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Increased atmospheric vapor pressure deficit reduces
global vegetation growth
Wenping Yuan1,2*, Yi Zheng1, Shilong Piao3, Philippe Ciais4, Danica Lombardozzi5,
Yingping Wang6,7, Youngryel Ryu8, Guixing Chen1,2, Wenjie Dong1,2, Zhongming Hu9, Atul K. Jain10,
Chongya Jiang11, Etsushi Kato12, Shihua Li1, Sebastian Lienert13, Shuguang Liu14,
Julia E.M.S. Nabel15, Zhangcai Qin1,2, Timothy Quine16, Stephen Sitch16, William K. Smith17,
Fan Wang1,2, Chaoyang Wu18, Zhiqiang Xiao19, Song Yang1,2

Atmospheric vapor pressure deficit (VPD) is a critical variable in determining plant photosynthesis. Synthesis of four
global climate datasets reveals a sharp increase of VPD after the late 1990s. In response, the vegetation greening
trend indicated by a satellite-derived vegetation index (GIMMS3g), which was evident before the late 1990s, was
subsequently stalled or reversed. Terrestrial gross primary production derived from two satellite-based models
(revised EC-LUE and MODIS) exhibits persistent and widespread decreases after the late 1990s due to increased
VPD, which offset the positive CO2 fertilization effect. Six Earth system models have consistently projected con-
tinuous increases of VPD throughout the current century. Our results highlight that the impacts of VPD on veg-
etation growth should be adequately considered to assess ecosystem responses to future climate conditions.
INTRODUCTION
Vapor pressure deficit (VPD), which describes the difference between
the water vapor pressure at saturation and the actual water vapor pres-
sure for a given temperature, is an important driver of atmospheric
water demand for plants (1). Rising air temperature increases saturated
water vapor pressure at a rate of approximately 7%/K according to the
Clauius-Clapeyron relationship, which will drive an increase in VPD if
the actual atmospheric water vapor content does not increase by exactly
the same amount as saturated vapor pressure (SVP). Numerous studies
have indicated substantial changes of relative humidity (ratio of actual
water vapor pressure to saturated water vapor pressure) not only in
continental areas located far from oceanic humidity (2) but also in hu-
mid regions (3). Although the long-term trend of globally averaged land
surface relative humidity remains insignificant (4, 5), a sharp decrease
has been observed since 2000 (6, 7), implying a sharp increase in land
surface VPD. However, the causes of changing atmospheric water de-
mand are still unclear (8).

Changes of VPD are important for terrestrial ecosystem structure
and function. Leaf and canopy photosynthetic rates decline when at-
mospheric VPD increases due to stomatal closure (9). A recent study
highlighted that increases in VPD rather than changes in precipitation
substantially influenced vegetation productivity (10). Increasing VPD
notably affects vegetation growth (11–13), forest mortality (14),
and maize yields (15). In addition, rising VPD greatly limits land
evapotranspiration in many biomes by altering the behavior of plant
stomata (9). Given that the global precipitation is projected to remain
steady (16), the changing VPD and soil drying would likely constrain
plant carbon uptake and water use in terrestrial ecosystems (17). How-
ever, the large-scale constraints of VPD changes on vegetation growth
have not yet been quantified. In this study, we determined the changes
in VPD trends through observation-based global climate datasets, and
then quantified the impacts of these VPD changes on vegetation
growth and productivity, using satellite-based vegetation index [i.e.,
normalized difference vegetation index (NDVI)] and leaf area index
(LAI), tree-ring width chronologies, and remotely sensed estimates
of gross primary production (GPP).
RESULTS
This study used four observation-based globally gridded climate
datasets—CRU (Climatic ResearchUnit), ERA-Interim,HadISDH, and
MERRA (Modern-EraRetrospective analysis for Research andApplica-
tions) (table S1)—to analyze the long-term trend of VPDover vegetated
land. Similar to previous analyses (4, 5, 7), anomalies in all four datasets
showed that VPD trends were temporally and spatially heteroge-
neous over recent decades (Fig. 1). A piecewise linear regression
method was used to quantify the change in trends and detect the
potential turning point (TP) in each dataset. It was observed that
VPD increased slightly before the late 1990s but increased more
strongly afterward with 1.66 to 17 times larger trends according to
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the four datasets (fig. S1). The datasets showed that 53 to 64% of vege-
tated areas experienced increased VPD trends since the late 1990s (fig.
S2). To illustrate the magnitude and spatial variability of VPD change,
we calculated the global pattern of the percentage change of annual
Yuan et al., Sci. Adv. 2019;5 : eaax1396 14 August 2019
growing season mean VPD between two periods of 1982–1986 and
2011–2015 (fig. S3A). On average, the annual growing season mean
VPD of 2011–2015 was 11.26% higher than that of 1982–1986, and
the VPD increased larger than 5% in more than 53% area. In addition,
Fig. 1. Global mean vapor pressure deficit (VPD) anomalies of vegetated area over the growing season. Anomalies are relative to the mean of 1982–2015 when
data from all datasets are available. Vegetation areas were determined using the MODIS land cover product. Blue line and gray area illustrate the mean and SD of VPD
simulated by six CMIP5 models under the RCP4.5 scenario.
Fig. 2. Comparison of oceanic evaporation (Eocean) trends during the two periods of 1957–1998 and 1999–2015. (A) Time series of globally averaged oceanic
evaporation. (B) Spatial pattern on differences of oceanic evaporation trends between 1999–2015 and 1957–1998. Gray shaded area in (A) indicates ±1 SD. The inset in
(B) shows the frequency distributions of the corresponding differences.
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the increases of global mean VPD over 12 months were positively
correlated with the mean VPD values of 1982–1986 at more than
64.5% areas (fig. S3B), which implies that the higher VPD increases
in the months with high VPD.

Apart fromHadISDH, datasets showed that the increased saturated
water vapor pressure and decreased actual water vapor pressure jointly
determined the increases of VPD after the TP. On average, the rate of
increase in saturated water vapor was 1.43 to 1.64 times higher after the
TP year than before, and the actual water vapor exhibited stalled or de-
creased trends (fig. S4). Increased air temperature explains the changes
in saturated water vapor pressure (fig. S4). The HadISDH dataset indi-
cates a decrease in saturated water vapor because of large spatial gaps in
the dataset.

A change of oceanic evaporation is the most important mechanism
for the observed decrease in actual water vapor pressure over the land
(18). Oceanic evaporation is the most important source of atmosphere
water vapor, and approximately 85% of atmospheric water vapor is
evaporated from oceans, with the remaining 15% coming from evapo-
ration and transpiration over land (19). Most of the moisture over land
is transported from the oceans, which accounts for 35% of precipitation
and 55% of evapotranspiration over land (19). We analyzed long-term
changes of oceanic evaporation based on a global oceanic evaporation
dataset [Objectively Analyzed Air–Sea Fluxes (OAFlux)] (20). The
almost 60-year time series showed that the decadal change of global
oceanic evaporation (Eocean) was marked by a distinct transition from
an upward to a downward trend around 1998 (Fig. 2A). The global
oceanic Eocean has decreased by approximately 2.08 mm year−1, from
Yuan et al., Sci. Adv. 2019;5 : eaax1396 14 August 2019
a peak of 1197 mm year−1 in 1998 to a low 1166 mm year−1 in 2015
(Fig. 2A), and 76% of the sea surface revealed a decreased Eocean after
1999 (Fig. 2B). Rhein et al. (16) reported stalled increases of sea sur-
face temperature after the late 1990s based on multiple global data-
sets, which substantially limited oceanic evaporation (20). Some
studies using global climate models (GCMs) also highlighted that
VPD trends over land were predominantly explained by dynamic
mechanisms related to moisture supply from oceanic source regions
(8, 21). Changes in the recycling of atmospheric moisture over land
controlled by soil moisture in supply-limited regions may be an ad-
ditional contribution to the observed increase of VPD. Koster et al.
(22) showed that moisture variability contributed to total precipita-
tion variance inmid-northern latitude regions such as thewesternUnited
States. Drier soils evaporate less and thus lead to lower water vapor in
the atmosphere (23). Previous study reported a decreased trend in the
global land evapotranspiration after the late 1990s limited by soilmois-
ture supply (24).

Figure 3 illustrates that the satellite-based NDVI substantially
increased from 1982 to 1998 (y = 0.0014x − 1.86, R2 = 0.43,
P < 0.05), while NDVI remained constant and then stalled after 1999
(y = −0.0004x + 1.23, R2 = 0.06, P = 0.65) (Fig. 3A). From 1982 to 1998,
approximately 84% of the vegetation surface showed an increased
NDVI trend (28.50% with a significant increase; Fig. 4A). In compari-
son, after 1999, the trends of NDVI over many regions reversed, and
59% of vegetation areas showed a pronounced NDVI browning
(decreasing) trend (21.50% with a significant decrease; Figs. 3B and
4). Mean NDVI trends for 12 months after 1999 were lower than those
Fig. 3. Comparisons of NDVI trends over the globally vegetated areas from 1982 to 2015. (A) Time series of NDVI. The numbers show the change rates of NDVI,
and * indicates the significant changes at a significance level of P < 0.05. (B) Probability density function of NDVI trends during the two periods, with bars indicating the
proportion of increased (gray) and decreased (black) responses. (C) Mean monthly NDVI trends between the two periods. Shaded area in (A) and error bars in (C)
indicate ±1 SD.
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Fig. 4. ComparisonofNDVI trends over theglobally vegetated areas between twoperiods of 1982–1998and1999–2015. (A) NDVI trend of 1982–1998. (B) NDVI trend
of 1999–2015. (C) Differences of NDVI trend between 1999–2015 and 1982–1998. The insets (I) show the relative frequency (%) distribution of significant decreases
(Dec*; P < 0.05), decreases (Dec), increases (Inc), and significant increases (Inc*), and the insets (II) show the frequency distributions of the corresponding ranges.
Yuan et al., Sci. Adv. 2019;5 : eaax1396 14 August 2019 4 of 12
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from 1982 to 1998 over globally vegetated areas (Fig. 3C).Moreover, we
analyzed long-term trends of LAI based on four global LAI datasets
[Global Land Surface Satellite (GLASS), GLOMap, LAI3g, and Terres-
trial Climate Data Record (TCDR); table S1] (25). Despite the large var-
iability of the estimated interannual LAI among the four products, all
four LAI datasets exhibited a transition from increasing trends before
the late 1990s to decreasing trends afterward (fig. S5). The LAI showed a
decreasing trend since the late 1990s over vegetated areas of 64.72,
72.62, 62.73, and 80.11% for GLASS, GLOMap, LAI3g, and TCDR da-
tasets, respectively (fig. S6). The differences of NDVI and LAI trends
during these two periods are the opposite of VPD trends derived from
four VPD datasets.

Partial correlation analysis indicated significant correlations of
detrended VPD with detrended NDVI and LAI when the impacts
of air temperature, radiation, and atmospheric CO2 concentration
were excluded (Fig. 5). Detrended NDVI over 62% of the vegetated
areas shows a negative correlation with detrended VPD (about 14%
Yuan et al., Sci. Adv. 2019;5 : eaax1396 14 August 2019
with a significant negative correlation) (Fig. 5A). Similarly, four de-
trended satellite-based LAI correlated negatively with detrended
VPD over 65 to 70% of vegetated areas (16 to 22% with a significant
negative correlation) (Fig. 5, B to E). In addition, all five satellite-
based datasets show highly consistent signs of correlation with
VPD, and at least three datasets revealed consistently negative cor-
relations with VPD over 72% of vegetated area (Fig. 5F). A machine
learning method [i.e., random forest (RF)] was used to reconstruct
NDVI based on atmospheric [CO2] concentration and five climate
factors (air temperature, precipitation, radiation, wind speed, and
VPD) over the last 34 years in each pixel (fig. S7) and then model
experiments were applied to separate the impacts of VPD as well
as of other variables (see Materials and Methods). Globally, the model
experiments suggest that the atmospheric CO2 concentration, air tem-
perature, and VPD are the most important contributors for the varia-
bility of NDVI (fig. S8A). Rising VPD was found to significantly
decrease NDVI, indicated by the larger negativeNDVI differences from
Fig. 5. Spatial patterns of correlations between VPD and satellite-based NDVI/LAI. Partial correlations between detrended CRU VPD and detrended satellite-based
NDVI/LAIwere shown: GIMMSNDVI (A), GLASS LAI (B), GLOBMap LAI (C), LAI3g LAI (D), and TCDR LAI (E) during 1982–2015 (GLOBMapand LAI3g from1982–2011). The insets in (A)
to (E) show the relative frequency (%) distribution of significant negative correlations (Neg*;P<0.05; dark green), negative correlations (Neg; light green), positive correlations (Pos;
light red), and significant positive correlations (Pos*; P<0.05; dark red). (F) Number of satellite-basedNDVI/LAI datasetswith the same sign of correlation: e.g., (5, –) indicates that all
five satellite-based NDVI/LAI datasets showed negative correlations with VPD.
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1999 to 2015, suggesting that substantial increases of VPD strongly
limited NDVI (fig. S8B).

This study used two satellite-based models [revised eddy
covariance–light use efficiency (EC-LUE) and Moderate Resolution
Imaging Spectroradiometer (MODIS)] to investigate the impacts of
VPD on long-term changes of global GPP (26, 27). EC-LUE and
MODIS showed quite similar long-term trends of GPP, with a sig-
nificantly increased trend from 1982 to the late 1990s, averaged at
0.73 Pg C year−1 (P < 0.05; from 1982 to 1998) and 0.26 Pg C year−1

(P < 0.05; from 1982 to 1997) over globally vegetated area, respectively
(Fig. 6A). The GPP trends then stalled and decreased afterward
(−0.016 Pg C year−1, P = 0.67 and −0.032 Pg C year−1, P = 0.44)
(Fig. 6A). The GPP trends derived from the two models during the
two periods are the opposite of VPD trends derived from the four
VPD datasets.

To quantify the impacts of VPD on GPP, we further explored GPP
sensitivity to climate variables (i.e., air temperature, VPD, and radia-
tion), atmospheric CO2 concentration, and satellite-based NDVI/fPAR
(see Materials and Methods; Fig. 6B). Two satellite-based models
showed the similar GPP sensitivity to VPD, whereby global GPP de-
creased by 13.82 ± 3.12 Pg C and 18.29 ± 3.65 Pg C with a VPD in-
crease of 0.1 kPa (Fig. 6B), which is comparable to the GPP increase
with a 100–parts per million (ppm) rise of atmospheric [CO2] (i.e.,
Yuan et al., Sci. Adv. 2019;5 : eaax1396 14 August 2019
bCO2 = 19.01 ± 4.01 Pg C 100 ppm−1). On the basis of the estimated
GPP sensitivity, we estimated the contributions of climate variables,
CO2 fertilization, and vegetation index to global GPP over the two
study periods (table S2). After the late 1990s, VPD increased by
0.0017 ± 0.0001 kPa year−1 according to the CRU dataset (fig. S1),
which resulted in GPP decreases of 0.23 ± 0.09 Pg C year−1 and
0.31 ± 0.11 Pg C year−1 according to the EC-LUE and MODIS models,
respectively (Fig. 6C and table S2). The VPD-induced GPP decreases
partly counteract the CO2 fertilization effect (0.38 ± 0.08 Pg C year−1)
after the late 1990s with the rising rate of atmospheric CO2 concentra-
tion by 2.02 ± 0.01 ppm year−1. From 1982 to the late 1990s, CO2 fer-
tilization played a dominant role in the GPP increase (Fig. 6C).
According to the EC-LUE model, GPP increases of 0.28 ± 0.15 Pg C
year−1 occurred because of the rising atmospheric [CO2] (Fig. 6C and
table S2).

We further investigated the impacts of VPD on LUE usingmeasure-
ments of global EC towers (see Materials and Methods; table S3). Be-
cause VPD correlated strongly with air temperature, we excluded the
effects of air temperature to investigate the impacts of VPD by binning
the observations for ranges of air temperature.We binned the LUE data
for different restricted ranges of air temperature and found strong neg-
ative correlations between VPD and LUE for almost all air temperature
ranges (fig. S9 and table S3). In addition, we investigated the impacts of
Fig. 6. Long-termchangesofglobalGPPandenvironmental regulations. (A) Time series of global GPP estimates derived from EC-LUE and MODIS-GPP models. (B) GPP
sensitivity to climate variables, NDVI/fPAR, and atmospheric CO2 concentration. (C) Contributions of climate variables, NDVI/fPAR, and atmospheric CO2 concentration to
GPP changes over the two periods. Three climate variables are included: vapor pressure deficit (VPD), air temperature (Ta), and photosynthetically active radiation (PAR).
6 of 12
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VPD on vegetation growth using a global comprehensive dataset of
tree-ring widthmeasurements from 171 locations with temporal cover-
age from 1982 until at least 2005. Partial correlation analysis showed
that the detrended VPD derived from the four datasets correlated with
detrended tree-ring width atmost sites (56 to 72%)when the impacts of
air temperature, radiation, and atmospheric CO2 concentration were
excluded (fig. S10, A to D). We compared the differences of mean
tree-ring width values between before and after 1998 and observed
smaller tree-ring widths after 1998 compared to those before 1998 at
64% of sites (25% sites with significant level) (fig. S10E).
DISCUSSION
Our results support increased VPD being part of the drivers of the
widespread drought-related forest mortality over the past decades,
which has been observed in multiple biomes and on all vegetated con-
tinents (28, 29). Increased VPD may trigger stomatal closure to avoid
excess water loss due to the high evaporative demand of the air (12),
leading to a negative carbon balance that depletes carbohydrate reserves
and results in tissue-level carbohydrate starvation (28). In addition, re-
duced soil water supply coupled with high evaporative demand causes
xylem conduits and the rhizosphere to cavitate (become air-filled),
stopping the flow ofwater, desiccating plant tissues, and leading to plant
death (28). Previous studies reported that increasedVPDexplained 82%
of the warm season drought stress in the southwestern United States,
which correlated to changes of forest productivity and mortality (14).
In addition, enhanced VPD limits tree growth even before soil moisture
begins to be limiting (17, 30).

We examined whether terrestrial ecosystem models can adequately
capture the observed responses of vegetation growth to increased VPD
after the late 1990s from 10 terrestrial ecosystemmodels.We found that
the simulatedGPP trends ofmostmodels did notmatch theGPP trends
documented above (fig. S11). Only the CLASS (Canadian Land Surface
Scheme)model showed a decreasedGPP after the late 1990s in response
to increased VPD, similar to satellite-based GPP estimates (fig. S11).
The terrestrial ecosystem models showed lower GPP sensitivity to
VPD than two satellite-based models (i.e., EC-LUE and MODIS)
(Fig. 6B and table S2).

Our results imply that most terrestrial ecosystem models cannot
capture vegetation responses to VPD. Thus, problems reproducing
the observed long-term vegetation responses to climate variability
may challenge their ability to predict the future evolution of the carbon
cycle. Earth system models (ESMs) participating in the CMIP5
(Coupled Model Intercomparison Project Phase 5) (table S5) project
a continuous increase of VPD until the end of this century (Fig. 1).
The globally averaged VPD is 0.12 kPa higher in 2090–2100 than in
1980–1999 (Fig. 1). The ESMs used in Fig. 1 showed good performance
when reproducing historical variations of VPD (table S6), providing
confidence in the projected increases of VPD during future decades.
The results of our analysis suggest that this projected increased VPD
might have a substantially negative impact on vegetation, which must
be examined carefully when evaluating future carbon cycle responses.
MATERIALS AND METHODS
Datasets
Four global climate datasets were used to investigate the long-term
changes of atmosphericVPD, includingCRU, ERA-Interim,HadISDH,
andMERRA.Monthly griddedCRUandHadISDHdatasetswere based
Yuan et al., Sci. Adv. 2019;5 : eaax1396 14 August 2019
on climate observations from global meteorological stations (31, 32).
ERA-Interim and MERRA datasets were reanalysis products based
on Integrated Forecast System of European Centre for Medium-Range
Weather Forecasts (ECMWF-IFS) (33) and the Goddard Earth
Observing System Data Assimilation System Version 5 (GEOS-5)
(34), respectively. VPDwas calculated on the basis of different variables
of four datasets (35)

CRU:

VPD ¼ SVP� AVP ð1Þ

ERA-Interim:

AVP ¼ 6:112� fw � e
17:67Td
Tdþ243:5 ð2Þ

VPD ¼ SVP� AVP ð3Þ

HadISDH and MERRA:

AVP ¼ RH
100

� SVP ð4Þ

VPD ¼ SVP� AVP ð5Þ

where SVP and AVP are saturated vapor pressure and actual vapor
pressure (kPa), respectively. Td is the dew point temperature (°C).
RH is the land relative humidity (%).

SVP ¼ 6:112� fw � e
17:67Ta
Taþ243:5 ð6Þ

fw ¼ 1þ 7� 10�4 þ 3:46� 10�6Pmst ð7Þ

Pmst ¼ Pmsl
ðTa þ 273:16Þ

ðTa þ 273:16Þ þ 0:0065� Z

� �5:625

ð8Þ

where Ta is the land air temperature (°C). Z is the altitude (m). Pmst is
the air pressure (hPa), and Pmsl is the air pressure at mean sea level
(1013.25 hPa). In addition, the OAFlux dataset was used to examine
the variability of oceanic evaporation (table S1) (20).

We used the newest release of the advanced very high resolution
radiometer (AVHRR) NDVI to indicate vegetation growth from 1982
to 2015. The AVHRR is a nonstationary NDVI version 3 dataset made
available by NASA’s Global InventoryModeling andMonitoring Study
third-generation dataset (GIMMS3g) group (36). GIMMS3g contains
global NDVI observations at approximately 8-km spatial resolution
and bimonthly temporal resolution, derived from AVHRR channels
1 and 2, corresponding to red (0.58 to 0.68 mm) and infrared (0.73 to
1.1 mm)wavelengths, respectively. Each 15-day data value is the result of
maximum value compositing, a process that aims to minimize the in-
fluence of atmospheric contamination from aerosols and clouds. More-
over, this study analyzed long-term trends of LAI based on four global
satellite LAI products (table S1): GLASS (version 4) (37), GLOBMap
(38), LAI3g (39), and the TCDR (40).

We calculated the annual growing season mean NDVI and LAI by
averagingmonthlyNDVI and LAI valueswithmonthlymean temper-
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atures above 0°C.We also calculatedmultiyear averagedmonthlymean
temperatures from the CRU dataset to ensure that the same growing
season land mask was used over the entire period (1982–2015). The
global mean NDVI and LAI values were calculated by the average of
the annual growing season mean NDVI and LAI, excluding unvege-
tated regions. The MODIS land cover type product (MCD12Q1) was
used to identify the vegetated regions.

We calculated the LUE (g C m−2 MJ−1) based on EC measure-
ments from the FLUXNET2015 dataset (www.fluxdata.org) to ex-
amine the correlation between LUE and VPD (table S4)

LUE ¼ GPP
fPAR � PAR

ð9Þ

whereGPP indicates the estimatedGPP values fromECmeasurements,
PAR is photosynthetically active radiation (MJ m−2), and fPAR is the
fraction of PAR absorbed by the vegetation canopy calculated by
GIMMS3g NDVI (41).

The tree-ring width measurements around the world were used
from the International Tree-Ring Data Bank (ITRDB) (42). The wood
samples were taken and processed following standard protocols and
taking two radial cores per tree at 1.3 m. Tree-ring width measure-
ments were detrended and standardized by the scientists who
contributed the chronologies to the ITRDB. Each local chronology rep-
resents the average growth of several trees (typically more than 10) of
the same species growing at the same site. The temporal span of the
tree-ring data series selected began at 1982, lasting at least until 2005.
Eventually, 171 sites were analyzed and each chronology of the sites is a
representation of annual tree-ring width.

This study conducts the partial correlation analysis between VPD
and tree-ring width by excluding the impacts of air temperature, ra-
diation, and atmospheric CO2 concentration. Air temperature and
PAR from MERRA dataset were used. For atmospheric CO2 concen-
tration, this study used the GLOBALVIEW-CO2 product, which pro-
vides observations of atmospheric CO2 concentration at 7-day
intervals over 313 global air-sampling sites (43). If missing 7-day
data accounted for >20% of all data for an entire year, then the
value for that year was indicated as “missing.” For a site to be in-
cluded in this study, it had to have at least 10 years of observations.
Eventually, 77 sites were included equally in the calculation of
global monthly mean CO2 concentration without any weighting
of individual sites.

Satellite-based GPP model
We used two satellite-based GPP models to investigate the impacts of
VPD on vegetation GPP. The first model is the MODIS-GPP model,
and this study used long-term global MODIS GPP dataset driven by
GIMMS fPAR data (27).

The second model is the revised EC-LUE model (26), derived by
(i) integrating the impact of atmospheric CO2 concentration on GPP
and (ii) adding the limit of VPD to GPP. The revised EC-LUE model
simulates terrestrial ecosystem GPP as

GPP ¼ PAR � fPAR � emax � Cs �minðTs;WsÞ ð10Þ

where PAR is the incident photosynthetically active radiation (MJm−2)
per time period (e.g., day); fPAR is the fraction of PAR absorbed by the
vegetation canopy calculated by the GIMMS3g NDVI dataset; emax is
the maximum LUE; Cs, Ts, andWs represent the downward-regulation
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scalars for the respective effects of atmospheric CO2 concentration
([CO2]), temperature (Ta), and atmospheric water demand (VPD) on
LUE; and min denotes the minimum value of Ts andWs.

The effect of atmospheric CO2 concentration on GPP was
calculated according to Farquhar et al. (44) and Collatz et al. (45)

Cs ¼ Ci � q
Ci þ 2q

ð11Þ

Ci ¼ Ca � c ð12Þ

where q is the CO2 compensation point in the absence of dark respira-
tion (ppm) and Ci is the CO2 concentration in the intercellular air
spaces of the leaf (ppm), which is the product of atmospheric CO2 con-
centration (Ca) and the ratio of leaf internal to ambient CO2 (c). c is
estimated (46–48) by

c ¼ g

gþ ffiffiffiffiffiffiffiffiffiffi
VPD

p ð13Þ

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
356:51K
1:6h�

r
ð14Þ

K ¼ Kc 1þ P0
K0

� �
ð15Þ

Kc ¼ 39:97� e
79:43�ðTa�298:15Þ

298:15RTa ð16Þ

Ko ¼ 27480� e
36:38�ðTa�298:15Þ

298:15RTa ð17Þ

where Kc and Ko are the Michaelis-Menten coefficient of Rubisco for
carboxylation and oxygenation, respectively, expressed in partial pres-
sure units, and Po is the partial pressure of O2 (ppm). R is the molar gas
constant (8.314 J mol−1 K−1), and h* is the viscosity of water as a func-
tion of air temperature (49).

Ts and Ws were calculated using the following equations

Ts ¼ ðTa � TminÞ � ðTa � TmaxÞ
ðTa � TminÞ � ðTa � TmaxÞ � ðTa � ToptÞ � ðTa � ToptÞ

ð18Þ

Ws ¼ VPD0

VPDþ VPD0
ð19Þ

where Tmin,Tmax, and Topt are theminimum,maximum, and optimum
air temperature (°C) for photosynthetic activity, which were set to 0°,
40°, and 20.33°C, respectively (50). VPD0 is an empirical coefficient
of the VPD constraint equation.

Parameters emax, q, and VPD0 were calibrated using estimated
GPP at EC towers (table S7). The nonlinear regression procedure
(Proc NLIN) in the Statistical Analysis System (SAS; SAS Institute
Inc., Cary, NC, USA) was applied to estimate the three parameters
8 of 12
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in the revised EC-LUE model. The revised EC-LUE model was cali-
brated at 50 EC towers and validated at 41 different towers (table S3).
The results showed good model performance of the revised EC-LUE
model for simulating biweekly GPP variations (fig. S13). To estimate
global GPP, EC-LUE and MODIS models used the MERRA dataset
(i.e., air temperature, VPD, PAR). Because of the different model
algorithm, GIMMS3g NDVI and fPAR products were used to indicate
vegetation conditions for EC-LUE and MODIS, respectively.

We performed two types of experimental simulation to evaluate
the relative contribution of threemain driving factors: CO2 fertilization,
climate change, and satellite-based NDVI/fPAR changes. The first
simulation experiment (SALL) was a normal model run, and all drivers
were set to change over time to examine the responses of GPP to all
environmental changes, including climate, atmospheric [CO2], and
NDVI/fPAR. The second type of simulation experiments (SCLI0, SNDVI0,
and SCO20) allowed two driving factors to change with time while
holding the third constant at an initial baseline level. For example, the
SCLI0 simulation experiment allowed NDVI and atmospheric [CO2] to
change with time, while climate variables were held constant at 1982
values. SNDVI0 and SCO20 simulation experiments kept NDVI and atmo-
spheric [CO2] constant at 1982 values and varied the other two variables.

We considered the differences between simulation results of the first
type (SALL) and second type (SCO20 and SNDVI0) of experiments to
estimate the sensitivity of GPP to atmospheric [CO2] (bCO2) and
NDVI/fPAR (bNDVI). bCO2 and bNDVI were calculated on the basis of
the following equations

DGPPðSALL�SCO20Þi ¼ bCO2 � DCO2ðSALL�SCO20Þi þ e ð20Þ

DGPPðSALL�SNDVI0Þi ¼ bNDVI � DNDVIðSALL�SNDVI0Þi þ e ð21Þ

where DGPPi, DCO2i, and DNDVIi represent the differences of GPP
simulations, atmospheric [CO2], and NDVI between two model
experiments from 1982 to 2015, and e is the residual error term.

A multiple regression approach was used to estimate GPP sensitiv-
ities to three climate variables: air temperature (bTa), VPD (bVPD), and
PAR (bPAR)

DGPPðSALL�SCLI0Þi ¼ bTa � DTaðSALL�SCLI0Þi þ bVPD

� DVPDðSALL�SCLI0Þi þ bPAR
� DPARðSALL�SCLI0Þi þ e ð22Þ

whereDTai,DVPDi andDPARi represent the differences of air tempera-
ture, VPD, and photosynthetically active radiation time series between
two model experiments (SALL and SCLI0), respectively. The regression
coefficient b was estimated using maximum likelihood analysis.

The EC-LUE model suggested a CO2 sensitivity (bCO2) of
19.01 ± 4.01 Pg C 100 ppm−1 (Fig. 6B and table S2), which indicates
a 15.7% increase of GPP with a rise of atmospheric [CO2] of 100 ppm.
Our estimate is close to CO2 sensitivity derived from ecosystem
models (bCO2 = 21.92 ± 4.55 Pg C 100 ppm−1; Fig. 6B) and is compa-
rable to the observed response of NPP (net primary production) to the
increased CO2 at the FACE experiment locations (13% per 100 ppm)
and estimates of other ecosytemmodels (5 to 20% per 100 ppm) (51).

A machine learning method (i.e., RF) was used to model the effects
of VPD on NDVI. RF combines tree predictors such that each tree de-
Yuan et al., Sci. Adv. 2019;5 : eaax1396 14 August 2019
pends on the values of a random vector that is sampled independently,
with the same distribution for all trees in the forest. We constructed RF
models for simulating annual growing seasonmeanNDVI at each pixel
driven by air temperature, precipitation, radiation, wind speed, atmo-
spheric [CO2] concentration, and VPD. The training data were the
GIMMS3g NDVI dataset from 1982 to 2015. The R package “random-
Forest” used in the study wasmodified by A. Liaw andM.Wiener from
the original Fortran by L. Breiman and A. Cutler (https://cran.r-project.
org/web/packages/randomForest/).

The RF model was driven by all variables (climate and atmospheric
[CO2]) changing over time (RFALL), and two factorial simulations of
NDVI (RFCO20 and RFCLI0) were produced by holding one driving
factor (climate or atmospheric [CO2]) constant at its initial level (first
year of data) while allowing the other driving to change with time. The
RFCLI0 simulation experiment allowed atmospheric [CO2] other than
climate variables to vary since 1982. RFCO20 simulation experiments
kept atmospheric [CO2] constant at 1982 values and varied the climate
variables. At each pixel, we selected 33 years of NDVI observations out
of the total 34 years (1982–2015) to develop the RF model, and the re-
maining 1 year of NDVI observations was used for cross-validation.
The model was run 34 times to ensure that the data of each year can
be selected to domodel validation. The simulatedNDVI of threemodel
experiments (i.e., RFALL, RFCO20, and RFCLI0) are mean values of all
34 times simulations. The simulated NDVI only from the validation
year constitutes the RFVLI dataset, which was used to examine the
performance of random forest for reproducing NDVI. The simulated
NDVI of RFVLI matched the GIMMS3g NDVI very well (fig. S7), and
the correlation coefficient (R2) is larger than 0.90 at the 88% vegetated
areas globally. The tropical forest showed the relative low R2. The rela-
tive predictive errors range from −1.2 to 1.04% globally and imply that
the RF model can accurately simulate interannual variability and mag-
nitude of NDVI.

On the basis of the three model experiments, we used the same
method above shown at Eqs. 20 and 22 to estimate the sensitivity of
NDVI to atmospheric [CO2] (dCO2) and five climate variables: air tem-
perature (dTa), VPD (dVPD), PAR (dPAR), precipitation (dPrec), andwind
speed (dWS)

DNDVIðRFALL�RFCO20Þi ¼ dCO2 � DCO2ðRFALL�RFCO20Þi þ e ð23Þ

DNDVIðRFALL�RFCLI0Þi ¼ dTa � DTaðRFALL�RFCLI0Þi þ dVPD

� DVPDðRFALL�RFCLI0Þi þ dPAR

� DPARðRFALL�RFCLI0Þi þ dPrec

� DPrecðRFALL�RFCLI0Þi þ dWS

� DWSðRFALL�RFCLI0Þi þ e ð24Þ

where D represents the differences of NDVI simulations, atmospheric
[CO2], and climate variables between two model experiments from
1982 to 2015, and e is the residual error term. The regression coefficient
d was estimated using maximum likelihood analysis. We quantified the
contributions of atmospheric [CO2] and five climate variables to NDVI
changes during the two periods (1982–1998 and 1999–2015) by multi-
plying the magnitude of their changes and sensitivity of NDVI (d).

Terrestrial carbon cycle models
This study used a set of 10 terrestrial carbon cycle models included in
the TRENDY project (version 5), which aims to further investigate the
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spatial trends in terrestrial ecosystem carbon cycles (52): CABLE (Com-
munityAtmosphere Biosphere LandExchange) (53), CLASS (54), CLM
(Community LandModel) (55), ISAM (Integrated Science Assessment
Model) (56), JSBACH (Jena Scheme for Biosphere-Atmosphere Cou-
pling in Hamburg) (57), JULES (Joint UK Land Environment Simula-
tor) (58), LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem
Simulator) (59), LPX (Land surface Processes and eXchanges) (60),
ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosys-
tems) (61), andVISIT (Vegetation Integrated Simulator for Trace gases)
(62). Three TRENDYmodel experiments were used to evaluate the rel-
ative contribution of atmospheric CO2 concentration and climate
change to GPP: (S0) no forcing change, (S1) varying CO2 only, and
(S2) varying CO2 and climate. The model differences of S1 and S0
and Eq. 20 were used to estimate GPP sensitivities to atmospheric
CO2 concentration, and the differences of S2 and S1 and Eq. 22 were
used to estimate GPP sensitivities to three climate variables: air tem-
perature (bTa), VPD (bVPD), and PAR (bPAR).

All models were forced with reconstructed historical climate fields
and atmospheric CO2 concentrations. All models used the same forcing
files, of which historical climate fields were obtained from the CRU-
NCEP v4 dataset (http://dods.extra.cea.fr/data/p529viov/cruncep/),
and global atmospheric CO2 concentration was obtained from a com-
bination of ice core records and atmospheric observations (63).

Analysis
A piecewise linear regression approach was used to detect changes in
the trends of various variables (64)

y ¼ b0 þ b1t þ e; t≤a
b0 þ b1t þ b2ðt � aÞ þ e; t > a

�
ð25Þ

where y is VPD, NDVI, LAI, GPP, and oceanic evaporation (Eocean); t is
the year; a is the estimated TP of the time series, defining the timing of a
trend change; b0, b1, and b2 are the regression coefficients; and e is the
residual of the fit. The investigated variable linear trend is b1 before the
TP and b1 + b2 after the TP. Least squares linear regression was used to
estimate a and other coefficients, where a P value of ≤0.05 was
considered significant. The 5-year runningmeanswere used to quantify
the TP.

In addition, the partial correlation method was used to analyze the
correlation between detrended VPD and detrended NDVI/LAI of five
satellite-based datasets, excluding the impacts of air temperature, radia-
tion, and atmospheric [CO2] concentration. Because of the obvious
transitions of VPD, NDVI, and LAI from 1982 to 2015, we used piece-
wise linear regression approach to determine the TP and then removed
the trends before and after the TP before the correlation analysis.
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