access new rare traits (which would
undermine trait diversity at the population level), but this temptation
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is counteracted by the fact that being connected to individuals with
too much diversity in traits depresses the overall learning rate.

We have modeled social tie formation in a heritable manner.
Therefore, we model long-term changes to the topology of the social
network. There is growing evidence showing that an individual’s
network position can also change on much shorter time scales in
response to their information status [reviewed in (40)]. A study on
lemurs, e.g., found that knowledgeable individuals became more
central in their group (41), whereas in Drosophila, more informed
individuals were less central (42). There is a clear need for future mod-
els to address the effect of more rapid changes to social network to-
pology on the diffusion and accumulation of cultural information.

Exploration and coordination on social networks

Our results inform several important questions in the study of cultural
evolution. For instance, much work has focused on how network
structure affects the emergence and spread of social conventions
and norms. While our model does not have direct social effects on
payoft (i.e., the payoff of an individual depends only on its own trait),
it nonetheless captures the same cultural-evolutionary dynamics
underlying social norms and social information. Our results parallel
recent experimental evidence showing that social conventions can
emerge spontaneously and groups converge quickly on norms if the
underlying social network is well connected (43). Another important
question is how social network structure affects information aggrega-
tion. Social influence can bias individual estimates (44), but whether
these biases improve or undermine the “wisdom of the crowd” depends
on the underlying social network. A recent study found that decentra-
lized groups became more accurate over time, whereas centralized
groups, where central individuals have a disproportionally large effect
on the collective estimation process, were more likely to increase in er-
ror (45). Furthermore, a recent laboratory experiment showed that a
group’s performance in finding solutions to a complex problem can
initially profit from dense information networks. However, the fast dis-
semination of successful solutions decreased exploration of the solution
space and made well-connected groups more likely to settle for sub-
optimal local maxima (23). Our theoretical results are consistent with
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these findings and further imply that selection for proficiency can, in
the long term, lock populations into well-connected networks, which,
on one hand, might increase their ability to coordinate on a set of
conventions but, on the other hand, diminish their capacity to explore
or incorporate new information.

A related phenomenon is the spread of information and opinions
on social media. Information that is shared in social media spreads in
a complex contagion manner (46), where the likelihood that an in-
dividual will spread information increases monotonically with expo-
sure (47). Previous research has connected homophily of connections
(individuals tend to be connected with like-minded individuals) to the
emergence of “echo chambers” where the same information gets shared
over a network (48). Here, we show that the cultural-evolutionary feed-
backs with complex contagion-like learning can produce convergence
on the same few traits in well-connected networks even without explicit
homophily.

An interesting area for studying cultural-evolutionary feedbacks
is how scientific fields self-organize and explore different questions
and methods. As research fields grow, networked communities of
researchers emerge and the shape of these networks affects the spread
of questions, study designs, and analytical methods (49). An interesting
recent finding is that centralized research communities (where a few
individuals are coauthors in many papers) are less likely to produce rep-
licable results (50), while decentralized communities (where most
papers have distinct coauthors) generate more robust and replicable
results (50). These results are consistent with our model, which shows
that short path length networks (i.e., centralized) tend to converge to a
few traits and display strong priority effects where previously estab-
lished traits are hard to overturn. In the scientific context, one would
expect that the collective correction of scientific claims will be less effi-
cient in centralized networks. Studying the feedback between evolving
scientific networks and specialization into different scientific “traits”
(51), as well as how evolving scientific communities interact with insti-
tutional and funding structures, will yield insights into the process of
scientific discovery.

Our results also imply that structure emerges in the distribution
of traits even in the absence of trait interactions, purely from the
joint dynamics of social learning and social networks. For example,
in groups selected for specialization, a few core traits will co-occur
with each other in most individuals and will co-occur randomly with
rare traits that are mostly individually learned. In human labor
markets, e.g,, the patterns of co-occurrence of traits or skills can have
important effects on individual and aggregate performance and
productivity (52). Although our model neglects many aspects of real
labor markets, our results highlight how the distribution of socially
learned job skills may be affected by co-evolving social networks,
which, in turn, can affect the dynamics of the labor market. Likewise,
the distribution of skills within and between individuals can affect how
well teams solve problems (53) and therefore affect firm performance
and economic productivity. An interesting direction for future re-
search is how interactions between traits and the social network struc-
ture affect the network of skills and how this affects individual and
group performance.

Population size, networks, and cultural complexity

One of the ongoing debates in cultural evolution that we mentioned
earlier is the role of population size (1, 2, 10) versus connectivity and
mobility (3, 54) in determining the cultural diversity and complexity.
We find that larger populations maintain more traits (see section S8),
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but more connected groups achieve higher proficiency at the cost of
overall trait diversity. We find that cultural-evolutionary feedbacks
cause the transition between the generalist (highly diverse) and spe-
cialist (highly proficient) states to be highly nonlinear. At low con-
nectivity, proficiency is low and trait diversity is high. When the network
reaches a critical density (here, at an average degree of about 5), we
find a sudden increase in trait proficiency. Because of the increased
number of individuals learning and innovating along the same traits,
trait proficiency increases. These dynamics can be interpreted as an
increase in the “effective cultural population size” (for a few traits),
which has been suggested as the main driver of the transition between
Middle and Upper Paleolithic, marked not only by increased techno-
logical complexity but also by increased interconnectedness between
groups (55). Consistent with our results, archeological analysis suggests
that increased intergroup connectedness leads to decreased technologi-
cal volatility (56).

Our simulations also show an upper limit for the number of traits an
individual can acquire and, by extension, an upper limit of traits a pop-
ulation can carry. However, as part of cumulative cultural evolution,
traits not only become more complex but also increase in number
(57). To allow culture to continuously expand in our model, traits could
directly affect learning, e.g., by making it easier to learn a trait [less cost-
ly; see (58)], or by directly affecting demography, e.g., by increasing
carrying capacity (55, 59).

CONCLUSION

We find that network topology not only affects the diversity and ac-
cumulation of cultural knowledge but also is itself shaped by cultural
selection due to a continuous eco-evolutionary feedback between so-
cial structure and culture. As we have shown, it is important to model
individual-level interactions to understand this feedback. Recent tech-
nological advances allow us to gather detailed individual data (39).
Further empirical research, especially long-term studies, will help to
clarify the extent of cultural selection on human social networks. This
not only will shed light on the origins of cumulative culture in our an-
cestors but also increase our understanding of human biology as a whole.

MATERIALS AND METHODS
The model
We modeled populations of N asexually reproducing individuals, with
overlapping generations, in a world with T learnable cultural traits.
These traits relate to, e.g., subsistence and social norms and, therefore,
are relevant to an individual’s survival and reproduction. Traits were
assumed to be equal in payoff and can be acquired independent from
each other, as we were interested in how much and how well individuals
learn but not what they learn.

Time was divided into rounds. Each round consisted of three steps:
(i) one randomly selected individual leaves the population, (ii) a parent
is selected and a new individual is added to the population, and (iii) the
new individual acquires traits through innovation and copying. Re-
stricting learning to a phase early in life was based on observations
that children in hunter-gatherer societies acquire most skills before
adolescence (22, 60). During learning, the new individual has each
100 alternating asocial and social learning attempts, allowing her
to either acquire new traits or improve proficiency in those she
already has. At birth, an individual’s proficiency ! is zero for all traits
(i.e,, [, = 0, t € T). Trait proficiency increases through successful
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learning. When a new trait is acquired through asocial (innovation) or
social (copying) learning, the proficiency of trait ¢ increases from I, =
0to I, = 1. As the individual’s repertoire size R; is the number of non-
zero trait proficiencies J, trait acquisition increases R;. To become
better at performing a trait, repeated engagement with it is required,
as learning takes time (33-36). Therefore, proficiency increases (I; =
I + 1) with each successful asocial or social learning attempt of the
same trait. Because the number of learning turns is limited and attention
to one trait limits attention to other traits, there is a trade-off between
becoming good at a trait and learning many traits. Hence, trait profi-
ciency and repertoire size are negatively related.

During a single learning episode, an individual first picks one trait
either from all possible traits 7" at random (asocial learning) or from
all traits performed in the individual’s neighborhood relative to their
performance frequency in the neighborhood (social learning). The
probability that an individual observes trait  in its neighborhood is
given by m; = %‘f, where #;, is the number of 7’s neighbors with trait
tand R, is the sum of repertoire sizes of i’s neighbors. We based our
assumption that an individual is not actively choosing a trait to learn
on observations in traditional societies where children acquire knowl-
edge through playful work (61) or by helping their parents with sub-
sistence tasks (36, 60, 62). The traits with which they engage are those
that are performed in their vicinity. After picking a trait, the individual
attempts to acquire proficiency for this trait either through individual
learning (which depends on a fixed innovation success probability )
or social learning (which depends on a fixed copying success probabil-
ity 6). We assume that social learning is more effective when an in-
dividual receives more exposure to a trait, ie., if m;, is larger. More
generally, we can express the probability of successful asocial learning
of trait ¢ during a single learning episode as

1 Y
=t 1
V=T (1)
and for social learning as

Ps(t) = m(om;) = on; (2)

Equation 2 relates to Simpson’s index (63), a measure of diversity
representing the probability that two randomly picked items of a pop-
ulation belong to the same type. Like Simpson’s index, Ps behaves par-
abolically, where higher trait diversity is more strongly punished than
lower diversity. Therefore, Pg(t) is highest where all neighbors perform
only trait ¢ (section S1). However, as trait diversity in ’s neighborhood
increases, trait exposure decreases, making it less likely to observe its
performance sufficiently long to learn about it socially (fig. S3B).

With Eq. 2, we model complex contagion (14) as the probability of
observing a trait twice, whereby it does not matter whether the trait is
observed from the same individual or from different individuals. This
discounts the single observation of a trait with its square. Eq. 2 shows
that acquiring a trait socially is more likely if social learning is easy
(large o), if trait ¢ is common among neighbors (large #;,), and if
neighbors have few traits (small R,). Furthermore, we assumed that
an individual cannot surpass the proficiency of the observed individ-
uals and thus Pg(f) = 0 where all neighbors have proficiency equal to
or less than that of the individual i for trait .

In our model, choosing a trait and attempting to learn that trait
happens during the same learning episode. An alternative model
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would be that the two events occur at different points in time. To test
whether our main results hold up to alternative assumptions about
social learning, we developed a second learning model (see section S2).
In this version, individuals have a separate memory to store traits
they previously engaged with but have not yet attempted to acquire.
We allowed individuals to remember traits they encounter for up to
m learning episodes, after which they would be replaced by the most
recent trait the individual engaged with. We found that the trade-off
between trait diversity and proficiency remained unchanged as long
as memory capacity was limited. Larger memory capacity reduces
overall trait proficiency, as it reduces the coordinating effect of com-
plex contagion.

Subsequent to the learning phase, we calculated an individual’s
lifetime success score or payoft W. Its magnitude depends on whether
the individual acquired traits according to its environment. Indivi-
duals face one of two environments. In the generalist world, individuals
benefit from acquiring a variety of traits and so an individual’s payoftf is
equivalent to its repertoire size, W; = R;. In contrast, in the specialist
world, individuals benefit from becoming highly proficient in one trait.
Here, an individual’s payoff is equivalent to the highest trait proficiency
in its repertoire, W; = max (L;), where L; is a vector of i’s proficiencies.
The two environments can represent a variety of contexts, such as
foraging. The generalists might forage on ephemeral, easy to handle
but highly diverse resources, whereas the specialists might forage on
stable, less diverse but hard to handle resources.

A new simulation round starts with the removal of a random in-
dividual. A survivor was selected as a parent to replace the individual
relative to its payoff W,

Model iterations

Topology effects on culture

To establish a baseline for the effect of network topology on cultural
dynamics in our model, we began with a set of static, regular networks
(ring). We used different neighborhood sizes (1, 3, and 10) to alter
topology (degree, clustering, and average path length) and measure
its effect on average repertoire size and average highest proficiency
(Fig. 1).

In all subsequent simulations, we considered complex dynamic
networks. This method mimics real-world networks and allows the
dynamical formation of locally and globally clustered networks in
response to different selective regimes (13). In complex networks, a
new individual inherits two genes from its parent: p,, (probability to
form connections with the neighbors of the parent) and p, (probability
to form connections with other individuals that are not connected to
the parent). Mutation occurs with probability 1 = 1, whereby mutated
values are drawn from a normal distribution centered around the
parent’s value with SDs of 0.1 and 0.01 for p, and p,, respectively.
We also ran simulations with lower mutation rates (L = 0.01) and
found that the results hold (section S6). While in the main text, we
assumed that connections can be formed at no costs, we also ran sim-
ulations where each connection incurs a cost and found that costs can
turn populations into generalists even if they are under specialist se-
lection (section S7).

To determine the effect of topology on culture in dynamic, com-
plex networks, we let networks dynamically rewire but keep p,, and p,
fixed throughout the simulation (Fig. 2). For both static, regular and
dynamic complex graphs, selection was neutral and reproduction was
random. Thus, the spread of cultural traits was only affected by
network topology.
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Co-evolution of network topology and culture

Next, we let both cultural knowledge and linking probabilities (p,,, p;)
evolve freely in response to the generalists or specialists environment
(Fig. 3 and see section S5 for time series).

Cultural response to enforced network degree

In nature, degree centrality might be more strongly affected by exter-
nal factors than cultural selection. For example, sparse networks might
be the result of high costs to form and maintain social connections.
Networks might also be dense because of social norms or simply the
spatial distribution of individuals. In both cases, this can lead to sub-
optimal network densities. In this iteration, we investigated the trade-
off between socially inherited and random connections when average
degree is fixed. We ran simulations, where p, and p, were coupled, as
to achieve a preset degree centrality k (see section S4 for calculations).
A newborn still inherits p,, from its parent; however, p, is based on a
linear function with an inclination that depends on degree k. Should
an individual form more than k connections, k — 1 connections were
randomly chosen (one connection remains for the parent) and the rest
were discarded. We simulated populations with low, intermediate, and
high connectivity (k € 2,6,10) for both environments (Fig. 4).
Cultural response to shifting environments

In a final set of simulations, we switched between both selective
environments and observed the changes in topology and cultural
repertoire (Fig. 5).

Parameters

If not stated otherwise, we ran all simulations with N =100 and T =
100 (see section S8 for additional values) for 1000 generations (N
death-birth events, with data being averaged over the last 200 gen-
erations) and 100 repetitions, with mutation rate @ = 1, innovation
success rate y = 0.01, and social learning success rate ¢ = 0.75 (see
section S9 for additional values). Complex networks were initia-
lized with p, = 0.1 and p, = 0.01. To compare differences in cultural
knowledge between populations, we recorded the average repertoire
size and mean highest per individual trait proficiency. To compare
networks, we recorded degree centrality, local clustering, and average
path length. Degree centrality, a measure for connectedness, is the av-
erage number of connections an individual shares with other indivi-
duals (higher degree centrality signifies more connections between
individuals). Local clustering (or transitivity) is the probability that
an individual’s neighbors share a connection with each other. It is a
measure for how close a neighborhood is to being a clique (fully
connected). Average path length is the mean number of steps along
the shortest paths between any pair of individuals in a network. It is
often used as a measure for information transmission efficiency in a
network.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/8/eaaw0609/DC1

Section S1. Social learning success probability

Section S2. An alternative social learning model

Section S3. Network metrics for fixed values of p,, and p,

Section S4. Coupling p, to p, to limit degree centrality

Section S5. Time series for simulations with evolving p,, and p,

Section S6. Low mutation rate

Section S7. Connection costs

Section S8. Varying population size and trait number

Section S9. Varying innovation and social learning success rate

Fig. S1. The effect of increasing memory on trait repertoire and highest skill level.
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Fig. S2. If memory size is limited, then the two different social learning algorithms are
qualitatively the same.

Fig. S3. The effect of complex contagion on social learning dynamics, and of linking
parameters on network characteristics.

Fig. S4. Distribution of common traits depends on average connectivity.

Fig. S5. Trait proficiency depends on the level of trait convergence and connectivity.
Fig. S6. Trajectories for linking probabilities p, and p, averaged over all simulation runs for all
three selection regimes (neutral, generalist, and specialist).

Fig. S7. Results displayed as in Fig. 2 of the main text but with mutation rate u = 0.01.
Fig. S8. Adding a cost per connection reduces average degree in specialists, whereas
generalists are less affected.

Fig. S9. Added connection costs.

Fig. S10. Varying the number of traits and individuals in a population.

Fig. S11. Increasing population size also increases trait diversity in the population.

Fig. S12. Varying innovation and social learning success rate.
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