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Genotype-by-environment interactions
inferred from genetic effects on phenotypic
variability in the UK Biobank

Huanwei Wang1, Futao Zhang1, Jian Zeng1, Yang Wu1, Kathryn E. Kemper1, Angli Xue1,
Min Zhang1, Joseph E. Powell1,2,3, Michael E. Goddard4,5, Naomi R. Wray1,6, Peter M. Visscher1,6,
Allan F. McRae1, Jian Yang1,7*
Genotype-by-environment interaction (GEI) is a fundamental component in understanding complex trait variation.
However, it remains challenging to identify genetic variants with GEI effects in humans largely because of the small
effect sizes and the difficulty ofmonitoring environmental fluctuations. Here, we demonstrate that GEI can be inferred
from genetic variants associated with phenotypic variability in a large sample without the need of measuring
environmental factors. We performed a genome-wide variance quantitative trait locus (vQTL) analysis of ~5.6 million
variants on 348,501 unrelated individuals of European ancestry for 13 quantitative traits in the UK Biobank and iden-
tified 75 significant vQTLs with P < 2.0 × 10−9 for 9 traits, especially for those related to obesity. Direct GEI analysis with
five environmental factors showed that the vQTLs were strongly enriched with GEI effects. Our results indicate perva-
sive GEI effects for obesity-related traits and demonstrate the detection of GEI without environmental data.
INTRODUCTION
Most human traits are complex because they are affected by many
genetic and environmental factors as well as potential interactions
between them (1, 2). Despite the long history of effort (3–5), there
has been limited success in identifying genotype-by-environment
interaction (GEI) effects in humans (5–8). This is likely because many
environmental exposures are unknown or difficult to record during
the life course and because the effect sizes of GEI are small, given the
polygenic nature of most human traits (9–11), so that the sample sizes
of most previous studies are not large enough to detect the small GEI
effects. For model complex traits such as body mass index (BMI), GEI
analyses have been limited to GEI tests at known BMI loci (12–14) or
estimation of GEI variance captured by all common SNPs (15, 16).

GEI effect of a genetic variant on a quantitative trait could lead to
differences in variance of the trait among groups of individuals with
different variant genotypes (Fig. 1, A and B, and note S1). GEI can
therefore be inferred from a variance quantitative trait locus (vQTL)
analysis (17), although there are other explanations for an observed
vQTL such as direct effect on phenotypic dispersion [e.g., induced
by selection (18)], epistasis (17), and phantom vQTL (19, 20). Unlike
the classical QTL analysis that tests the allelic substitution effect of a
variant on the mean of a phenotype (Fig. 1C), vQTL analysis tests the
allelic substitution effect on the trait variance (Fig. 1, B or D). In com-
parison to the analyses that perform direct GEI tests, vQTL analysis is
more flexible because it does not require measures of environmental
factors and thus can be performed in a very large sample where the
environmental factors are unknown, unavailable, or incomplete (21).
Of course, the vQTL test is less powerful than the direct GEI test if the
corresponding environmental factor has been measured on all the
genotyped individuals in the sample (17). Although there had been
empirical evidence for the genetic control of phenotypic variance in
livestock for decades (22, 23), it was not until recent years that genome-
wide vQTL analysis was applied in humans (17, 24, 25), and only a
handful of vQTLs have been identified for a limited number of traits
[e.g., the FTO locus for BMI (25)] owing to small effect sizes of vQTLs.
The availability of data from large biobank-based genome-wide associ-
ation studies (GWAS) (26, 27) provides an opportunity to interrogate
the genome for vQTLs for a range of phenotypes in cohorts with un-
precedented sample size.

On the other hand, statistical methods for vQTL analysis are not en-
tirely mature (21). There have been a series of classical nonparametric
methods (28), originally developed to detect violation of the homoge-
neous variance assumption in linear regression model, which can be
used to detect vQTLs, including the Bartlett’s test (29), the Levene’s test
(30, 31), and the Fligner-Killeen (FK) test (32). Recently, more flexible
parametric models have been proposed, including the double
generalized linear model (DGLM) (33–35) and the likelihood ratio test
for variance effect (LRTV) (19). In addition, it has been suggested that
the transformation of phenotype that alters phenotype distribution also
has an influence on the power and/or false-positive rate (FPR) of a
vQTL analysis (24, 36).

In this study, we calibrated the most commonly used statistical
methods for vQTL analysis by extensive simulations. We then used
the best performing method to conduct a genome-wide vQTL analysis
for 13 quantitative traits in 348,501 unrelated individuals using the UK
Biobank (UKB) data (26).We further investigated whether the detected
vQTLs are enriched for GEI by conducting a direct GEI test for the
vQTLs with five environmental factors (or covariates).
RESULTS
Evaluation of the vQTL methods by simulation
We used simulations to quantify the FPR and power (i.e., true-positive
rate) for the vQTL methods and phenotype processing strategies
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(Methods). We first simulated a quantitative trait based on a simulated
single-nucleotide polymorphism (SNP), i.e., a single-SNPmodel, under
a number of different scenarios, namely, (i) five different distributions
for the random error term (i.e., individual-specific environment effect)
and (ii) four different types of SNPwith orwithout the effect onmeanor
variance (Methods). We used the simulated data to compare the four
most widely used vQTL methods, namely, Bartlett’s test (29), Levene’s
test (30, 31), FK test (32), andDGLM (33–35).We observed no inflation
in FPR for the Levene’s test under the null (i.e., no vQTL effect) regard-
less of the skew or kurtosis of the phenotype distribution or the presence
or absence of SNP effect on the mean (fig. S1A). These findings are in
line with the results from previous studies (24, 28, 37) that the Levene’s
test is robust to the distribution of the phenotype. The FPR of the
Bartlett’s test or DGLM was inflated if the phenotype distribution
was skewed or heavy-tailed (fig. S1A). The FK test seemed to be robust
to kurtosis but vulnerable to skewness of the phenotype distribution
(fig. S1A). Because the Levene’s test performed the best in the simu-
lations, for this test, we investigated the impact of nonlinear trans-
formations of the phenotype by considering logarithm [log(y)], square
(y2), cube (y3), and rank-based inverse-normal transformation (RINT)
and found that these nonlinear transformations could result in inflated
FPR (fig. S1B).

To simulatemore complex scenarios,we used amultiple-SNPmodel
with two covariates (age and sex) and different numbers of SNPs
(Fig. 2). The results were similar to those described above, although
the power of the Levene’s test decreased with an increase of the number
of causal SNPs (Fig. 2A). Nonlinear transformations led to an inflated
FPR when the variance explained by a QTL effect (i.e., SNP effect on
mean) was relatively large and a loss of power of vQTL detection when
the per-QTL variance explained was relatively small, although loga-
rithm transformation did not seem to affect the power (Fig. 2B). These
results also suggested that pre-adjusting the phenotype by covariates
Wang et al., Sci. Adv. 2019;5 : eaaw3538 14 August 2019
slightly increased the power (Fig. 2B). On the basis of the results of these
simulations, we used the Levene’s test, a one-way analysis of variance
(ANOVA) to test for absolute deviations from the medians (Methods),
for real data analysis, with the phenotypes pre-adjusted for covariates
without any nonlinear transformation.

Genome-wide vQTL analysis for 13 UKB traits
We performed a genome-wide vQTL analysis using the Levene’s test
with 5,554,549 genotyped or imputed common variants on 348,501 un-
related individuals of European ancestry for 13 quantitative traits in the
UKB (Methods; table S1A and fig. S2A) (26). For each trait, we pre-
adjusted the phenotype for age and the first 10 principal components
(PCs; derived from SNP data) and standardized the residuals to z scores
in each gender group (Methods). This process removed not only the
effects of age and the first 10 PCs on the phenotype but also the differ-
ences in mean and variance between the two genders. We excluded in-
dividuals with adjusted phenotypes more than 5 SDs from the mean
and removed SNPs with minor allele frequency (MAF) smaller than
0.05 to avoid potential false-positive associations due to the coincidence
of a low-frequency variantwith an outlier phenotype (see fig. S3A for an
example).We acknowledge that this process could potentially result in a
loss of power, but this can be compensated for by the use of a very large
sample (n ~ 350,000).

With an experiment-wise significant threshold of 2.0 × 10−9 [i.e.,
1 × 10−8/5.0, with 1 × 10−8 being a more stringent genome-wide sig-
nificant threshold recommended by recent studies (38, 39) and 5.0
being the effective number of independent traits (note S4)], we iden-
tified 75 vQTLs [independent to linkage disequilibrium (LD) r2 < 0.01
within trait] across the nine traits (Fig. 3, Table 1, and table S2A). There
was no vQTL for height, consistent with the observation in a previ-
ous study (25). We identified more than 15 vQTLs for each of the
three obesity-related traits, i.e., BMI, waist circumference (WC), and
Fig. 1. Schematic of the differences in mean or variance among genotype groups in the presence of GEI, QTL, and vQTL effects. The phenotypes of 1000 individuals
were simulated on the basis of a genetic variant (MAF = 0.3) with (A) both QTL and GEI effects, (B) GEI effect only (no QTL effect), (C) QTL effect only (no GEI or vQTL
effect), or (D) vQTL only (no QTL effect).
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hip circumference (HC) (Table 1). The 75 vQTLs were located at 41
near-independent loci after excluding one of each between-trait pair
of top vQTLSNPs (i.e., the SNPwith lowest vQTLP value at each vQTL
association peak) with LD r2 > 0.01, suggesting that some of the loci
were associated with the phenotypic variance of multiple traits. For ex-
Wang et al., Sci. Adv. 2019;5 : eaaw3538 14 August 2019
ample, the FTO locus was associated with the phenotypic variance of
WC, HC, BMI, body fat percentage (BFP), and basal metabolic rate
(BMR) (fig. S3B), and the vQTL associations were likely to be driven
by a shared causal variantwith pleiotropic vQTL effects onmultiple traits
(fig. S3C). For the lung function–related traits, there was no significant
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Fig. 2. Evaluation of the statistical methods and phenotype processing strategies for vQTL analysis by simulation. Phenotypes of 10,000 individuals were
simulated on the basis of the different number of causal SNPs (i.e., 4, 40, or 80), two covariates (i.e., sex and age), and one error term in a multiple-SNP model (Methods).
The SNP effects were simulated under four scenarios: (i) effect on neither mean nor variance (nei), (ii) effect on mean only (mean), (iii) effect on variance only (var), or (iv)
effect on both mean and variance (both). The error term was generated from five different distributions: normal distribution, t-distribution with df = 10 or 3, or c2

distribution with df = 15 or 1. (A) Four statistical test methods, i.e., the Bartlett’s test (Bart), the Levene’s test (Lev), the Fligner-Killeen test (FK), and the DGLM, were used
to detect vQTLs. (B) The Levene’s test was used to analyze phenotypes processed using six strategies, i.e., raw phenotype (raw), raw phenotype adjusted for covariates
(adj), RINT after adj (rint), logarithm transformation after adj (log), square transformation after adj (sq), and cube transformation after adj (cub). Positive rate is defined as
the number of vQTLs with P < 0.05 divided by the total number of tests across 1000 simulations, which is the FPR under the null (“nei” and “mean”) and power under
the alternative (“var” and “both”). The red horizontal line represents an FPR of 0.05.
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vQTL for forced expiratory volume in 1 s (FEV1) and forced vital capac-
ity (FVC) but there were three vQTLs for the FEV1/FVC ratio (FFR).
There was no evidence for an effect of MAF on vQTL test statistic at
the 41 independent loci (fig. S3D), consistent with the observation in a
previous study (25).

The Levene’s test assesses the difference in variance among three
genotype groups free from the assumption about additivity (i.e., the
vQTL effect of carrying two copies of the effect allele is not assumed
Wang et al., Sci. Adv. 2019;5 : eaaw3538 14 August 2019
to be twice that carrying one copy). We found two vQTLs (i.e.,
rs141783576 and rs10456362) potentially showing nonadditive genetic
effect on the variance of HC and BMR, respectively (table S2A).

To demonstrate the vulnerability of vQTL analysis to nonlinear
transformations in real data, we performed genome-wide vQTL
analysis for height squared and cubed. There was no genome-wide
significant vQTL for height squared but one genome-wide significant
vQTL for height cubed, which was very likely to be driven by a strong
Fig. 3. Manhattan plots of genome-wide vQTL analysis for 13 traits in the UKB. For each of the 13 traits (see Table 1 for full names of the traits), test statistics
[−log10(PvQTL)] of all common (MAF ≥ 0.05) SNPs from the vQTL analysis are plotted against their physical positions. The dashed line represents the genome-wide
significance level 1.0 × 10−8, and the solid line represents the experiment-wise significance level 2.0 × 10−9. For graphical clarity, SNPs with PvQTL < 1 × 10−25 are
omitted, SNPs with PvQTL < 2.0 × 10−9 are color-coded in orange, the top vQTL SNP for each locus is represented by a diamond, and the remaining SNPs on odd and
even chromosomes are color-coded in gray and blue, respectively.
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Table 1. The number of experiment-wise significant vQTLs or QTLs for the 13 UKB traits.
Wang et al., Sci. Adv. 2019;5 : eaaw3538 14 August 2019 5 of 12
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QTL signal for height [PQTL(Height) = 4.35 × 10−150] (fig. S3, E and F),
consistent with our simulation results that nonlinear transformations
could inflate the vQTL test statistics in the presence of a strongQTL sig-
nal (Fig. 2B and fig. S1B). Although we have not applied any nonlinear
transformation to the UKB traits, some of them are nonlinear functions
of other traits, i.e., BMI (=WT/HT2), FFR (= FEV1/FVC), andWHR
(= WC/HC). We therefore explored whether the BMI, FFR, andWHR
vQTLs were driven by the nonlinear functions by testing the variance
effects of the BMI, FFR, and WHR vQTLs on 1/HT2, 1/FVC, and 1/HC,
respectively. There were 26 tests in total, none of which reached the
experiment-wise significance level (i.e., 2.0 × 10−9) used to claim vQTLs
in this study and 23 of which had a P value larger than 0.05 (table S2B),
suggesting that the BMI, FFR, andWHR vQTLs were not driven by the
nonlinear functions. Although the variance effect of an FFR vQTL
(rs56077333) on 1/FVC was significant after correcting for 26 tests
(P = 5.11 × 10−6; table S2B), the effect of rs56077333 on the variance
of 1/FVC was not large enough to drive the vQTL signal for FFR and
rs56077333 has a known GEI effect on lung function (see below for
more details).

GWAS analysis for the 13 UKB traits
To investigate whether the SNPs with effects on variance also have
effects onmean, we performedGWAS (or genome-wideQTL) analyses
for the 13 UKB traits described above. We identified 3973 QTLs at an
experiment-wise significance level (i.e., PQTL < 2.0 × 10−9) for the 13
traits in total, a much larger number than that of the vQTLs (Fig. 4
and Table 1). Among the 75 vQTLs, the top vQTL SNPs at nine loci
did not pass the experiment-wise significance level in the QTL analysis
(table S2A). For example, theCCDC92 locus showed a significant vQTL
effect but no significant QTL effect on WC (table S2A and fig. S3G),
whereas the FTO locus showed both significant QTL and vQTL effects
onWC(fig. S3G). For the 66 vQTLswith bothQTLandvQTLeffects, the
vQTL effects were all in the same directions as theQTL effects,meaning
that, for any of these SNPs, the genotype groupwith a larger phenotypic
mean also tends to have a larger phenotypic variance than the other
groups. For the nine loci with vQTL effects only, it is equivalent to a
scenario where a QTL has a GEI effect with no (or a substantially re-
Wang et al., Sci. Adv. 2019;5 : eaaw3538 14 August 2019
duced) effect on average across different levels of an environmental
factor (Fig. 1B).

vQTL and GEI
To further investigate whether the associations between vQTLs and
phenotypic variance can be explained by GEI, we performed a direct
GEI test based on an additive genetic model with an interaction term
between a top vQTL SNP and one of five environmental factors/
covariates in the UKB data (Methods). The five environmental factors/
covariates are sex, age, physical activity (PA), sedentary behavior (SB),
and ever smoking (note S5, fig. S2B, and table S1B). We observed 16
vQTLs showing a significant GEI effect with at least one of five envi-
ronmental factors after Bonferroni correction for multiple tests [P <
1.33 × 10−4 = 0.05/(75 × 5); Fig. 5A and table S2C].

To test whether the GEI effects are enriched among vQTLs in
comparison with the same number of QTLs, we performed GEI test
for the 75 top GWAS SNPs randomly selected from all the QTLs and
repeated the analysis 1000 times. Of the 75 top SNPs with QTL effects,
the number of SNPs with significant GEI effects was 2.25, averaged
from the 1000 repeated samplings with an SD of 1.49 (Fig. 5B), signif-
icantly lower than the number (16) observed for the vQTLs (the dif-
ference is larger than 9 SDs, equivalent to P = 1.4 × 10−20). This result
shows that SNPs with vQTL effects aremuchmore enriched with GEI
effects compared to those with QTL effects. To exclude the possibility
that the GEI signals were driven by phenotype processing (e.g., the
adjustment of phenotype for sex and age), we repeated the GEI analy-
ses using rawphenotype datawithout covariate adjustment; the results
remain largely unchanged (fig. S5).
DISCUSSION
In this study, we leveraged the genetic effects associated with pheno-
typic variability to infer GEI. We calibrated the most commonly used
vQTL methods by simulation. We found that the FPR of the Levene’s
test was well calibrated across all simulation scenarios, whereas the
other methods showed an inflated FPR if the phenotype distribution
was skewed or heavy-tailed under the null hypothesis (i.e., no vQTL
Fig. 4. Manhattan Sunset plot of genome-wide vQTL and QTL analyses for WC in the UKB. Test statistics [−log10(P values)] of all common SNPs from vQTL (red
bars) and QTL (blue bars) analysis are plotted against their physical positions. The top vQTL SNP is represented by an orange diamond, and the name of the nearest
protein-coding gene is indicated for each significant vQTL locus (PvQTL < 2.0 × 10−9).
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effect), although the Levene’s test appeared to be less powerful than
the other methods particularly when the per-variant vQTL effect
was small (Fig. 2 and fig. S1). Parametric bootstrap or permutation
procedures have been proposed to reduce the inflation in the test sta-
tistics of DGLM and LRTv, both of which are expected to be more
powerful than the Levene’s test (19, 37), but bootstrap and permuta-
tion are computationally inefficient and thus are not practically appli-
cable to biobank data such as the UKB. We observed inflated FPR for
the Levene’s test in the absence of vQTL effects but in the presence of
QTL effects if the phenotype was nonlinearly transformed (e.g., loga-
rithm transformation or RINT). We therefore recommend the use of
the Levene’s test in practice without nonlinear transformation of the
phenotype. In addition, a very recent study by Young et al. (40) devel-
oped an efficient algorithm to perform a DGLM analysis and proposed
a method [called dispersion effect test (DET)] to remove confounding
in vQTL associations (identified by DGLM) due to QTL effects. We
showed by simulation that, when the number of simulated causal var-
iants was relatively large (note that the DET test is not applicable to
Wang et al., Sci. Adv. 2019;5 : eaaw3538 14 August 2019
oligogenic traits), the Young et al. method (DGLM followed by
DET) performed similarly as the Levene’s test, with differences depend-
ing on how the phenotype was processed (fig. S6).

We demonstrated in the analysis of the UKB data that a number
of vQTLs (with enriched GEI effects) can be detected by an appro-
priate analytical strategy in a very large sample. Traits with a larger
number of vQTLs detected at the experiment-wise significance level
tended to have a higher genomic inflation factor (defined as the mean
or median c2 statistic divided by its expected value) even after exclud-
ing the top vQTLs as well as SNPs in LD with them (fig. S4), con-
sistent with a polygenic model of variance effect (41, 42), suggesting
a large number of vQTLs with small variance effects yet to be dis-
covered in larger samples in the future.

There are several vQTLs for which the GEI effect has been reported
in previous studies. The first example is the interaction effect of the
CHRNA5-A3-B4 locus (rs56077333) with smoking for lung func-
tion (as measured by FFR, i.e., FEV1/FVC), PvQTL = 1.1 × 10−14 and
PGEI(smoking) = 4.6 × 10−25 (table S3A). The CHRNA5-A3-B4 gene
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Fig. 5. Enrichment of GEI effects among the 75 vQTLs compared with a random set of QTLs. Five environmental factors/covariates, i.e., sex, age, physical activity
(PA), sedentary behavior (SB), and smoking, were used in the GEI analysis. (A) Heatmap plot of GEI test statistics [−log10(PGEI)] for the 75 top vQTL SNPs. “*” denotes
significant GEI effects after Bonferroni correction [PGEI < 1.33 × 10−4 = 0.05/(75 × 5)]. (B) Distribution of the number of significant GEI effects for the 75 top QTL SNPs
randomly selected from all the top QTL SNPs with 1000 repeats (mean, 2.25; SD, 1.49). The red line represents the number of significant GEI effects for the 75 top vQTL
SNPs (i.e., 16).
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cluster is known to be associated with smoking and nicotine de-
pendence (43–45). However, results from recent GWAS (46–48) do
not support the association of this locus with lung function. We hy-
pothesize that the effect of theCHRNA5-A3-B4 locus on lung function
depends on smoking (table S3A) (49). The vQTL signal at this locus
remained (PvQTL = 5.2 × 10−12) after adjusting the phenotype for array
effect, which was reported to affect the QTL association signal at this
locus (26). The second example is the interaction of theWNT16-CPED1
locus with age for bone mineral density (BMD) [rs10254825:
PvQTL = 2.0 × 10−45 and PGEI(age) = 1.2 × 10−7]. The WNT16-CPED1
locus is one of the strongest BMD-associated loci identified from
GWAS (50, 51). We observed a genotype-by-age interaction effect at
this locus for BMD (table S3B), in line with the results from previous
studies that the effect of the top SNP at WNT16-CPED1 on BMD in
humans (52) and the knockout effect of Wnt16 on bone mass in mice
(53) are age dependent. The third example is the interaction of the FTO
locus with PA and SB for obesity-related traits [PvQTL < 1 × 10−10 for
BMI, WC, HC, BFP, and BMR; PGEI(PA) = 1.3 × 10−10 for BMI, 1.4 ×
10−7 for WC, 5.3 × 10−7 for HC, and 2.6 × 10−7 for BMR]. The FTO
locus was one of the first loci identified by the GWAS of obesity-
related traits (54), although subsequent studies (55, 56) show that
IRX3 and IRX5 (rather than FTO) are the functional genes responsible
for the GWAS association. The top associated SNP at the FTO locus is
not associated with PA, but its effect on BMI decreases with the in-
crease of PA level (12, 57), consistent with the interaction effects of
the FTO locus with PA or SB for obesity-related traits identified in this
study (table S3, C and D). In addition, 5 of the 22 BMI vQTLs were in
LD (r2 > 0.5), with the variants (identified by a recently developed
multiple-environment GEI test) showing significant interaction
effects at a false discovery rate (FDR) of <5% (corresponding to P <
1.16 × 10−3) with at least 1 of 64 environmental factors for BMI in the
UKB (58).

It should be noted that GEI is sufficient but not necessary to
generate a vQTL. For the vQTLs that did not show a direct GEI effect
in our GEI analysis, we cannot distinguish whether they are due to
undetected GEI or direct effects on phenotypic dispersion, although
GEI is a more likely explanation because of the enrichment of GEI
(Fig. 5); hence, these traits and loci are candidates for follow-up studies
to identify putative environmental risk factors that may be amend-
able to lifestyle modification. We also explored two other interpreta-
tions of the observed vQTLs, i.e., “phantom vQTLs” (19, 20) and
epistasis (genotype-by-genotype interaction) (17). If the underlying
causal QTL is not well imputed or not well tagged by a genotyped/
imputed variant, then the untagged variation at the causal QTL will
inflate the vQTL test statistic, potentially leading to a spurious vQTL
association, i.e., the so-called phantom vQTL. We showed by theo-
retical deviations that the Levene’s test statistic due to the phantom
vQTL effect was a function of sample size, effect size of the causal QTL,
allele frequency of the causal QTL, allele frequency of the phantom
vQTL, and LD between the causal QTL and the phantom vQTL (note
S6 and fig. S7A). From our deviations, we computed the numerical
distribution of the expected phantomvQTL F-statistics, given a number
of parameters including the sample size (n = 350,000), variance ex-
plained by the causal QTL (q2 = 0.005, 0.01, or 0.02), and MAFs of
the causal QTL and the phantom vQTL (MAF = 0.05 to 0.5). The result
showed that, for a causal QTL with q2 < 0.005 and MAF > 0.05, the
largest possible phantom vQTL F-statistic was smaller than 2.69
(corresponding to a P value of 6.8 × 10−2; fig. S7, B to D). This explains
why there were thousands of genome-wide significant QTLs but no sig-
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nificant vQTL for height (Fig. 3 and Table 1). This result also suggests
that the vQTLs detected in this study are very unlikely to be phantom
vQTLs because the estimated variance explained by their QTL effects
were all smaller than 0.005, except for rs10254825 at theWNT16 locus
on BMD (q2 = 0.014) (fig. S7E). However, our numerical calculation
also indicated that, for a QTL withMAF > 0.3 and q2 < 0.02, the largest
possible phantom vQTL F-statistic was smaller than 5.64 (correspond-
ing to aP value of 3.6 × 10−3), suggesting that rs10254825 is also unlikely
to be a phantom vQTL. Note that we used the variance explained esti-
mated at the top GWAS SNP to approximate q2 of the causal QTL so
that q2 was likely to be underestimated because of imperfect tagging.
However, considering the extremely high imputation accuracy for com-
mon variants (59), the strong LD between the causal QTLs and the
GWAS top SNPs observed in a previous simulation study based on
whole-genome sequence data (38), and the overestimation of variance
explained by the GWAS top SNPs because of winner’s curse, the
underestimation in causal QTL q2 is likely to be small. In addition,
we reran the vQTL analysis, with the phenotype adjusted for the top
GWAS variants within 10 Mb of the top vQTL SNP; the vQTL signals
after this adjustment were highly concordant with those without ad-
justment (fig. S7F). We further showed that there was no evidence
for epistatic interactions between the top vQTL SNPs and any other
SNP located more than 10 Mb away or on a different chromosome
(fig. S7G). Note that we did not perform epistatic test for SNP pairs
within 10 Mb to avoid possible spurious epistatic signals caused by
LD (60).

In conclusion, we systematically quantified the FPR and power for
four commonly used vQTLmethods by extensive simulations anddem-
onstrated the robustness of the Levene’s test. We also showed that,
in the presence of QTL effects, the Levene’s test statistic could be
inflated if the phenotype was nonlinearly transformed.We implemen-
ted the Levene’s test as part of the OSCA software package (http://
cnsgenomics.com/software/osca) (61) for efficient genome-wide
vQTL analysis. We applied OSCA-vQTL to 13 quantitative traits in
the UKB and identified 75 vQTL (at 41 near-independent loci) asso-
ciated with 9 traits, 9 of which did not show a significant QTL effect.
As a proof of principle, we performed GEI analyses in the UKB with
five environmental factors/covariates and demonstrated the enrich-
ment of GEI effects among the detected vQTLs. Hence, the vQTL
trait-loci combinations we have identified could be investigated for
as-yet-undetermined but measurable environmental risk factors gen-
erating GEI, as these factors could be amenable to lifestyle change in-
terventions. We further derived the theory to compute the expected
“phantom vQTL” test statistic due to untagged causal QTL effect
and showed by numerical calculation that our observed vQTLs were
very unlikely to be driven by imperfectly tagged QTL effects. Our the-
ory is also consistent with the observation of pervasive phantom
vQTLs for molecular traits with large-effect QTLs [e.g., DNAmethyl-
ation (20)]. However, the conclusions from this study may only be ap-
plicable to quantitative traits of polygenic architecture. We caution
vQTL analysis for binary or categorical traits, or molecular traits (e.g.,
gene expression or DNA methylation), for which the methods need
further investigation.
METHODS
Simulation study
We used a DGLM (33–35) to simulate the phenotype based on two
models with simulated SNP data in a sample of 10,000 individuals,
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i.e., a single-SNP model and multiple-SNP model with two covariates
(i.e., age and sex). The single-SNP model can be written as

y ¼ wbg þ e with logðs2eÞ ¼ wfg þ logðs2Þ

and the multiple-SNP model can be expressed as

y ¼ Sl
j¼1cjbcj þ Sm

k¼1wkbgk þ e with logðs2eÞ
¼ Sl

j¼1cjfcj þ Sm
k¼1wkfgk þ logðs2Þ

where y is a simulated phenotype; w or wk is a standardized SNP
genotype, i.e., w ¼ ðx � 2f Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2f ð1� f Þp
, with x being the genotype

indicator variable coded as 0, 1, or 2, generated from binomial(2, f )
and f being the MAF generated from uniform(0.01, 0.5); cj is a stan-
dardized covariate with c1 (sex) generated from binomial(1, 0.5) and c2
(age) generated from uniform(20, 60); e is an error term with mean 0
and variance s2e . To simulate the error term with different levels of
skewness and kurtosis, we generated e from five different distributions,
including normal distribution, t-distribution with df = 10 or 3, and c2

distribution with df = 15 or 1. b (f) is the effect on mean (variance)
generated from N(0,1) if exists, 0 otherwise. Log(s2) is the intercept
of the second linear model, which was set to 0. We rescaled the dif-
ferent components to control the variance explained, i.e., 0.1 and 0.9
for the genotype component and error term, respectively, in the
single-SNP model, and 0.2, 0.4, and 0.4 for the covariate compo-
nent, genotype component, and error term, respectively, in the
multiple-SNP model. We simulated the SNP effects in four differ-
ent scenarios: (i) effect on neither mean nor variance (nei), (ii) effect
on mean only (mean), (iii) effect on variance only (var), or (iv) effect
on both mean and variance (both). We simulated only one causal
SNP in the single-SNP model and 4, 40, or 80 causal SNPs in the
multiple-SNP model.

We performed vQTL analyses using the simulated phenotype and
SNP data to compare four vQTL methods, including the Bartlett’s
test (29), the Levene’s test (31), the FK test (32), and the DGLM (note
S2). We also performed the Levene’s test with six phenotype process
strategies, including raw phenotype (raw), raw phenotype adjusted
for covariates (adj), RINT after adj (rint) (note S3), logarithm trans-
formation after adj (log), square transformation after adj (sq), and
cube transformation after adj (cub). We repeated the simulation
1000 times and calculated the FPR and power at P < 0.05 at a
single-SNP level.

The UKB data
The full release of the UKB data consisted of genotype and phenotype
data for ~500,000 participants across the United Kingdom (26). The
genotype data were cleaned and imputed to the Haplotype Reference
Consortium (59) and UK10K (62) reference panels by the UKB team.
Genotype probabilities from imputation were converted to hard-call
genotypes using PLINK2 (--hard-call 0.1) (63). We excluded genetic
variants with MAF < 0.05, Hardy-Weinberg equilibrium test P value
< 1 × 10−5, missing genotype rate > 0.05, or imputation INFO score <
0.3 and retained 5,554,549 variants for further analysis.

We identified a subset of individuals of European ancestry (n =
456,422) by projecting the UKB PCs onto those of the 1000 Genome
Project (1KGP) (64). We then removed one of each pair of individuals
with SNP-derived (based on HapMap 3 SNPs) genomic relatedness
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>0.05 using GCTA-GRM (65) and retained 348,501 unrelated European
individuals for further analysis.

We selected 13 quantitative traits for our analysis (table S1A and
fig. S2A). We adjusted the raw phenotype values for age and the first
10 PCs, excluded from the analysis phenotype values that were more
than 5 SDs from the mean, and then standardized to z scores with
mean 0 and variance 1 in each gender group.

Genome-wide vQTL analysis
The genome-wide vQTL analysis was conducted using the Levene’s test
implemented in the software tool OSCA (http://cnsgenomics.com/
software/osca) (61). The Levene’s test used in the study [also known
as the median-based Levene’s test or the Brown-Forsythe test (31)]
is a modified version of the original Levene’s test (30) developed in
1960 that is essentially a one-way ANOVA test of the variable zij ¼
∣yij � ~yi∣, where yij is the phenotype of the jth individual in the
ith group and ~yi is the median of the ith group. The Levene’s test
statistic

ðn� kÞ
ðk� 1Þ

∑k
i¼1niðzi: � z::Þ2

∑k
i¼1∑

ni
j¼1ðzij � zi:Þ2

approximately follows an F distribution with k − 1 and n − k degrees
of freedom under the null hypothesis, where n is the total sample
size, k is the number of groups (k = 3 in vQTL analysis), ni is the
sample size of the ith group, i.e., n ¼ ∑ki¼1ni; zij ¼ ∣yij � ~yi∣; zi: ¼
1
ni
∑nij¼1zij, and z:: ¼ 1

N ∑
k
i¼1∑

k
j¼1zij.

The experiment-wise significance level was set to 2.0 × 10−9, which
is the genome-wide significance level (i.e., 1 × 10−8) (38, 39) divided by
the effective number of independent traits (i.e., 5.00 for our 13 traits).
The effective number of independent traits was estimated on the basis
of the phenotypic correlation matrix (note S4) (66). To determine the
number of near-independent vQTLs, we performed an LD clumping
analysis for each trait using PLINK2 (--clump option with parameters
--clump-p1 2.0e-9 --clump-p2 2.0e-9 --clump-r2 0.01 and --clump-kb
5000) (63). To visualize the results, we generated the Manhattan and
regional association plots using the ggplot2 package in R.

GWAS analysis
The GWAS (or genome-wide QTL) analysis was conducted using
PLINK2 (63) (--assoc option) using the same data as used in the vQTL
analysis (note that the phenotype had been pre-adjusted for covariates
and PCs). The other analyses, including LD clumping and visualization,
were performed using the same pipelines as those for genome-wide
vQTL analysis described above.

GEI analysis
Five environmental factors/covariates (i.e., sex, age, PA, SB, and smok-
ing)were used for the directGEI tests. Sexwas coded as 0 or 1 for female
or male. Age was an integer number ranging from 40 to 74. PA was
assessed by a three-level categorical score (i.e., low, intermediate, and
high) based on the short form of the International Physical Activity
Questionnaire (IPAQ) guideline (67). SB was an integer number
defined as the combined time (hours) spent driving, non–work-related
computer using, or TV watching. The smoking factor “ever smoked”
was coded as 0 or 1 for never or ever smoker. More details about the
definition and derivation of environmental factor PA, SB, and smoking
can be found in note S5, fig. S2B, and table S1B.
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We performed a GEI analysis to test the interaction effect between
the top vQTL SNP and one of the five environmental factors based on
the following model

y ¼ mþ bgxg þ bExE þ bgExgxE þ e

where y is the phenotype, m is the mean term, xg is the mean-centered
SNP genotype indicator, and xE is the mean-centered environmental
factor. We used a standard ANOVA analysis to test for bgE and applied
a stringent Bonferroni-corrected threshold 1.33 × 10−4 [i.e., 0.05/
(75 × 5)] to claim a significant GEI effect.
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