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E V O L U T I O N A R Y  B I O L O G Y

Deep learning on butterfly phenotypes tests evolution’s 
oldest mathematical model
Jennifer F. Hoyal Cuthill1,2,3*, Nicholas Guttenberg1*, Sophie Ledger4,  
Robyn Crowther4, Blanca Huertas4

Traditional anatomical analyses captured only a fraction of real phenomic information. Here, we apply deep learn-
ing to quantify total phenotypic similarity across 2468 butterfly photographs, covering 38 subspecies from the 
polymorphic mimicry complex of Heliconius erato and Heliconius melpomene. Euclidean phenotypic distances, 
calculated using a deep convolutional triplet network, demonstrate significant convergence between interspe-
cies co-mimics. This quantitatively validates a key prediction of Müllerian mimicry theory, evolutionary biology’s 
oldest mathematical model. Phenotypic neighbor-joining trees are significantly correlated with wing pattern 
gene phylogenies, demonstrating objective, phylogenetically informative phenome capture. Comparative analy-
ses indicate frequency-dependent mutual convergence with coevolutionary exchange of wing pattern features. 
Therefore, phenotypic analysis supports reciprocal coevolution, predicted by classical mimicry theory but since 
disputed, and reveals mutual convergence as an intrinsic generator for the unexpected diversity of Müllerian 
mimicry. This demonstrates that deep learning can generate phenomic spatial embeddings, which enable quan-
titative tests of evolutionary hypotheses previously only testable subjectively.

INTRODUCTION
Analyses of biological phenotype have traditionally used only subjec-
tive (1), categorical descriptions, although variation in many traits is 
fundamentally quantitative (2, 3). Consequently, evolutionary ques-
tions that have been the subject of speculation for more than 150 years 
(4, 5) have never before been addressed definitively because of the lack 
of phenotypic trait quantification. More recent, quantitative approaches 
to phenotypic analysis have included geometric measurement, out-
line or landmark analysis (geometric morphometrics) (6, 7), spectro-
photometry (3), and image pixel comparisons. While such standard 
analyses have underpinned comparative anatomy, taxonomic desig-
nation (3), investigation of phenotypic evolution, and morphological 
phylogenetics (2), even the largest studies capture only a small fraction 
of real phenomic information, require laborious manual processing (8), 
may be sensitive to feature conjunction (e.g., pattern element dupli-
cation) or minor misalignment (7, 9), can produce descriptive sta-
tistics that are nonreplicable (1) or internally inconsistent (10), and 
produce evolutionary trees with consistent topological differences to 
genomic phylogenies (11). For such reasons, real-world evolutionary 
systems, such as the classic case study of mimicry in Heliconius 
butterflies (4, 12, 13), have previously been beyond the reach of 
comprehensive phenomic analysis. In consequence, fundamental 
questions in evolutionary theory have remained outstanding, includ-
ing (i) the statistical congruence between phenomic and genomic 
phylogenies (11); (ii) the statistical significance and quantitative 
extent, during mutualistic Müllerian mimicry, of phenotypic con-
vergence, the principal prediction of evolutionary biology’s first 
mathematical model (4, 13, 14); (iii and iv) the quantitative effects of 
hybridization (15, 16) and biogeographic distance (17, 18) on pheno-

typic convergence in mimicry; (v) the existence and quantitative extent 
of mutual phenotypic convergence [and therefore strict coevolution 
(19)] in mimicry (4, 13); and (vi) the effects of mimetic convergence 
on the coevolution of phenotypic novelty.

New advances in machine learning using deep neural networks 
(deep learning) (20) enable automated quantification of total similar-
ity across large and diverse data samples, in Euclidean spaces of mod-
erate dimensionality (21, 22). Within biology, however, deep learning 
has been applied primarily to image classification tasks (20). Here, 
we apply deep learning using a convolutional triplet neural network 
(21, 22) to additionally quantify total visible phenotypic similarity 
among dorsal and ventral photographs of 38 subspecies of Neotropical 
butterfly from the species Heliconius erato and Heliconius melpomene. 
The analysis includes 1234 butterfly specimens, widely sampling 
the total geographic range (fig. S2) and extensive wing pattern poly-
morphism within each species (fig. S4). This enables the first com-
prehensive, quantitative analysis of Müllerian mimicry across this 
classic (12, 23), but controversial (13) coevolutionary system. This 
provides quantitative answers to major outstanding questions in 
evolutionary theory, as well as the most phenotypically inclusive in-
vestigation, to date, of evolutionary convergence (24, 25) and a fully 
automated, objective data-capture method for phenotypic (morpho-
logical) phylogenetics.

RESULTS
Deep learning network output and accuracy
To quantify phenotypic distances between Heliconius butterflies, a 
deep convolutional neural network (fig. S1) was trained to classify 
photographs of Heliconius butterflies by subspecies, with 1500 of 2468 
total images used for network training and the remainder for testing. 
The training method (21, 22) used triplets of images, each replicate 
showing the network two images sampled from the same subspecies 
and one sampled from a different subspecies. The deep convolu-
tional neural network (which we name ButterflyNet) learnt both to 
correctly classify images by subspecies and to calculate an internally 
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consistent set of Euclidean distances between input images, with 
those of the same subspecies closer together and those of different 
subspecies further apart. The trained network achieved 86% accuracy 
in classifying test images by subspecies (compared to a chance value 
of 5%). Crucially, the network also calculated coordinates of all 2468 
images within a phenotypic spatial embedding, with dimensionality 
set to 64 (table S3). In doing so, the network identifies and uses a 
subset of information from the input images that is sufficient to dis-
criminate the taxonomic groups with the reported accuracy. A support 
vector classifier (SVC) trained on the spatial embeddings similarly 
achieved 87% subspecies classification accuracy, confirming that 
the spatial embedding preserves information sufficient for successful 
classification.

Phylogenetic results
Neighbor-joining trees, reconstructed from phenotypic distances be-
tween subspecies (Fig. 1 and fig. S6), group interspecies mimics rather 
than separating the species, consistent with evolutionary conver-
gence, as discussed below (although species are successfully separated 
by specific embedding axes; Fig. 2F). However, recovered intraspecific 
relationships, in particular, show significant similarities to indepen-
dent, published phylogenies based on gene sequences (for an over-
lapping subset of 25 subspecies) (Fig. 1) (26, 27). For both species 
(separately and combined), the phenotypic trees are significantly more 
similar to color pattern gene trees than are randomly generated trees 
(Mann-Whitney pairwise comparisons, P ≤ 2.59 × 10−256; table S10). 
This demonstrates that the phenotypic distances generated by deep 
learning contain significant phylogenetic information relative to a 
null hypothesis of random similarity. On average, intraspecific trees 
of phenotypic distance are significantly more similar to trees recon-
structed from genes associated with wing color pattern (27) than they 
are to neutral gene loci (“housekeeping genes”) or to a control sample 
of random phylogenetic topologies (Mann-Whitney pairwise com-
parisons: H. erato, P ≤ 7.128 × 10−35; H. melpomene, P ≤ 1.645 × 10−13; 
and all subspecies, P ≤ 0.0066; Fig. 1 and table S10). For H. erato 
(Fig. 1E) phenotypic phylogenies are more similar to color gene phy-
logenies than color gene phylogenies are to neutral gene phylogenies. 
Statistics repeated after exclusion of hybrid specimens (table S2) con-
firm these results (table S11). We can note that the differences be-
tween gene histories are expected because of standard population 
genetic processes and a greater difference between genetic partitions 
is apparent in H. erato (Fig. 1E), which tends to have larger popula-
tion sizes and carries more genetic variation (26,  28,  29). Overall, 
these results show that, despite a strong signal from mimicry between 
the species, the phenotypic spatial embedding has successfully recov-
ered additional phylogenetic information within the image dataset 
[originating from the combination of lineal descent and historical 
hybridization (26, 28)].

Quantification of phenotypic similarity
Across the complete dataset, specimens of the same subspecies [exhaus-
tively sampled from the Natural History Museum (NHM) collection] 
are clustered in a visualization of the first two principal component 
axes constructed from the phenotypic spatial embedding (Fig. 2A). 
Similarly, statistical analyses of average pairwise Euclidean distances 
(table S4) calculated directly from the original embedding coordi-
nates (table S3) show that the most phenotypically similar butterfly 
images are those of the same subspecies (Kruskal-Wallis, P = 1.043 × 
10−28; H = 128.9; Mann-Whitney pairwise, P ≤ 5.495 × 10−7; Fig. 3A, 

left). Alongside the high subspecies classification accuracy (≥86%), 
this demonstrates that named subspecies of H. erato and H. melpomene 
(30) are objectively distinguishable, despite phenotypic variability 
among individuals and incomplete reproductive isolation between 
subspecies within each species.

Testing phenotypic convergence
Pairwise comparisons across subspecies (Fig. 3A, middle right) show 
that traditionally hypothesized sympatric co-mimics (Figs. 1 and 2, 
fig. S3, and table S1) (12) are significantly more similar to each other 
than are other subspecies pairs (Mann-Whitney pairwise, P = 5.50 × 
10−7). Comparisons performed separately for each species confirm 
these results (Kruskal-Wallis, P = 1.48 × 10−23; H = 113.2; Mann-
Whitney pairwise comparisons mimicry versus identity or other, 
P ≤ 4.16 × 10−4; identity versus other, P ≤ 6.43 × 10−11; interspecies 
identity and other, nonsignificant, respectively P = 0.9532, P = 0.3285; 
Fig. 3B). This highlights the remarkable level of adaptive phenotypic 
evolution by these species, in which mimetic phenotypic similarity 
between the species (Figs. 2B and 3B, middle) is greater than the sub-
species similarity within them (Figs. 2E and 3B, right). Across the 38 
sampled subspecies, six distinct phenotypic clusters, identified by both 
hierarchical clustering (Fig. 2C and Table 1) and neighbor joining 
(fig. S6), include interspecies co-mimics. 

Hybridization
Statistical comparisons of phenotypic distance with hybrids excluded 
confirm that co-mimics (Fig. 1, fig. S3, and table S1) (12) are signifi-
cantly more similar to each other than are other subspecies pairs, 
with a reduced average distance between the co-mimics and increased 
statistical significance compared to the complete dataset (hybrids ex-
cluded Mann-Whitney pairwise, P = 2.33 × 10−8; average distance 
mimics = 0.897, n mimics = 15; complete dataset: average distance 
mimics = 1.027, n mimics = 19).

Biogeography
Butterfly individuals sampled from subspecies that are traditionally 
hypothesized co-mimics are also confirmed to be geographically closer, on 
average, than those from other subspecies pairs (Kruskal-Wallis, 
P = 4.23 × 10−16; H = 70.8; Mann-Whitney, P ≤ 0.0066; pairwise, 
P = 0.0041; fig. S5). This indicates that geographic proximity has pro-
moted interspecies convergence in mimicry (17, 18), between H. erato 
and H. melpomene, across their Neotropical range.

Testing mutual convergence
The extent of mutual convergence in mimicry is illustrated by a case 
study (Fig. 4) from three comparative analyses (covering 12 of the 
studied subspecies), all of which are supportive of reciprocal coevo-
lutionary influence (fig. S7). Comparisons of the average locations 
of these subspecies in phenotypic space (Fig. 4) indicate statistically 
significant mutual convergence for this case study (with H. erato 
cyrbia closer to H. melpomene cythera than is H. erato venus and 
H. melpomene cythera closer to H. erato cyrbia than is H. melpomene 
vulcanus; H. erato mean distance from conspecific = 0.26; Mann-
Whitney, P = 1.0195 × 10−15; H. melpomene mean distance = 0.41; 
P = 5.1718 × 10−31). The calculated extent of convergence by H. melpomene 
is 1.6 times that by H. erato (1.4 with hybrids excluded; fig. S7). Of 
the three comparative analyses (fig. S7), two indicate mutual conver-
gence (Fig. 4 and fig. S7, A and B), and one indicates divergence by 
H. erato outside the geographic range of H. melpomene.
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Convergence on novel patterns
This case study (Fig. 4) also shows that, for both H. erato and 
H. melpomene, a pattern feature shared by the focal co-mimics is pre-
dominant in one of their conspecifics, but not the other, supporting 

mutual transfer of pattern features between these lineages. Specifi-
cally, H. erato cyrbia and H. melpomene cythera both have strongly 
blue, iridescent wings, a characteristic typical of H. erato venus but 
not of H. melpomene vulcanus [which is more black, particularly 

Fig. 1. Phylogenetic relationships between subspecies of H. erato and H. melpomene. (A to C) Neighbor-joining consensus networks of phenotypic distance (eight 
sampled embedding axes, 100 replicates). (D to F) Tree space visualizations for phylogenies based on phenotype (orange and red, 32 embedding axes; red, hybrids ex-
cluded; cyan, 64 embedding axes), color pattern genes (green) (27), neutral genes (yellow), and randomized topologies (blue, 1000 replicates). (A and D) All subspecies. 
(B and E) Only H. erato. (C and F) Only H. melpomene. (A to C) Node label color indicates species (black, H. erato and gray, H. melpomene). Node colors show mimicry groups 
(tables S1 and S9). Node numbers show subspecies numbers (table S1).
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on the hindwing, e.g., individuals closest to the mean location for 
the subspecies (Fig. 4); see also type descriptions (31)]. Conversely, 
phenotypically average H. erato cyrbia and H. melpomene cythera 
have comparatively narrow red forewing bands, a feature more typ-

ical of H. melpomene vulcanus than of H. erato venus [average indi-
viduals (Fig. 4); type descriptions (31)]. This represents a newly 
demonstrated mechanism for the coevolution of novel phenotypes, 
as discussed below.

Fig. 2. Principal component visualization of phenotypic variation among Heliconius butterflies. Principal component scores calculated for 2468 images of butterfly 
species H. erato and H. melpomene on the basis of image coordinates in a 64-dimensional phenotypic space, generated using a deep convolutional triplet network. 
Cumulative variance explained by displayed principal component axes: 1, 28%; 2, 50%; 3, 68%; and 4, 81%. (A) Butterfly subspecies 1 to 38 (Fig. 1 and table S7). (B) Twelve 
traditionally hypothesized (12) mimicry complexes (tables S1 and S9) of H. erato and H. melpomene subspecies (gray circles indicate nonmimics, not included in any of 
these mimicry complexes). (C) Six hierarchical clusters. (D) Two broad classes of type pattern for each subspecies (table S8), with orange rays (orange circles) or without 
rays (black circles). (E and F) Species, H. erato (black circles) and H. melpomene (gray circles).
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DISCUSSION
Quantification of phenotypic similarity using deep learning
The spatial embedding constructed by the deep convolutional neural 
network captures and systematizes the phenotypic variation among 
Heliconius butterfly subspecies, from relatively subtle differences in 
the size, shape, number, position and color of wing pattern features 
(Fig. 2A, Table 1, and fig. S4) to broad divisions between major 
patterns groups (Fig. 2, C and D, and Table 1). This provides a 
comprehensive quantification of visible phenotypic similarity and an 
objective test of taxonomic delimitation (3), difficult or impossible to 
achieve with traditional morphometric methods (6, 7) because of the 
scale and complexity of phenotypic variation.

The availability of genetic distances for butterfly subspecies studied 
here provides a ground truth against which the phenotypic distances, 
generated using the deep convolutional triplet network, can be tested. 
This ground truth is closely related to the natural selection pressures 
on wing pattern phenotype that these butterflies experienced during 
their evolutionary history, especially for genes specifically associated 

with wing pattern phenotype (27). The statistically significant similar-
ity between the phenotypic neighbor-joining trees generated using deep 
learning and independently reconstructed pattern gene phylogenies 
(26) therefore confirms the utility of this spatial embedding method 
(21, 22) for evolutionary analysis. This demonstrates that deep learn-
ing can achieve informative quantification of biological phenome 
samples at microevolutionary (intraspecies) to macroevolutionary (in-
terspecies) scales. Our finding that deep learning can recover signif-
icant phylogenetic information from phenome samples also validates 
what is, to our knowledge, the first fully automated, objective method 
for the construction of phenotypic (or “morphological”) phylogenies. 
This is of particular significance since subjective morphological phy-
logenies and taxonomic relationships (traditionally based on morphol-
ogy) have been shown to exhibit statistical nonreplicability between 
researchers (1) and consistent topological biases (11).

Phenotypic convergence in Müllerian mimicry
Traditional hypotheses of mimicry were based on subjective quali-
tative assessments of phenotypic similarity between subspecies with 
overlapping geographic ranges (12). The significantly lower phenotypic 
distances between co-mimic subspecies of H. erato and H. melpomene 
relative to nonmimics (Fig. 3B) now quantitatively demonstrate evolu-
tionary convergence (24, 25) in visible phenotype during the evolution 
of mimicry, considering as input all phenotypic information from the 
2468 dorsal and ventral butterfly photographs. Historical, qualitative 
discussions of convergence have also focused primarily on taxonomic 
type patterns (based on a small number of type specimens selected as 
representative examples for each subspecies) (31). Our analysis of 
specimens exhaustively sampled from the Natural History Museum 
collection demonstrates statistically significant convergence across 
this comprehensive sample of wild phenotypic variation. This indi-
cates that, even with the inclusion of individual variation and natu-
ral hybrids (table S2), evolutionary convergence in visual mimicry 
exerts a dominant statistical signal.

Hybridization occurs naturally between some intraspecific sub-
species (and with some other Heliconius species, although H. erato 
and H. melpomene do not interbreed) both at hybrid zones where 
adjacent geographic ranges meet and, sometimes, far from these range 
boundaries. Hybrids may deviate perceptibly from a locally common 
wing pattern, in which case preferential predation can provide pu-
rifying selection that stabilizes mimicry (17). Hybridization is also 
increasingly recognized as a source of wing pattern variation (in addi-
tion to standard mutation) that can promote reproductive isolation 
and ecological speciation (15). Consequently, hybridization forms 
an important component of this mimicry system, with potentially 
complex effects on mimicry evolution. Statistical comparisons of phe-
notypic distance with hybrids excluded demonstrate that an even 
stronger signal of mimicry is apparent than for the complete dataset. 
These findings confirm theoretical suggestions that the general ef-
fect of wild hybridization between Heliconius subspecies is to dilute 
the strength of phenotypic mimicry (16), although mimicry remains 
the dominant phenotypic signal even with hybrids included.

The two species, H. erato and H. melpomene, have independently 
evolved similar wing patterns multiple times, with a hierarchy of con-
vergent pattern detail (Fig. 2, B to D, and Table 1). Across the 38 sub-
species, there are six distinct and convergent phenotypic clusters (Fig. 
2C, Table 1, and fig. S6), which include interspecies co-mimics. These 
convergent phenotypic clusters include, for example, the orange “rayed” 
patterns, nonrayed pattern types containing red and black “postman” 

Fig. 3. Average pairwise Euclidean phenotypic distances between subspecies 
of H. erato and H. melpomene. (A) Box plot of mean pairwise phenotypic distances 
(table S4) within subspecies (identity), between co-mimic subspecies (mimicry), 
and between all other subspecies (other). Sample sizes are 38, 19, and 684 subspecies 
pairs, respectively. (B) Separated species, H. erato (black labels, identity and other) 
and H. melpomene (gray) and interspecies co-mimics (mimicry). Sample sizes are 
21, 17, 15, 209, and 133 pairs. Boxes show 25 to 75% quartiles; horizontal lines, 
medians; whiskers, inner fence within 1.5 × box height; circles and asterisks, outliers, 
respectively, within or beyond 3 × box height.
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Table 1. Hierarchical clusters of subspecies from H. erato and H. melpomene calculated from the phenotypic spatial embedding. Cluster membership is 
based on the modal specimen value for each subspecies after exclusion of hybrid specimens (table S2). Subspecies are illustrated by the dorsal photograph 
closest to the subspecies principal component analysis centroid (corresponding to Fig. 2A). N indicates subspecies number (table S1). Cluster numbers are 
colored by value to highlight divisions.

 

N clusters  

Species Subspecies N Image 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 

erato  venustus  36 

 

1 3 1 3 1 3 4 6 8 1 3 5 7 9 11  13  14  15  17  18  19  20  21  1 3 5 7 9 10  12  14  16  18  20 

melpomene  nanna 26 

 

1 3 1 3 1 3 4 6 8 1 3 5 7 9 11  13  14  15  17  18  19  20  21  2 4 6 8 10  11  1 3 5 7 9 

melpomene  burchelli  6 

 

1 3 1 3 1 3 4 6 8 1 3 5 7 9 11  13  14  15  17  18  19  20  21  2 4 6 8 10  11  2 4 6 8 10 

erato  demophoon  10 

 

1 3 1 3 1 3 4 6 8 2 4 6 8 10  12  1 3 5 7 9 11 13  14  16  18  19  21  1 3 5 7 9 11  13  

erato  colombina  7 

 

1 3 1 3 1 3 4 6 8 2 4 6 8 10  12  1 3 5 7 9 11  13  14  16  18  19  21  2 4 6 8 10  12  14 

erato  favorinus  16 

 

1 3 1 3 1 3 4 6 8 2 4 6 8 10  12  1 3 5 7 9 11  13  14  16  18  19  21  2 4 6 8 10  12  14 

melpomene  amaryllis  4

 

1 3 1 3 1 3 4 6 8 2 4 6 8 10  12  2 4 1 3 5 7 9 10  12  14  16  18  20  21  22  24  26  28  29 

melpomene  rosina  32 

 

1 3 1 3 1 3 4 6 8 2 4 6 8 10  12  2 4 2 4 6 8 10  11  13  15  17  19  21  22  23  25  27  29  30 

erato  etylus  15 

 

1 3 1 3 2 4 5 7 1 3 5 7 9 11  13  14  15  16  1 3 5 7 9 11  13  15  17  19  20  21  23  25  27  1 

erato  notabilis  27 

 

1 3 1 3 2 4 5 7 1 3 5 7 9 11  13  14  15  16  2 4 6 8 1 3 5 7 9 11  12  13  15  17  19  21 

melpomene  malleti  23 

 

1 3 1 3 2 4 5 7 1 3 5 7 9 11  13  14  15  16  2 4 6 8 2 4 6 8 10  12  13  14  16  18  20  22 

melpomene  plesseni  31 

 

1 3 1 3 2 4 5 7 2 4 1 3 5 7 9 11  12  13  15  16  17  19  20  22  23  24  26  27  28  29  31  32  33  34 

erato  microclea  25 

 

1 3 1 3 2 4 5 7 2 4 2 4 6 8 10  12  13  14  16  17  18  1 3 5 7 9 11  13  14  15  17  19  21  23 

melpomene  xenoclea  38 

 

1 3 1 3 2 4 5 7 2 4 2 4 6 8 10  12  13  14  16  17  18  2 4 6 8 10  12  14  15  16  18  20  22  24 

melpomene  aglaope  1 

 

1 3 2 1 3 5 6 8 9 10  11  13  14  1 3 5 7 8 10  12  14  16  17  19  21  22  24  25  26  27  29  30  1 3 

melpomene  schunkei  33 

 

1 3 2 1 3 5 6 8 9 10  11  13  14  1 3 5 7 8 10  12  14  16  17  19  21 22  24  25  26  27  29  30  2 4 

erato  luscombei  22 

 

1 3 2 1 3 5 6 8 9 10  11  13  14  2 4 6 1 3 5 7 9 11  12  14  16  18  20  22  23  24  26  1 3 5 

erato  lativitta  21 

 

1 3 2 1 3 5 6 8 9 10  11  13  14  2 4 6 1 3 5 7 9 11  12  14  16  18  20  22  23  24  26  2 4 6 

melpomene  ecuadorensis  12 

 

1 3 2 1 3 5 6 8 9 10  11  13  14  2 4 6 2 4 6 8 10  12  13  15  17  1 3 5 7 9 11  13  15  17 

erato  emma  13 

 

1 3 2 1 3 5 6 8 9 10  11  13  14  2 4 6 2 4 6 8 10  12  13  15  17  2 4 6 1 3 5 7 9 11 

erato  dignus  11 

 

1 3 2 1 3 5 6 8 9 10  11  13  14  2 4 6 2 4 6 8 10  12  13  15  17  2 4 6 2 4 6 8 10  12 

erato  erato  14 

 

1 3 2 2 4 6 7 9 10  11  12  1 3 5 7 9 10  11  13  15  16  18  19  21  2 4 6 8 9 11  13  15  17  19 

melpomene  thelxiopeia  34 

 

1 3 2 2 4 6 7 9 10  11  12  2 4 6 8 10  11  12  14  2 4 6 8 10  12  14  16  18  19  20  22  24  26  28 

erato  guarica  19 

 

2 1 3 4 5 7 8 1 3 5 6 8 10  12  14  15  16  17  18  19  20  21  22  23  24  25  27  28  29  30  1 3 5 7 

erato  hydara  20 

 

2 1 3 4 5 7 8 1 3 5 6 8 10  12  14  15  16  17  18  19  20  21  22  23  24  25  27  28  29  30  2 4 6 8 

melpomene  vulcanus  37 

 

2 1 3 4 5 7 8 2 4 6 7 9 11  13  1 3 5 6 8 10  12  14  15  17  19  20  22  23  24  25  27  28  30  31 

melpomene  �agrans  18 

 

2 1 3 4 5 7 8 2 4 6 7 9 11  13  2 4 6 7 9 11  13  15  16  18  20  21  23  24  25  26  28  29  31  32 

melpomene  melpomene  24 

 

2 1 3 4 5 7 8 2 4 6 7 9 11  13  2 4 6 7 9 11  13  15  16  18  20  21  23  24  25  26  28  29  31  32 

melpomene  cythera  9 

 

2 2 4 5 6 1 3 5 7 9 10  12  1 3 5 7 8 9 11  13  15  17  18  20  22  23  25  26  27  28  30  31  32  33 

erato  venus  35 

 

2 2 4 5 6 1 3 5 7 9 10  12  2 4 6 8 9 10  12  14  1 3 5 7 9 11  13  15  16  17  19  21  23  25  

erato  cyrbia  8 

 

2 2 4 5 6 1 3 5 7 9 10  12  2 4 6 8 9 10  12  14  2 4 6 8 10  12  14  16  17  18  20  22  24  26 
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patterns (Fig. 2D), with or without a yellow hindwing band (hierar-
chical clustering with three clusters) and with red versus yellow forewing 
pattern features (four clusters), as well as patterns with a yellow 
forewing feature of increased complexity (five clusters).

This comprehensive, quantitative demonstration of phenotypic 
convergence meets the principal prediction of Müller’s 1879 (4) model 
for the evolution of mimicry in mutually protected species (Müllerian 
mimics), such as unpalatable Heliconius butterflies (12). In this, the 
first mathematical model of Darwinian relative fitness (4, 14), Müller 
predicted that two equally unpalatable, co-occurring populations will 
come to resemble each other because both benefit by sharing the cost 
of predator avoidance learning, with relative fitness benefits propor-
tional to the inverse square of abundance [with additional abundance 
effects suggested by later reformulations (14)] (4). Relative abundance 
has been estimated respectively at 1.3:1 to 2.4:1 for H. erato and 
H. melpomene overall (28, 29) [predicting respective benefits of 1:1.7 
to 1:5.8 (4)] but is subject to marked local fluctuations, in which mo-
mentary relative abundances of the species may be equal or reversed 
relative to the overall trend (32).

Mutual convergence and strict coevolution
The historically controversial (13) extent of mutual convergence in 
mimicry is illustrated by a detailed case study (Fig. 4) from three com-
parative analyses (covering 12 subspecies), all of which support reciprocal 
influence (fig. S7), which is the definitive feature of strict coevolution 
(19). Focal co-mimics H. erato cyrbia and H. melpomene cythera (Fig. 
4) share a white hindwing marginal fringe and strong blue iridescence 
of the dorsal wing surface also present in their phenotypically closest 

conspecifics, H. erato venus and H. melpomene vulcanus [conspecifics 
also recovered as sister groups in independent gene phylogenies 
(26)]. Both pattern features are likely to have been secondarily derived 
(rather than ancestral within each species) on the basis of gene phy-
logenies, biogeographic distribution, and phylogeographic reconstruc-
tion (12, 16, 26, 33). Geographic ranges (fig. S2) and phylogeographic 
reconstruction (26) also suggest that H. erato cyrbia and H. melpomene 
cythera are at an extreme of a west Andean subradiation (with con-
specifics adjacent, north-east). This supports pattern derivation from 
the forms of H. erato venus and H. melpomene vulcanus to those of 
H. erato cyrbia and H. melpomene cythera (rather than vice versa). 
This shared biogeographic history is also compatible with the poten-
tial for strict interspecies coevolution, since reciprocal evolutionary 
influence between two taxa requires that they co-occur in both space 
and time (26). With regard to timing, while early phylogenetic studies 
cast doubt on the extent of contemporaneous diversification by H. erato 
and H. melpomene (34), subsequent genomic analyses (taking into ac-
count population sizes) have reconstructed their diversification over 
closely overlapping time ranges (28, 29).

Comparisons of the average locations of these subspecies in phe-
notypic space (Fig. 4) show statistically significant mutual conver-
gence. The implied extent of convergence by H. melpomene is 1.6 times 
that by H. erato, in line with the general frequency-dependent fitness 
benefits expected in Müllerian mimicry (4) between these species 
(with hybrids excluded, the value is 1.4; fig. S7). Of the three com-
parative analyses (fig. S7), two indicate mutual convergence (Fig. 4 
and fig. S7, A and B), and one indicates divergence by H. erato where 
this subspecies leaves the geographic range and coevolutionary influ-
ence of H. melpomene [in Central-North American H. erato petiverana, 
fig. S7C; see also discussion in (23)]. For comparison, reversal of evo-
lutionary polarities (swapped conspecific foci) would imply two cases 
of mutual convergence (fig. S7, A and B) and one of divergence by 
H. melpomene (fig. S7C).

Interpreted with regard to the extent of reciprocal influence in wing 
pattern evolution, which has been controversial and difficult to test 
(13, 35), mutual convergence (Figs. 3 and 4 and fig. S7, A and B) and 
maintenance of wing pattern similarity in sympatry (e.g., fig. S7C) 
suggest that H. erato and H. melpomene have influenced each other 
(albeit to varying extents), with each species acting as both model and 
mimic to some degree, meeting the essential condition of strict recip-
rocal (13, 19) coevolution. This is in sympathy with classical Müllerian 
mimicry theory (4) while in contrast to theoretical alternatives such as 
entirely one-sided advergence (Fig. 5) (13) or divergence of a sympat-
ric model during parasitic, quasi-Batesian mimicry (36).

Coevolution of phenotypic novelty
The focal case study of H. erato cyrbia, H. melpomene cythera, and 
their closest conspecifics (Fig. 4) also indicates mutual coevolution-
ary transfer of pattern features between interspecific lineages (Fig. 4; 
conceptual diagram in Fig. 5). This represents a class of phenomic 
recombination, generating novel phenotypic combinations, but act-
ing via predator-mediated selection on phenotype (and underlying 
genotype) without direct gene exchange. To our knowledge, this mech-
anism for the generation of evolutionary novelty represents a newly 
identified coevolutionary phenomenon. However, coevolutionary pat-
tern recombination is also a logical consequence of the mutual conver-
gence predicted by classical Müllerian mimicry theory (4, 23, 37) 
and exemplifies the definitive feature of coevolution: coordina-
tion of evolutionary change in genetically distinct populations (38). 

Fig. 4. Comparative analysis of the extent of phenotypic convergence in mim-
icry. Case study from comparative analyses of 12 subspecies (fig. S7). The locations 
of two focal co-mimics (H. erato cyrbia, dark blue circles; H. melpomene cythera, dark 
red circles) in phenotypic space are compared alongside their nearest conspecifics 
(H. erato venus, light blue circles; H. melpomene vulcanus, light red circles). Subspe-
cies are illustrated by dorsal photographs of the butterfly closest to the mean loca-
tion for the subspecies. Gray circles indicate images of other subspecies in the 
dataset. Axes show the squared distance from the mean location of the focal 
co-mimic, summed across all 64 spatial embedding axes. Distance between sub-
species means on the y axis, H. erato venus − H. erato cyrbia = 0.26. Distance be-
tween subspecies means on the x axis, H. melpomene vulcanus − H. melpomene 
cythera = 0.41.
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Mutual convergence, of the type identified here (Fig. 4), can be con-
sidered equivalent to reciprocal advergence (where, in this usage, 
advergence means one-sided mimicry evolution (13)). One-sided 
advergence involves evolution in one lineage to match a phenotypic 
feature already present in its mimicry model (Fig. 5). This represents 
a coevolutionary information transfer from one lineage to another. 
Consequently, mutual convergence (i.e., reciprocal advergence) in 
two distinct pattern features entails reciprocal information exchange, 
with the potential to create a novel pattern, which did not previously 
exist in any lineage (Figs. 4 and 5). For example, in two lineages (la-
beled 1 and 2) that mutually converge (Figs. 4 and 5A) across two 
pattern features, forewing band shape (wide or narrow) and wing color 
(black or blue), the ancestral patterns (here inferred as wide, blue in 
lineage 1 and narrow, black in lineage 2) are then supplemented by 
a newly derived combination (here narrow, blue in both lineages). 
Thus, lineage 1 has taken on the ancestral band shape of lineage 2, 

while lineage 2 has picked up the ancestral wing color of lineage 1, to 
generate a new wing pattern.

This reveals that Müllerian mimicry can generate new pheno-
types by combining pattern features from different lineages (Figs. 4 
and 5 and fig. S7). While it is natural to expect that divergence will 
generate new phenotypic traits (Fig. 5, B, E, and H), the demonstration 
that evolutionary convergence can also generate new phenotypes is 
more unexpected (Figs. 4 and 5, A, D, and G). An intuitive expectation 
was that mimicry would drive convergence on a single-wing pattern 
(13) and classical discussion of coevolution (4, 12) did not itself ex-
plain the remarkable phenotypic diversity observed among Müllerian 
mimics (13). Consequently, proposed diversification mechanisms have 
often focused on external factors such as microhabitat adaptation (13), 
variable predator abundance (18), and isolation in glacial refugia (12), 
as well as effects from additional butterfly species (12) and stochastic 
population genetics (13, 18) (although all have been controversial). 

Fig. 5. Conceptual diagrams illustrating the evolutionary alternatives of mutual convergence, mutual divergence, and one-sided convergence (“advergence”). 
Dashed arrows indicate the direction of evolutionary change. Left (A, D, and G): Mutual convergence in focal taxa (focal taxa, gray circles) with reciprocal transfer of pat-
tern features (e.g., forewing band shape versus wing color) between two clades (1 and 2, respectively black versus gray outlines). Middle (B, E, and H): Reversed polarity 
with mutual divergence from the focal taxa. Right (C, F, and I): Advergence by one clade onto another (13). Asterisks indicate new derived patterns (feature combinations). 
When expressed in terms of the phenotypic distance from the focal taxa (G to I), mutual convergence (G) is characterized by a decreasing distance along the arrow of 
evolutionary change in both clades. Mutual divergence (H) is characterized by a increasing distance in both clades. Advergence (13) is characterized by a decreasing dis-
tance (and a greater distance traveled) in one clade (I).
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Here, direct quantitative analysis of phenotype reveals that mutual 
convergence can itself increase phenotypic diversity.

MATERIALS AND METHODS
Image acquisition and preprocessing
Butterfly specimens (1269) from the species H. erato and H. melpomene 
were photographed at the NHM London  (specimen numbers and 
image filenames, table S2), using consistent photographic protocols 
and lighting. Photographs were screened for poor image quality 
giving a final dataset of 1234 butterflies and 2468 photographs, 
including a dorsal and ventral photograph of each butterfly. For 
deep learning, images were then cropped and resized to a height of 
64 pixels (maintaining the original image aspect ratio and padded to 
140 pixels wide). The photographic dataset used for deep learning is 
provided in the Dryad Data Repository with filenames corresponding 
to joined data in table S2.

Taxonomic and locality data were recorded from NHM Heliconius 
butterfly specimen labels (table S2). Subspecies taxonomy follows 
reference (30). The complete photographic dataset covers 37 named 
subspecies and one-labeled cross: 21 subspecies from H. erato and 
17 from H. melpomene. Specimens of these subspecies were sam-
pled exhaustively from the NHM collection, within the limits of the 
data collection period. The complete photographic dataset (fig. S4, 
Dryad Data Repository) covers both specimens closely representa-
tive of subspecies descriptions (30, 31) (including available holo-
types, syntypes, and paratypes; table S2) as well as other, naturally 
varying, individuals. These variants include some likely hybrid spec-
imens showing varying levels of phenotypic admixture from other 
subspecies (see additional taxonomic information, table S2). Inclu-
sion of all available specimens in machine learning covered a very 
broad range of the phenotypic diversity within these species, pro-
viding the deep learning network with all available information 
from which to learn phenotypic features correlated with subspecies 
identification. Two sets of statistical analyses were then conducted, 
one set including all 1269 photographed butterfly specimens and 
the second set excluding potential hybrid specimens to give a re-
duced dataset of 815 specimens and 1630 photographs (fig. S4 and 
table S2).

Deep learning
To quantify phenotypic distances between Heliconius butterflies, a 
deep convolutional neural network was trained to classify photographs 
of Heliconius butterflies by subspecies, with 1500 of the 2468 total im-
ages used for network training and the remainder for testing. The 
training method (21, 22) used triplets of images, each replicate show-
ing the network two images sampled from the same subspecies and 
one sampled from a different subspecies. Image classification and spatial 
embedding were performed using a 15-layer deep learning network 
(Supplementary Computer Code), which we name ButterflyNet (fig. S1). 
This makes use of a triplet embedding loss function (21, 22) to train 
a network to organize its inputs (images) in a space such that proxim-
ity in that space (Euclidean distance) is highly correlated with iden-
tity (in this case subspecies). The learned embedding was then passed 
through an additional small network to perform direct categorical sub-
species classification. Overall, the total network optimizes the sum 
of the triplet loss and the categorical cross entropy (eqs. S1 and S2). 
The computer code used for machine learning is provided as a Python 
script (Supplementary Computer Code), which makes use of the 

PyTorch, Scikit-l arn, and Adam packages (for further details, see 
Supplementary Methods).

After the network was trained on 1500 images randomly sampled 
from the 2468 images in the dataset, network testing was performed 
on the remainder (968 images). Testing presents the trained network 
with new images, which it has not encountered before. The network 
then classifies the new images by subspecies, image classifications are 
compared to the known subspecies identities, and the overall accura-
cy of test classifications is reported. Additional testing was performed 
using an SVC trained on the embeddings from the main network 
(ButterflyNet) to determine the accuracy of classification of speci-
mens to subspecies based on their locations in the phenotypic spatial 
embedding.

Quantification of phenotypic similarity
Pairwise Euclidean phenotypic distances between all images were cal-
culated from the coordinates of all 2468 images within a spatial em-
bedding with 64 dimensions, generated using the network (table S3). 
These distances were then used to calculate the average pairwise 
Euclidean phenotypic distances between all subspecies (table S4). These 
were then used in statistical comparisons between sets of unique un-
ordered subspecies pairs (Fig. 3; for further details, see Supplemen
tary Methods). Average phenotypic distances for subspecies sets 
and principal component scores were calculated using MATLAB 
scripts. Nonparametric statistical analyses were conducted using 
the program PAST 3, after Shapiro-Wilk’s tests indicated that dis-
tances for some subspecies sets were non-normally distributed (using 
an  value of 0.05). These analyses included Kruskal-Wallis tests 
for equal medians and, where this overall test was significant, 
subsequent Mann-Whitney pairwise comparisons of statistical distri-
butions between groups.

Phylogenetic analyses
Neighbor-joining trees for subspecies were constructed on the basis 
of phenotypic distances using MATLAB scripts (sampling either all 
64 embedding axes with 1 replicate or subsamples of 8 or 32 axes 
with 100 replicates). Neighbor joining is a simple and fast algorithm 
for phylogenetic reconstruction, which reconstructs relationships 
based on phenetic (overall) similarity (39) e.g., Euclidean phenotypic 
distance, as applied here. Neighbor joining does not require an a 
priori mechanistic model for the evolutionary process in question 
(e.g., evolution of butterfly wing pattern phenotype), in contrast to 
maximum likelihood models of DNA substitution, for example. This 
method is therefore suitable for this first phylogenetic study of phe-
nomic distances calculated using deep learning on butterfly photo-
graphs. The correlation was then statistically compared between the 
resultant phenotypic neighbor-joining trees and genetic phyloge-
nies reconstructed with Bayesian methods (which incorporate DNA 
substitution models) (27). To test the phylogenetic informativeness 
of the phenotypic distances against such independent data sources, 
sets of neighbor-joining phenotypic trees (of either all subspecies, 
H. erato only, or H. melpomene only) were compared against random 
tree topologies and phylogenies (26) reconstructed from published 
gene sequences (27) from gene loci (sampled from a different, smaller 
set of 127 butterfly individuals), which were either associated with 
Heliconius wing color pattern (optix, bves, kinesin, GPCR, and VanGogh) 
(27) or were neutral markers (mt COI-COII, SUMO, Suz12, 2654, and 
CAT). Pairwise distances between trees from the different sets were 
calculated using the Robinson-Foulds (symmetric distance) metric 
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in the program PAUP and statistically compared using nonparame
tric Mann-Whitney tests in the program PAST (after Shapiro-Wilk’s 
tests indicated non-normal distributions). Tree space visualizations 
of tree similarity were produced, based on the Robinson-Foulds distance, 
using the tree set visualization package in the program Mesquite. 
Consensus networks were constructed to visualize all splits (taxon 
partitions) implied among sets of trees using the program SplitsTree 4.

Testing evolutionary convergence
Quantitative tests of evolutionary convergence were applied using an 
operational definition of convergence essentially the same as that for 
discrete traits (independent derivation of the same morphological 
state, e.g., within two species), with quantitative analysis used to test 
relative phenotypic similarity across the complete dataset (24, 25) and 
the number of quantitatively distinct phenotypic states, e.g., clusters 
(for further details, see Supplementary Methods).

To further explore the extent of reciprocal convergence in mimicry 
between H. erato and H. melpomene, detailed comparative analyses 
(40) were then conducted using 12 selected subspecies (fig. S7). First, 
sets of four subspecies were identified, with each set consisting of two 
pairs of interspecies co-mimics in which conspecifics were nearest 
neighbors in the phenotypic spatial embedding, permitting phenotyp-
ic sister-group comparisons (fig. S7, A and B). Focal co-mimics, with 
pattern features that are potentially derived, rather than ancestral, 
were identified for each comparative analysis based on all available 
independent information from gene phylogenies, biogeographic dis-
tribution (fig. S2), and phylogeographic reconstruction (12, 16, 26, 33). 
For comparison, the analyses were then repeated with reversed polar-
ity. In each comparative analysis, the position in phenotypic space of 
each of the focal subspecies was compared to that of their nearest con-
specific [a type of sister-group comparison (25)]. Mann-Whitney tests 
for equal medians tested whether conspecifics differed significantly 
in their distance from the focal co-mimic of the other species (after 
Shapiro-Wilk’s tests indicated that some subspecies values were non-
normally distributed).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/8/eaaw4967/DC1
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Fig. S3. Heatmap showing mean pairwise phenotypic and geographic distances between 38 
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Fig. S5. Average pairwise Euclidean geographic distances between subspecies of H. erato and 
H. melpomene.
Fig. S6. Neighbor-joining trees of phenotypic distance between subspecies of H. erato and  
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